

Mithril: Efficient Threshold ML-DSA from Short Secret Sharing

NIST MPTS Workshop 2026 – 01/2026

Rafael del Pino, Sofía Celi, Gustavo Delerue, Thomas Espita, **Guilhem Niot**, Thomas Prest

Efficient Post-Quantum Threshold Signatures?

Raccoon

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Cecilia Boschini
ETH Zürich, Switzerland

Darya Kaviani
UC Berkeley, USA

Russell W. F. Lai
Aalto University, Finland

Giulio Malavolta
Bocconi University, Italy

Akira Takahashi
JPMorgan AI Research & AlgoCRYPT CoE, USA

Mehdi Tibouchi
NTT Social Informatics Laboratories, Japan

Two-Round Threshold Signature from Algebraic One-More Learning with Errors

Thomas Espitau¹, Shuichi Katsumata^{1,2}, Kaoru Takemure*^{1,2}

Efficient Post-Quantum Threshold Signatures?

Raccoon

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Cecilia Boschini
ETH Zürich, Switzerland

Darya Kaviani
UC Berkeley, USA

Russell W. F. Lai
Aalto University, Finland

Giulio Malavolta
Bocconi University, Italy

Akira Takahashi
JPMorgan AI Research & AlgoCRYPT CoE, USA

Mehdi Tibouchi
NTT Social Informatics Laboratories, Japan

In 2023, NIST selected 3 post-quantum signature schemes for standardization.

ML-DSA

FN-DSA

Based on lattices

SLH-DSA

Based on hash functions

ML-DSA signatures

ML-DSA . Keygen() \rightarrow sk, vk

- $\text{vk} = \mathbf{A} \cdot \text{sk} + \mathbf{e}$, for sk, e short

MLWE assumption: vk appears uniformly distributed.

Signing \rightarrow Fiat-Shamir transform applied to protocol proving knowledge of (sk, e)

1

Randomness + Commitment: Sample short \mathbf{r} , and commit $\mathbf{w} = \lfloor \mathbf{A} \cdot \mathbf{r} \rfloor$.

2

Challenge: Derive challenge $c = H(\mathbf{w}, \text{msg})$.

3

Response: Compute $\mathbf{z} = c \cdot \text{sk} + \mathbf{r}$.

Verification \rightarrow Check that \mathbf{w} can be recovered from \mathbf{z} , and \mathbf{z} is short.

ML-DSA signatures

ML-DSA . Keygen() \rightarrow sk, vk

- $\text{vk} = \mathbf{A} \cdot \text{sk} + \mathbf{e}$, for sk, e short

MLWE assumption: vk appears uniformly distributed.

Signing \rightarrow Fiat-Shamir transform applied to protocol proving knowledge of (sk, e)

1

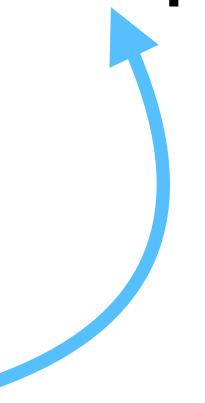
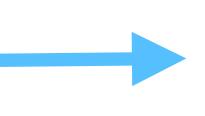
Randomness + Commitment: Sample short \mathbf{r} , and commit $\mathbf{w} = [\mathbf{A} \cdot \mathbf{r}]$.

2

Challenge: Derive challenge $c = H(\mathbf{w}, \text{msg})$.

3

Response: Compute $\mathbf{z} = c \cdot \text{sk} + \mathbf{r}$. Rejection sample:

- If $\mathbf{z} \notin S$  **restart**
- If $\mathbf{z} \in S$  **output**

Verification \rightarrow Check that \mathbf{w} can be recovered from \mathbf{z} , and \mathbf{z} is short.

Distributing ML-DSA

MPC + UC framework

- Protocol simulatable from a trusted execution

Quorum

Trilithium

Tailored + Game-based

- Focus on specific properties, *unforgeability* and *correctness*

Mithril

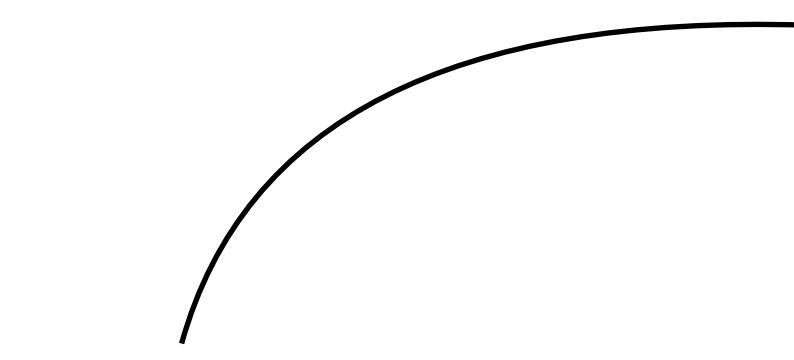
Key properties

Mithril

Compatibility: Valid FIPS 204 signatures.

Security:

- Dishonest Majority (up to $T - 1$ corruptions)
- Active security
- Arguably adaptive security



Distributing ML-DSA

ML-DSA . Keygen() \rightarrow sk, vk

- $\text{vk} = \mathbf{A} \cdot \text{sk} + \mathbf{e}$, for sk, e short

MLWE assumption: vk appears uniformly distributed for \mathbf{A} wide enough (more inputs than outputs)

Signing \rightarrow prove knowledge of (sk, e)

1

Randomness + Commitment: Sample short \mathbf{r} , and commit $\mathbf{w} = \lfloor \mathbf{A} \cdot \mathbf{r} \rfloor$.

2

Challenge: Derive challenge $c = H(\mathbf{w}, \text{msg})$.

3

Response: Compute $\mathbf{z} = c \cdot \text{sk} + \mathbf{r}$. Rejection sample:

- If $\mathbf{z} \notin S$
- If $\mathbf{z} \in S$ **output**

restart

Distributing ML-DSA: *Mithril at a high level*

Centralized

Sample short \mathbf{r}

Distributed

Sample short \mathbf{r}_i

...

