- "*SHIELD &J brave

Mithril: Efficient Threshold ML-DSA
from Short Secret Sharing

NIST MPTS Workshop 2026 - 01/2026

Rafael del Pino, Sofia Celi, Gustavo Delerue, Thomas Espitau, Guilhem Niot, Thomas Prest

Efficient Post-Quantum Threshold Signatures?

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Raccoon

Cecilia Boschini Darya Kaviani Russell W. F. Lai Giulio Malavolta
ETH Ziirich, Switzerland UC Berkeley, USA Aalto University, Finland Bocconi University, Italy

Akira Takahashi Mehdi Tibouchi
JPMorgan Al Research & AlgoCRYPT CoE, USA NTT Social Informatics Laboratories, Japan

Threshold Raccoon: Practical Threshold Signatures

from Standard Lattice Assumptions
Rafael del Pino', Shuichi Katsumata'?, Mary Maller!?, Fabrice Mouhartem*, Thomas TWO_Round ThreShOId Slgnature fr()m

Prest!, Markku-Juhani Saarinen!»

Algebraic One-More Learning with Errors

Thomas Espitau®, Shuichi Katsumata!?, Kaoru Takemure* 12

Efficient Post-Quantum Threshold Signatures?

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Raccoon

Cecilia Boschini Darya Kaviani Russell W. F. Lai Giulio Malavolta
ETH Ziirich, Switzerland UC Berkeley, USA Aalto University, Finland Bocconi University, Italy

Akira Takahashi Mehdi Tibouchi
JPMorgan Al Research & AlgoCRYPT CoE, USA NTT Social Informatics Laboratories, Japan

Threshold Raccoon: Practical Threshold Signatures

from Standard Lattice Assumptions
Rafael del Pino', Shuichi Katsumata'?, Mary Maller!?, Fabrice Mouhartem*, Thomas TWO_Round ThreShOId Slgnature from

Prest!, Markku-Juhani Saarinen!»

Algebraic One-More Learning with Errors

Thomas Espitau®, Shuichi Katsumata!?, Kaoru Takemure* 12

In 2023, NIST selected 3 post-quantum signature schemes for standardization.

ML-DSA

SLH-DSA
FN-DSA

Based on lattices Based on hash functions

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed.
« vk = A -sk+ e, forsk, e short

Signing — Fiat-Shamir transform applied to protocol proving knowledge of (sk, e)

Randomness + Commitment: Sample short r, and commit w = |A - r|.
Challenge: Derive challenge ¢ = H(w, msg).

Response: Compute Z = ¢ - sk + .

Verification — Check that w can be recovered from z, and Z is short.

3

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed.
« vk = A -sk+ e, forsk, e short

Signing — Fiat-Shamir transform applied to protocol proving knowledge of (sk, e)

Randomness + Commitment: Sample short r, and commit w = |A - r|.

Challenge: Derive challenge ¢ = H(w, msg). restart

e IfZ &S

Response: Compute Z = ¢ - sk + r. Rejection sample:
e IfZzE S output

Verification — Check that w can be recovered from z, and Z is short.

3

Distributing ML-DSA

MPC + UC framework Tailored + Game-based
e Protocol simulatable from a trusted * Focus on specific properties, unforgeability
execution and correctness

Mithril

Key properties

Security:

* Dishonest Majority (up to
T — 1 corruptions)

e Active security
* Arguably adaptive security

Compatibility: Valid
FIPS 204 signatures.

Distributing ML-DSA

MLWE assumption: vk appears uniformly distributed
vk = A - sk + e, for sk, e short for A wide enough (more inputs than outputs)

Signing — prove knowledge of (sk, e)

Randomness + Commitment:{Sample short r,Jand commit w = [A - r].

Challenge: Derive challenge ¢ = H(w, msg). restart

e IfZz & S

Response: Compute Z = ¢ - sk + r. Rejection sample:

e IfZz€E S output

Distributing ML-DSA: Mithril at a high level

Centralized Distributed

Sample short r Sample short r; D D

Aggregate

Distributing ML-DSA: Mithril at a high level

Centralized Distributed

Sample short r Sample short r; D D

Rejection sample z Rejection sample Z; ;] Q
YES NO

Aggregate E 7 = z , accept If all accept :

Technique 1: Replicated Secret Sharing

For this to work, we need a short partial secret per party for each session.

art
l

Sample short r; Q .
Rejection sample z; D .

Technique 1: Replicated Secret Sharing

For this to work, we need a short partial secret per party for each session.

Use Replicated Secret Sharing as in [dPN25].

10

ML-DSA" . Keygen() — sk, vk

For every possible set of N — T + 1 parties
O vk; = A - sk; + e, where sk;, €; short

O Distribute skj, €; to parties in [
vk = Zin]

1. When at most 7' — 1 parties are corrupted,
at least one of these secrets remains hidden.

2. 1 parties can collaboratively reconstruct the
full secret.

Partition Uiess M; = Ust. [I|=N-T+1}:

sk = Z skl,‘i e = ZEZeIE

Distributing ML-DSA: Mithril at a high level

ML-DSA signing Our protocol
Mithril . Sign(msg) — sig
Round 1:
Randomness + Commitment: Sample - Sample short r;, €;
short r, and commit w = |A - r]. » W, =A-T;+¢
. Broadcast commit; = H(w,)
Round 2:
_ - Broadcast w;
Challenge: Derive challenge
—H Round 3:
¢ = (W’ msg)' W = Ziwi + abort if inconsistent commit;
¢ = H(|w]|, msg)
Response: Computez = c - sk +r. Iem, Iem,
Rejection sample: . If(z;y,) in S, broadcast z,, else abort

Combine:
sig = (2,25 [W])
If sig not in &', restart
return sig

11

Technique 2: Optimized rejection sampling

When 1" users sign — proba that all parties pass rejection sampling is pT.