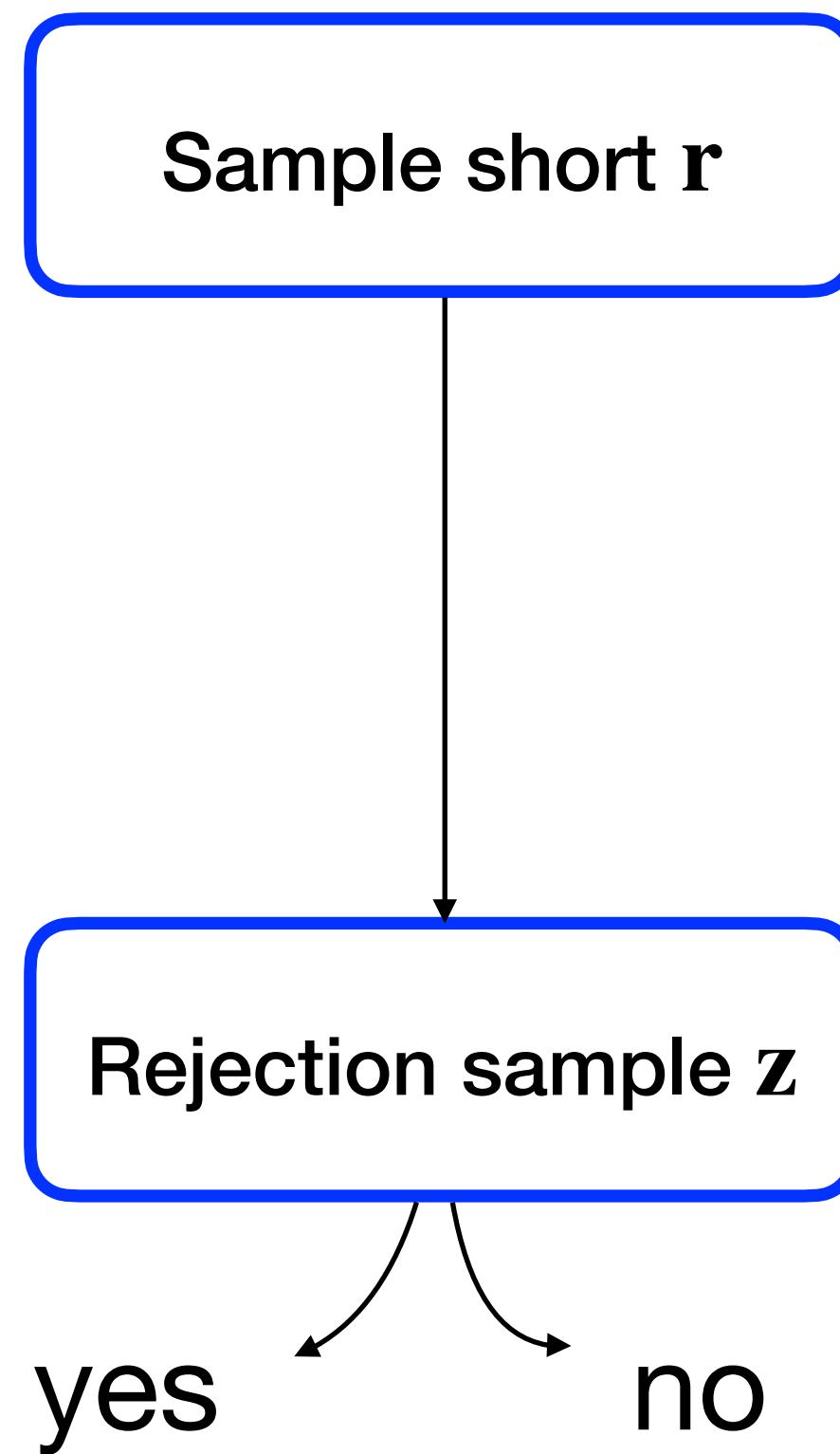
...

Aggregate

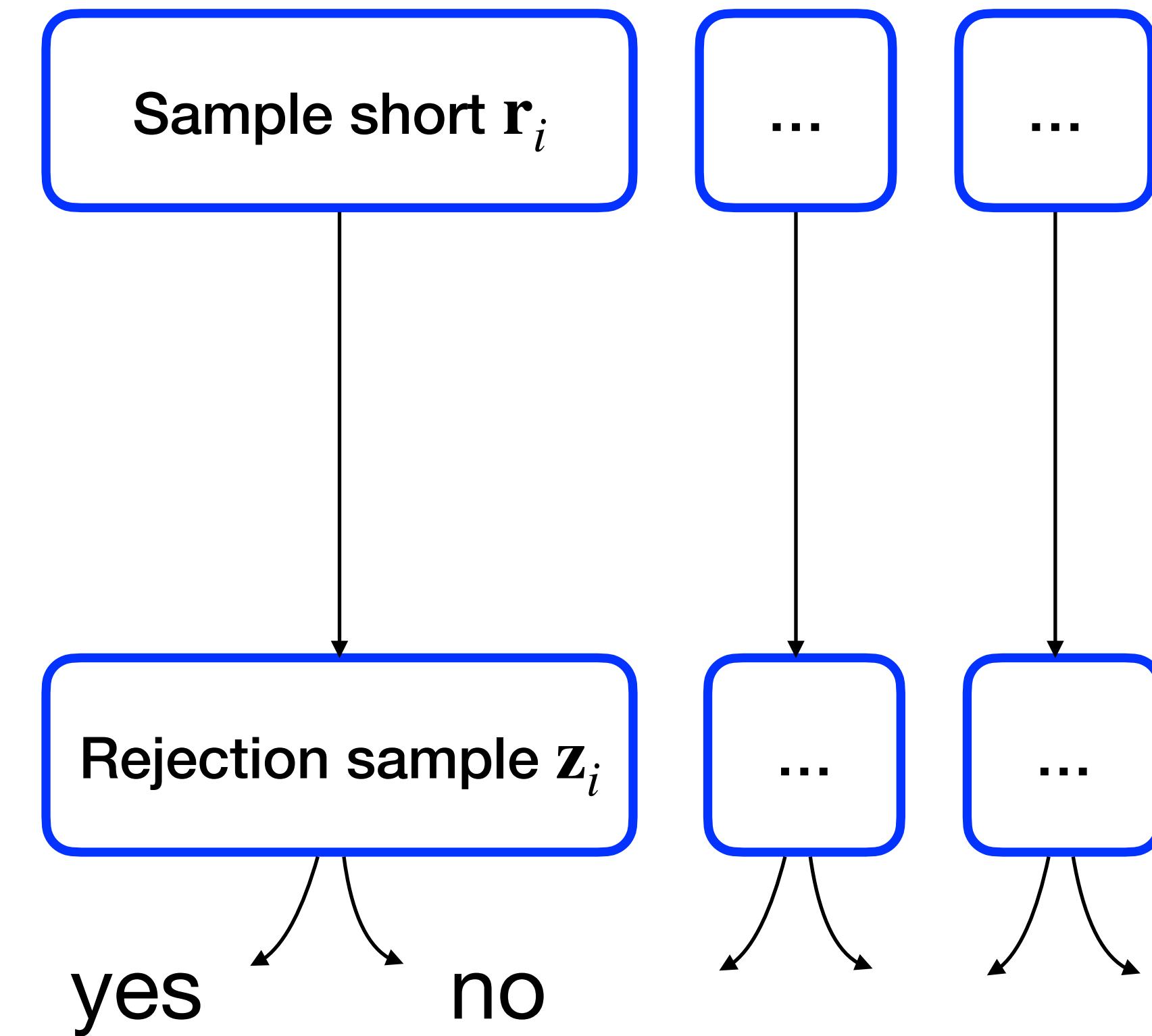
$$\mathbf{r} = \sum_i \mathbf{r}_i$$

Distributing ML-DSA: *Mithril at a high level*

Centralized



Distributed

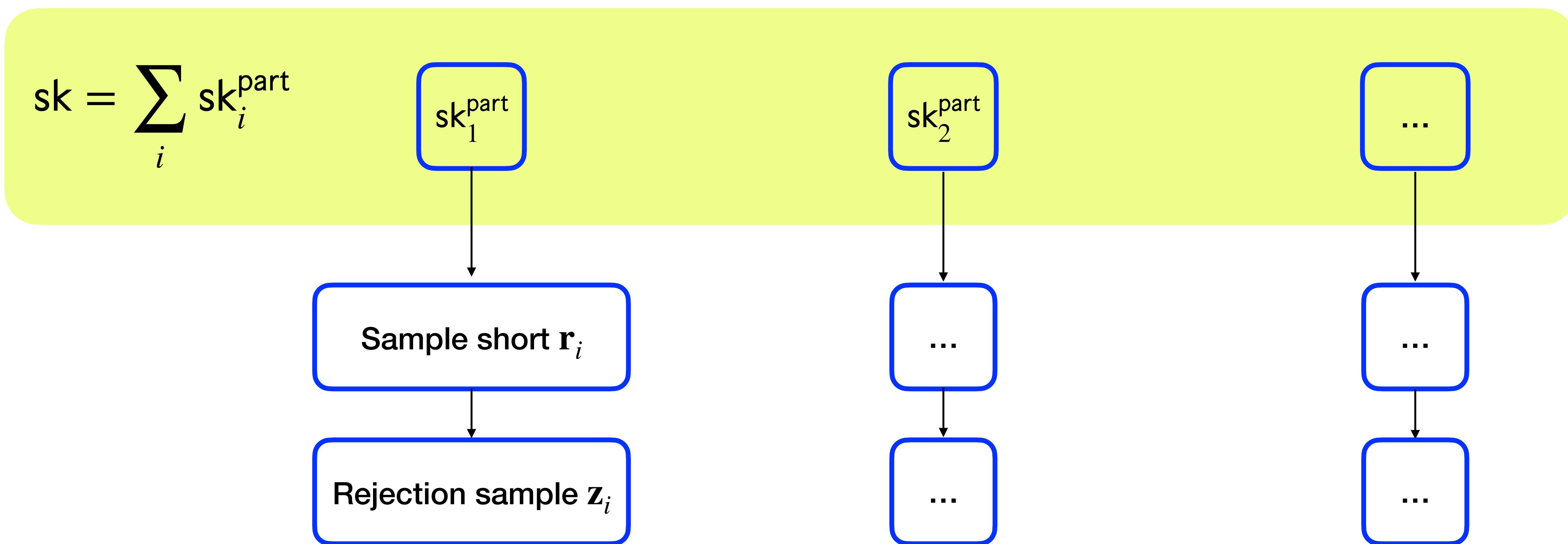


Aggregate

$z = \sum z_i$, accept if all accept

Technique 1: Replicated Secret Sharing

For this to work, we need a **short partial secret** per party for each session.



Technique 1: Replicated Secret Sharing

For this to work, we need a **short partial secret** per party for each session.

ML-DSA^{*}.Keygen() \rightarrow sk, vk

- For every possible set I of $N - T + 1$ parties
 - $\text{vk}_I = \mathbf{A} \cdot \text{sk}_I + \mathbf{e}_I$, where $\text{sk}_I, \mathbf{e}_I$ short
 - Distribute $\text{sk}_I, \mathbf{e}_I$ to parties in I
- $\text{vk} = \sum_i \text{vk}_I$

Use Replicated Secret Sharing as in [dPN25].

1. When at most $T - 1$ parties are corrupted, at least one of these secrets remains hidden.
2. T parties can collaboratively reconstruct the full secret.

Partition $\sqcup_{i \in \text{SS}} m_i = \{I \text{ s.t. } |I| = N - T + 1\}$:

$$\text{sk} = \sum_{i \in \text{SS}} \sum_{I \in m_i} \text{sk}_I, \quad \mathbf{e} = \sum_{i \in \text{SS}} \sum_{I \in m_i} \mathbf{e}_I$$

Distributing ML-DSA: *Mithril at a high level*

ML-DSA signing

1

Randomness + Commitment: Sample short \mathbf{r} , and commit $\mathbf{w} = [\mathbf{A} \cdot \mathbf{r}]$.

2

Challenge: Derive challenge $c = H(\mathbf{w}, \text{msg})$.

3

Response: Compute $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$.
Rejection sample:

Our protocol

`Mithril.Sign(msg) → sig`

Round 1:

- Sample short $\mathbf{r}_i, \mathbf{e}'_i$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- Broadcast $\text{commit}_i = H(\mathbf{w}_i)$

Round 2:

- Broadcast \mathbf{w}_i

Round 3:

- $\mathbf{w} = \sum_i \mathbf{w}_i + \text{abort if inconsistent commit}_i$
- $c = H([\mathbf{w}], \text{msg})$
- $\mathbf{z}_i = c \cdot \sum_{I \in m_i} \mathbf{sk}_I + \mathbf{r}_i, \mathbf{y}_i = c \cdot \sum_{I \in m_i} \mathbf{e}_I + \mathbf{e}'_i$
- If $(\mathbf{z}_i, \mathbf{y}_i)$ in S , broadcast \mathbf{z}_i , else abort

Combine:

- $\text{sig} = (\sum_i \mathbf{z}_i, [\mathbf{w}])$
- If sig not in S' , restart
- return sig

Technique 2: Optimized rejection sampling

When T users sign \rightarrow proba that all parties pass rejection sampling is p^T .