Exponential degradation over centralized setting.

12

Technique 2: Optimized rejection sampling

When 1" users sign — proba that all parties pass rejection sampling is pT.

Exponential degradation over centralized setting.

Sample r in a centered hypercube.

13

Technique 2: Optimized rejection sampling

When 1" users sign — proba that all parties pass rejection sampling is pT.

Exponential degradation over centralized setting.

Sample r in a centered hypercube.

Then, the distribution of z depends on the secret.

J\c-sk

13

Technique 2: Optimized rejection sampling

When 1" users sign — proba that all parties pass rejection sampling is pT.

Exponential degradation over centralized setting.

Sample r in a centered hypercube.

Then, the distribution of z depends on the secret.

We reject any z outside of .

The resulting distribution is independent of the secret.

13

z=c-Sk+7r

Technique 2: Optimized rejection sampling

When 1" users sign — proba that all parties pass rejection sampling is pT.

Exponential degradation over centralized setting.

Sample r in a centered hyperball.

Then, the distribution of z depends on the secret.

We reject any Z outside of ‘ .
The resulting distribution is independent of the secret.

14

Technique 2: Optimized rejection sampling

When 1" users sign — proba that all parties pass rejection sampling is pT.

Exponential degradation over centralized setting.

Sample r in a centered hyperball. I

Then, the distribution of z depends on the secret.

We reject any Z outside of ‘ .
The resulting distribution is independent of the secret.

15

Key properties

Target: Small number
of parties (N < 8)

Compatibility: Valid
FIPS 204 signatures.

16

Security:

* Dishonest Majority (up to
T — 1 corruptions)

e Active security
* Arguably adaptive security

Real-world efficiency:
Few rounds, low
communication/

computation

Key management

Distributed key generation A posteriori key distribution

4 rounds Max 7-12 bits security loss in
High efficiency case of corruptions

17

Distributed key generation

ML-DSA". Keygen() — sk, vk

For every possible set [of N — T + 1 parties
O vk; = A - sk; + e, where sk;, €; short

O Distribute sk;, €; to parties in [
vk = Zi Vk]

18

Distributed key generation

Rounds 1-2:

« Exchange shared secret K; for each

ML-DSA” . Keygen() — sk, vk group [of N — T + 1 parties.

For every possible set [of N — T + 1 parties : .
* Collaboratively sample coln.

O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, €; to parties in [
vk = Zi Vk]

19

Distributed key generation

Rounds 1-2:
« Exchange shared secret K; for each
ML-DSA® . Keygen() — sk, vk group [of N — T'+ 1 parties.

For every possible set [of N — T + 1 parties : .
* Collaboratively sample coln.

O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, €; to parties in [

vk =3 vk; Rounds 3-4:
» Derive secrets sk; = H(coin, K;).

« Commit-and-reveal vk; = [A 1] - sk;.

» Define vk = Z vk;.
I

19

A posteriori key generation

ML-DSA". Keygen() — sk, vk

For every possible set [of N — T + 1 parties
O vk; = A - sk; + e, where sk;, €; short

O Distribute sk;, €; to parties in [
vk = Zi Vk]

20

A posteriori key generation

ML-DSA" . Keygen() — sk. vk Given an ML-DSA secret key sk:

For every possible set / of N — T'+ 1 parties » Sample Gaussians (sk;); such that Z sk; = sk

I
* Corrupting all but one share can be seen as

obtaining a hint on sk.

O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, €; to parties in [
vk = Zi Vk]

20

Implementation

PoC in Go Reference NIST Submission

Already |
open-source Ongoing work

Full spec

21

Performance: Number of rounds

Online efficient

Security setting
23 Or 79 (comm. optimized) : Quorum Honest majority
60 Trilithium Trusted party
4 Mithril Dishonest majority

22

Performance: Number of rounds

Offline efficient

37 Or 136 (comm. optimized) i Quorum
— Trilithium
2 Mithril

23

Security setting

Honest majority

Trusted party

Dishonest majority

Performance: Bandwidth and local latency

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.

| 20
o N =2 ° &N =
o N=3 o N =3
o) N =4 7 15 N =4
= 400 N — | N N =35 \
§ @ N =6 / é @ N =6)
S | g 10
g >
< as ®
© '.
m 200 o %D
= S 5
> el
-~ P %
o =8 o &8
J
2 3 4 o 6 2 3 4 5 6
Threshold (T) Threshold (T)

Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)
Parties are executed in parallel, and we average over successful attempts.

24

Performance: WAN latency
T=2, N=6

~n

A S

Latency of threshold signing for ML-DSA 44.
Parties are executed in parallel, and we average over successftul attempts.

Performance: WAN latency
T=2, N=6

~n

A S

Latency of threshold signing for ML-DSA 44.
Parties are executed in parallel, and we average over successftul attempts.

Performance: WAN latency
T=4, N=6

Latency of threshold signing for ML-DSA 44.
Parties are executed in parallel, and we average over successftul attempts.

Questions?

“Efficient Threshold ML-DSA”

By Rafael del Pino, Sofia Celi, Thomas Espitau,
Guilhem Niot, Thomas Prest
USENIX Security 2026
eprint.iacr.org/2026/013

28

http://eprint.iacr.org/2026/013

Evaluation

Other ML-DSA parameter sets

Communication costs for Threshold ML-DSA-65 Communication costs for Threshold ML-DSA-87
10,000 |
|- N
@ N
n 8,000 N
@ N
= 6,000 | o N
I
£)
= 4,000
M
=
; 2.000
0 — 0l = -
l l
2 3 4 5 6 2 3 4 5) 6

Threshold (T) Threshold (T)

29