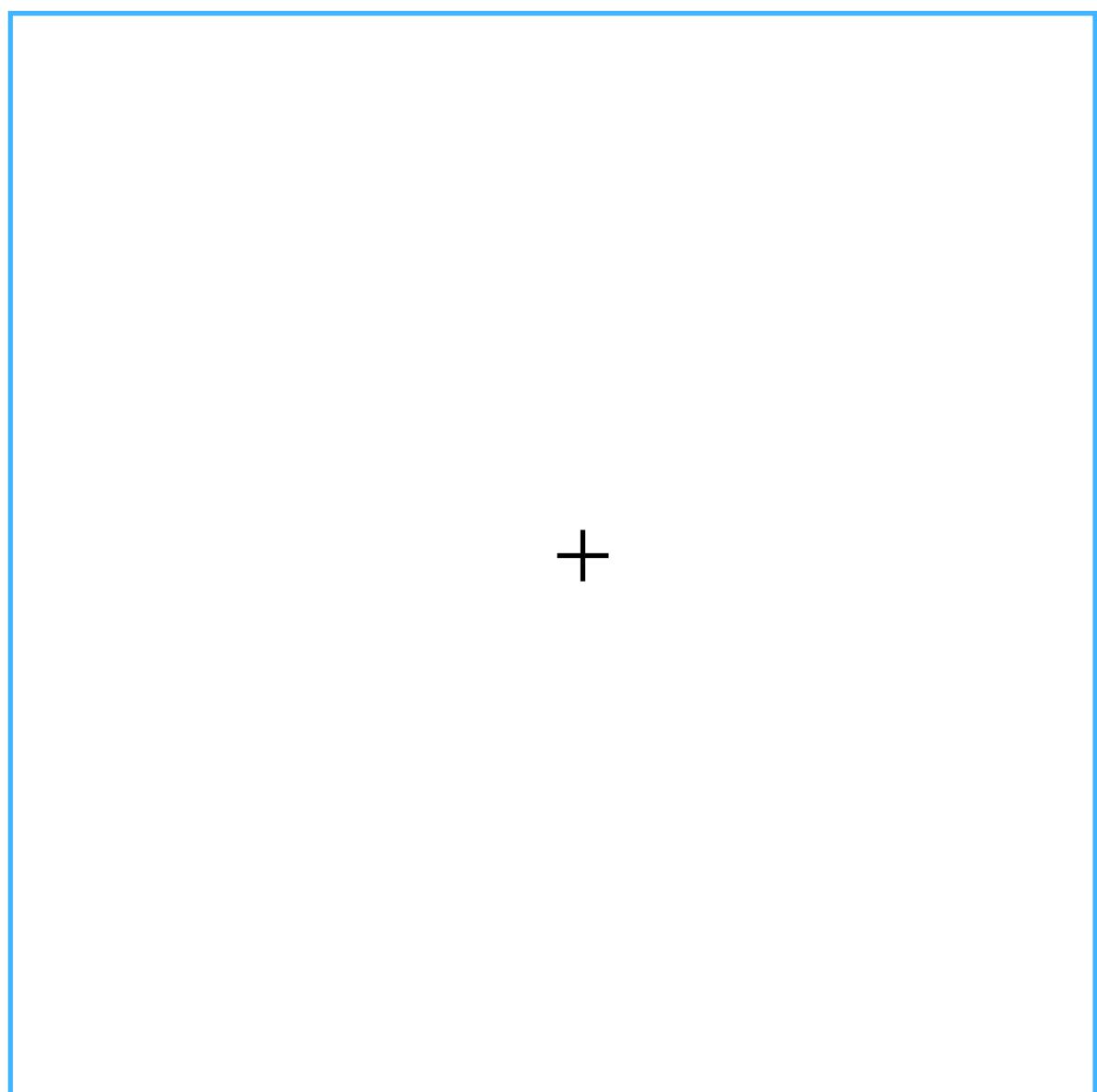
Exponential degradation over centralized setting.

Technique 2: Optimized rejection sampling

When T users sign \rightarrow proba that all parties pass rejection sampling is p^T .

Exponential degradation over centralized setting.

Sample r in a centered **hypercube**.



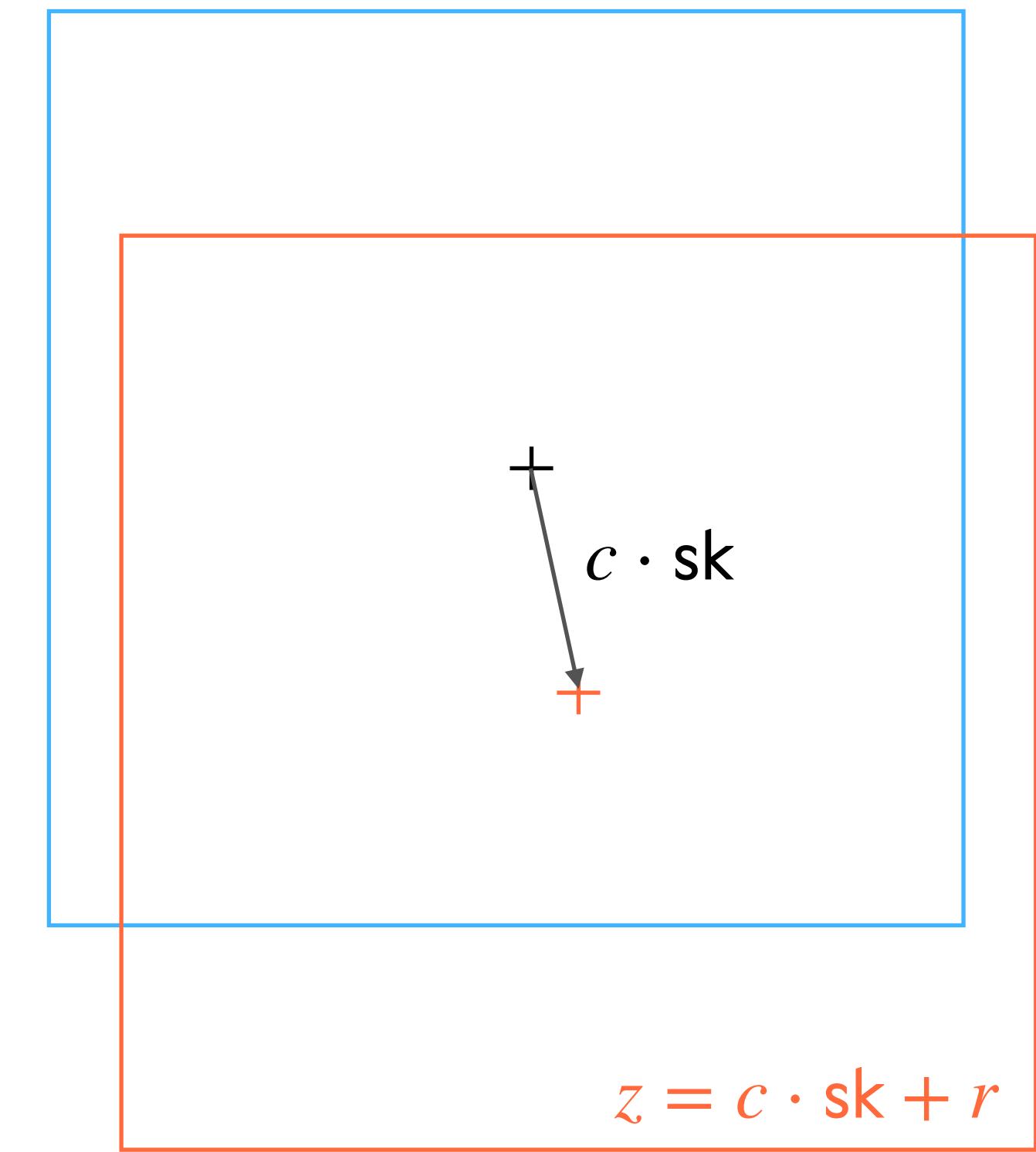
Technique 2: Optimized rejection sampling

When T users sign \rightarrow proba that all parties pass rejection sampling is p^T .

Exponential degradation over centralized setting.

Sample r in a centered **hypercube**.

Then, the distribution of z depends on the secret.



Technique 2: Optimized rejection sampling

When T users sign \rightarrow proba that all parties pass rejection sampling is p^T .

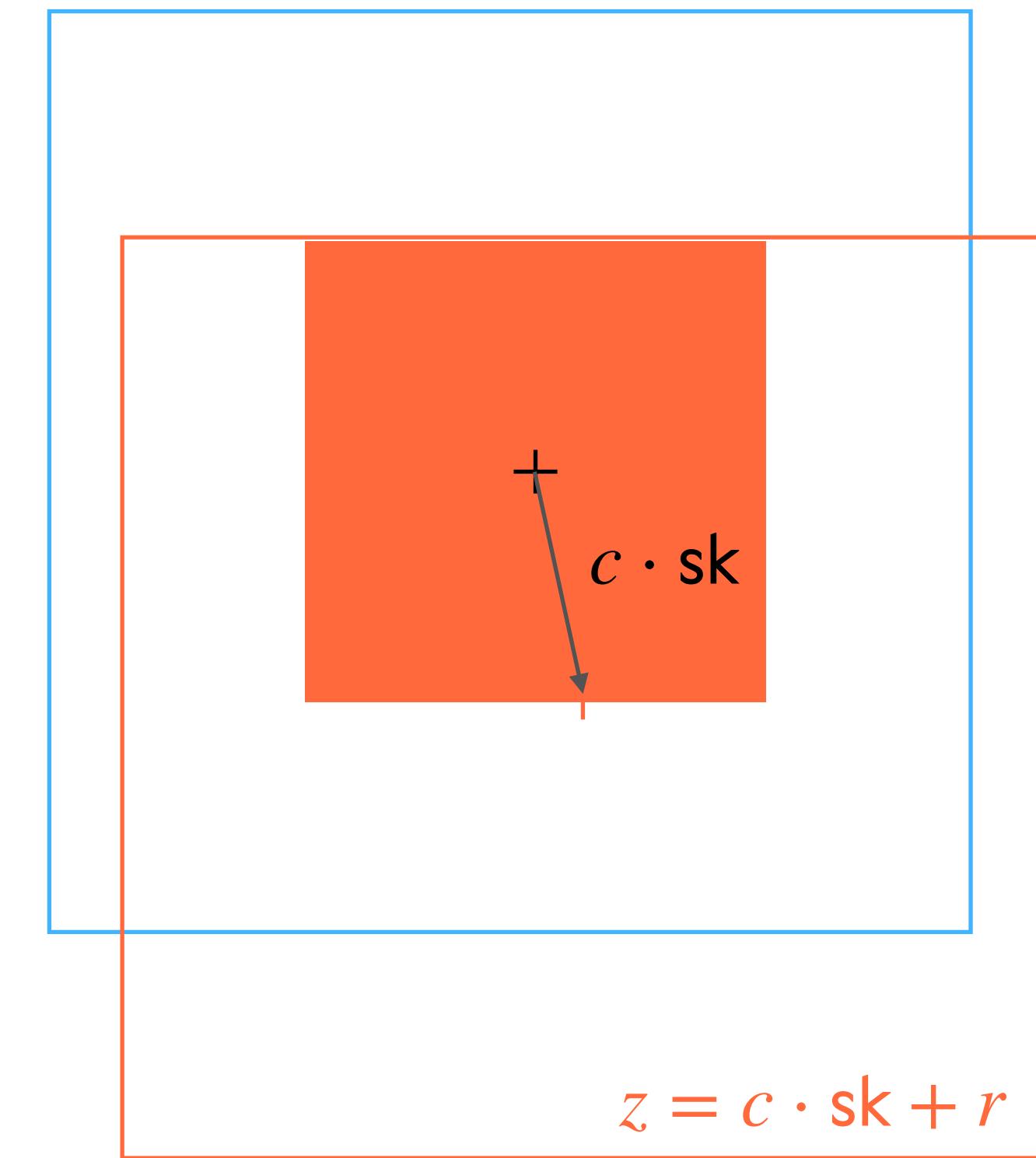
Exponential degradation over centralized setting.

Sample r in a centered **hypercube**.

Then, the distribution of z depends on the secret.

We reject any z outside of .

The resulting distribution is independent of the secret.



Technique 2: Optimized rejection sampling

When T users sign \rightarrow proba that all parties pass rejection sampling is p^T .

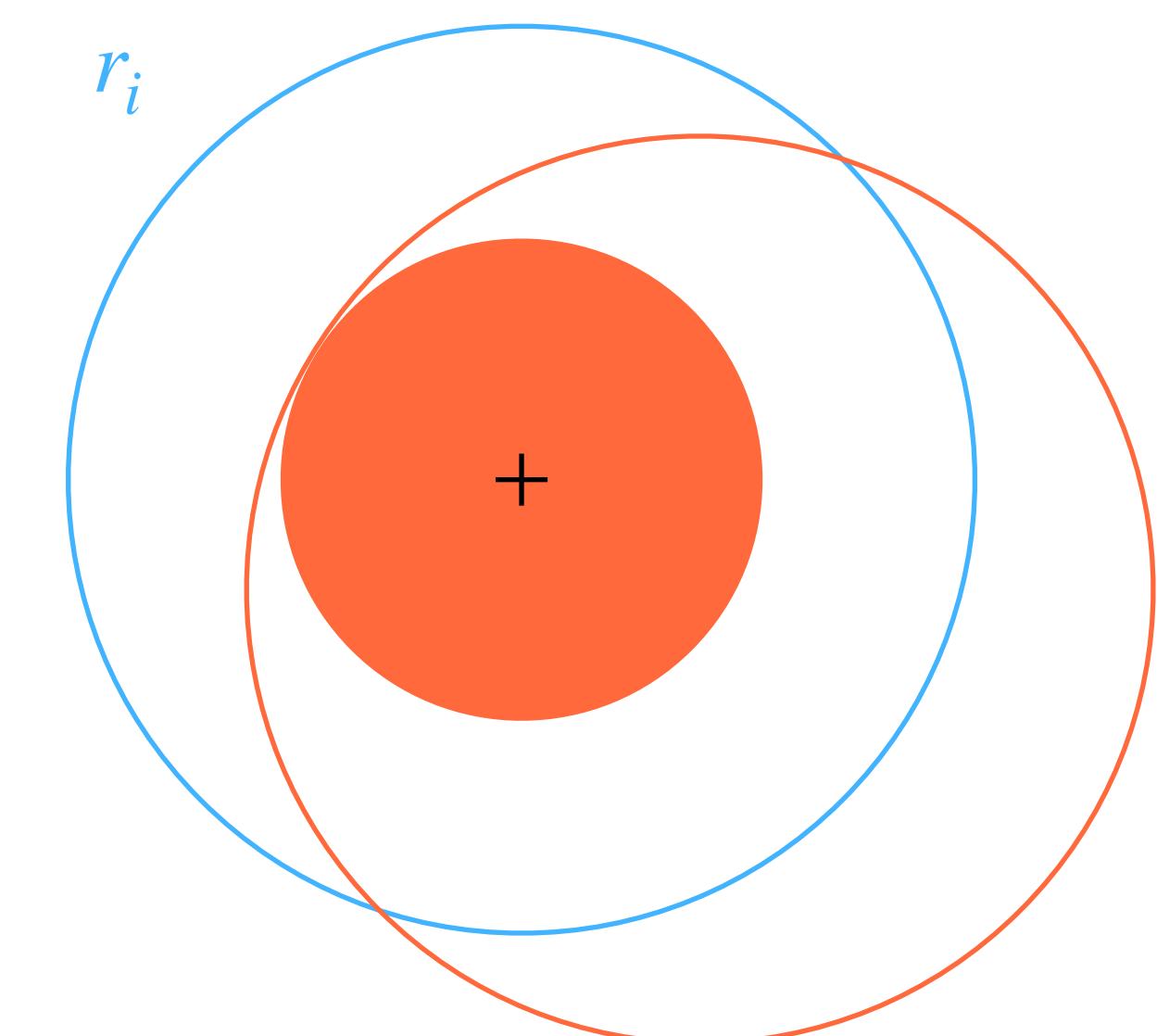
Exponential degradation over centralized setting.

Sample r in a centered **hyperball**.

Then, the distribution of z depends on the secret.

We reject any z outside of .

The resulting distribution is independent of the secret.



Technique 2: Optimized rejection sampling

When T users sign \rightarrow proba that all parties pass rejection sampling is p^T .

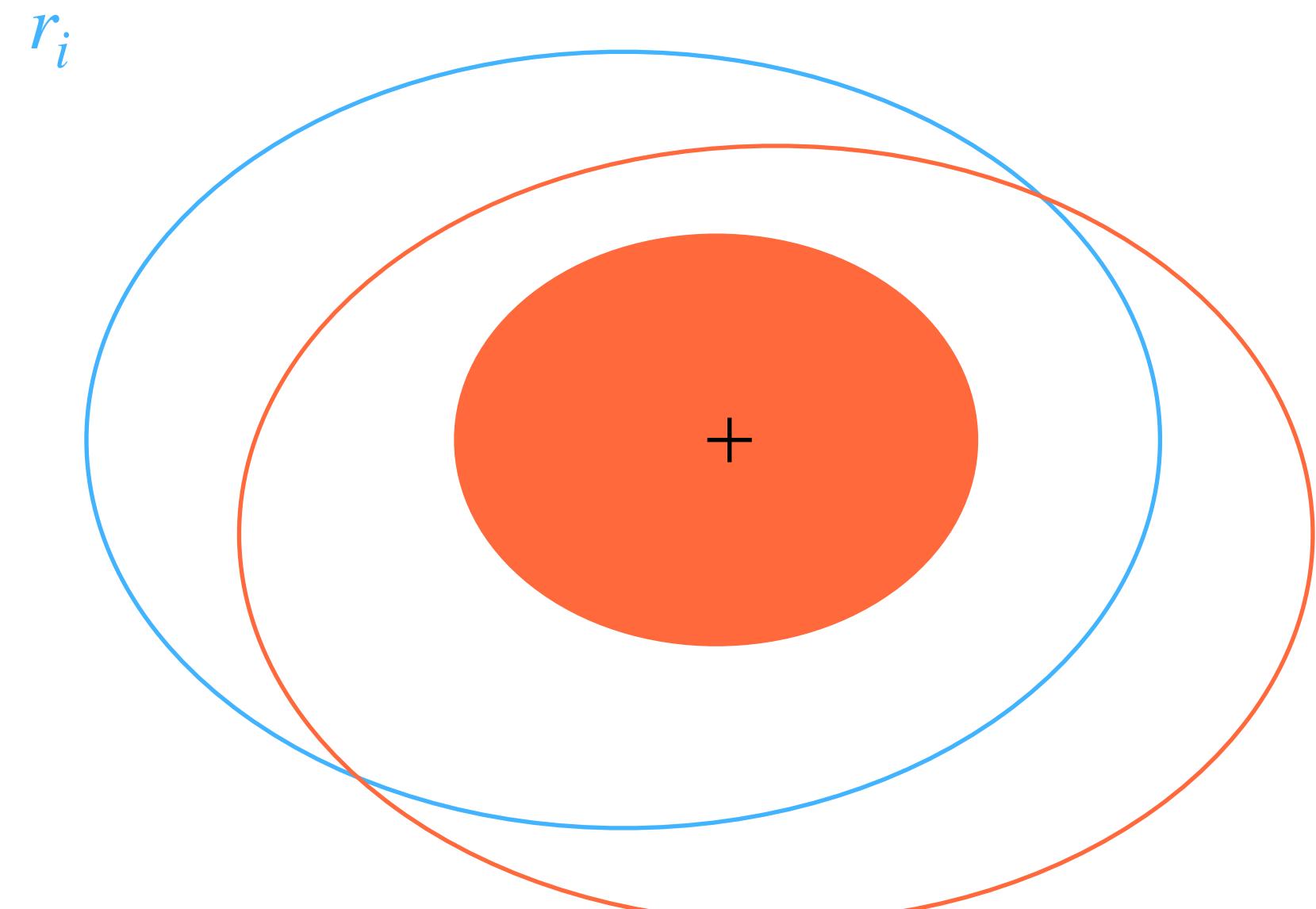
Exponential degradation over centralized setting.

Sample r in a centered **hyperball**.

Then, the distribution of z depends on the secret.

We reject any z outside of .

The resulting distribution is independent of the secret.



Key properties



Key management

Distributed key generation

4 rounds

High efficiency

A posteriori key distribution

Max 7-12 bits security loss in case of corruptions

Distributed key generation

$\text{ML-DSA}^*.\text{Keygen}() \rightarrow \text{sk}, \text{vk}$

- For every possible set I of $N - T + 1$ parties
 - $\text{vk}_I = \mathbf{A} \cdot \text{sk}_I + \mathbf{e}_I$, where $\text{sk}_I, \mathbf{e}_I$ short
 - Distribute $\text{sk}_I, \mathbf{e}_I$ to parties in I
- $\text{vk} = \sum_i \text{vk}_I$

Distributed key generation

ML-DSA*.Keygen() \rightarrow sk, vk

- For every possible set I of $N - T + 1$ parties
 - $\text{vk}_I = \mathbf{A} \cdot \text{sk}_I + \mathbf{e}_I$, where $\text{sk}_I, \mathbf{e}_I$ short
 - Distribute $\text{sk}_I, \mathbf{e}_I$ to parties in I
- $\text{vk} = \sum_i \text{vk}_I$

Rounds 1-2:

- Exchange shared secret K_I for each group I of $N - T + 1$ parties.
- Collaboratively sample coin.

Distributed key generation

ML-DSA*.Keygen() \rightarrow sk, vk

- For every possible set I of $N - T + 1$ parties
 - $\text{vk}_I = \mathbf{A} \cdot \text{sk}_I + \mathbf{e}_I$, where $\text{sk}_I, \mathbf{e}_I$ short
 - Distribute $\text{sk}_I, \mathbf{e}_I$ to parties in I
- $\text{vk} = \sum_i \text{vk}_I$

Rounds 1-2:

- Exchange shared secret K_I for each group I of $N - T + 1$ parties.
- Collaboratively sample coin.

Rounds 3-4:

- Derive secrets $\text{sk}_I = H(\text{coin}, K_I)$.
- Commit-and-reveal $\text{vk}_I = [\mathbf{A} \quad \mathbf{I}] \cdot \text{sk}_I$.
- Define $\text{vk} = \sum_I \text{vk}_I$.

A posteriori key generation

$\text{ML-DSA}^*.\text{Keygen}() \rightarrow \text{sk}, \text{vk}$

- For every possible set I of $N - T + 1$ parties
 - $\text{vk}_I = \mathbf{A} \cdot \text{sk}_I + \mathbf{e}_I$, where $\text{sk}_I, \mathbf{e}_I$ short
 - Distribute $\text{sk}_I, \mathbf{e}_I$ to parties in I
- $\text{vk} = \sum_i \text{vk}_I$

A posteriori key generation

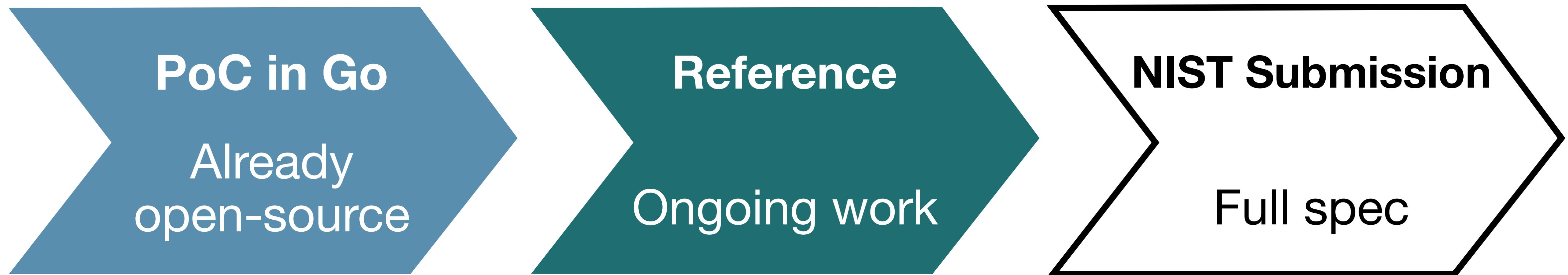
ML-DSA*.Keygen() \rightarrow sk, vk

- For every possible set I of $N - T + 1$ parties
 - $\text{vk}_I = \mathbf{A} \cdot \text{sk}_I + \mathbf{e}_I$, where $\text{sk}_I, \mathbf{e}_I$ short
 - Distribute $\text{sk}_I, \mathbf{e}_I$ to parties in I
- $\text{vk} = \sum_i \text{vk}_I$

Given an ML-DSA secret key sk :

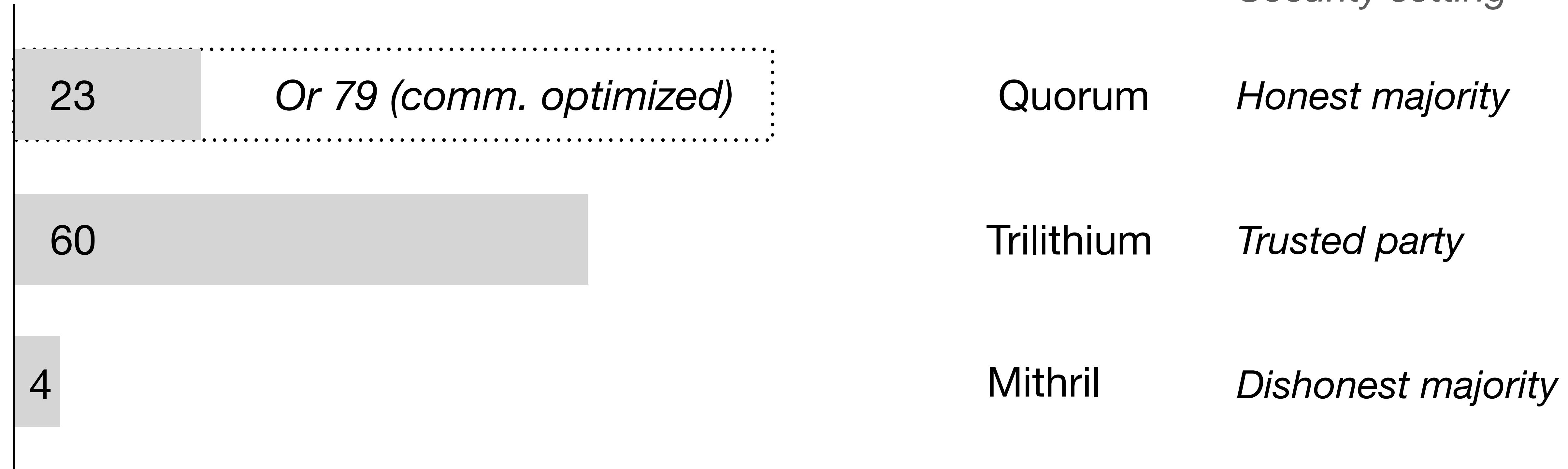
- Sample Gaussians $(\text{sk}_I)_I$ such that $\sum_I \text{sk}_I = \text{sk}$
- Corrupting all but one share can be seen as obtaining a hint on sk .

Implementation



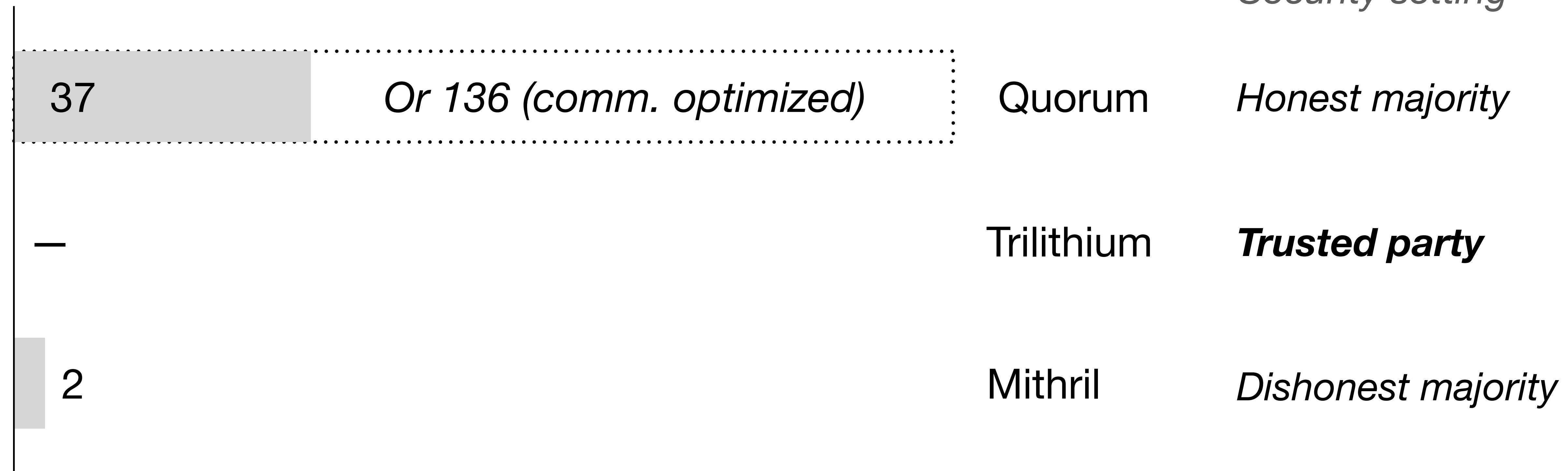
Performance: Number of rounds

Online efficient



Performance: Number of rounds

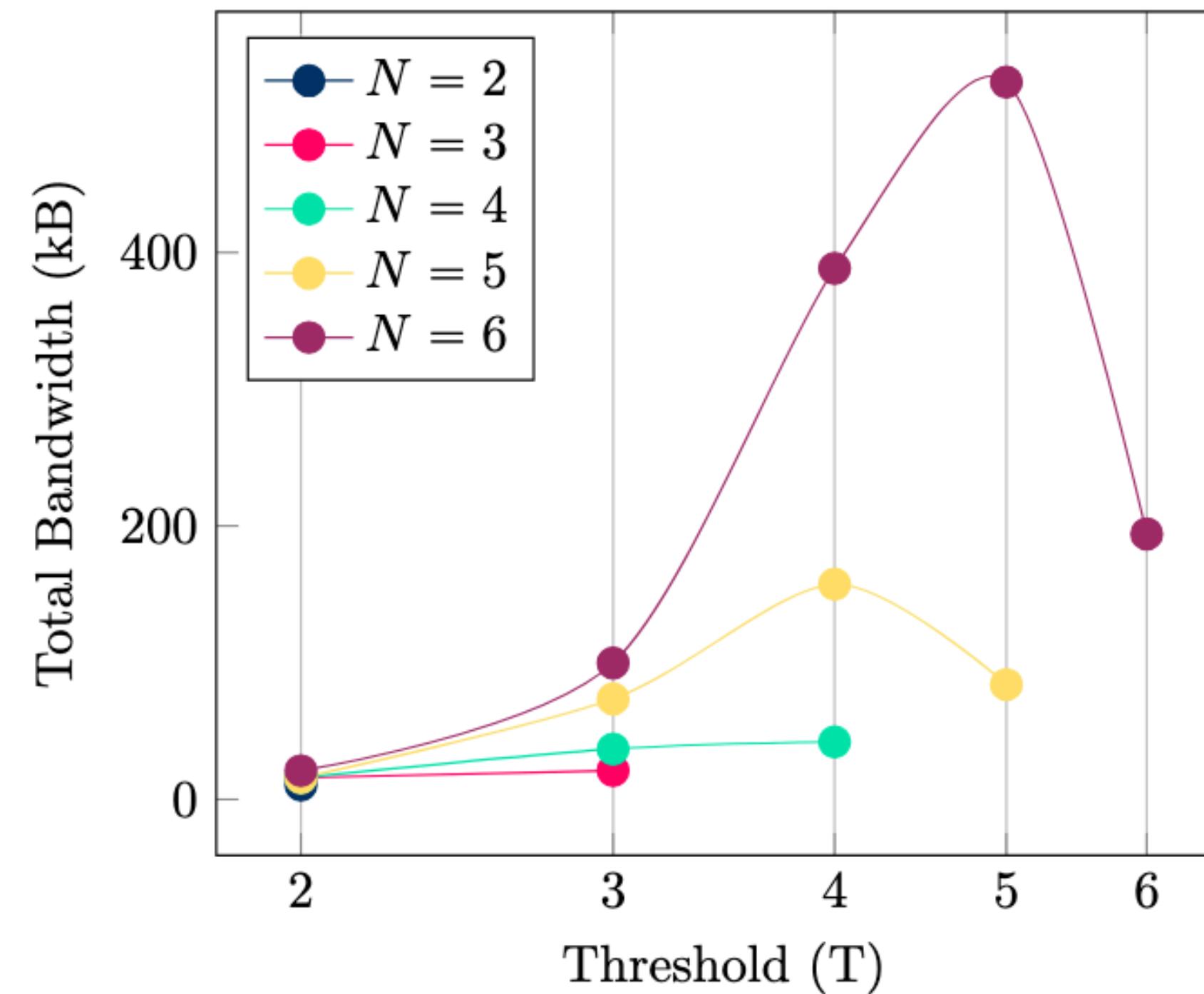
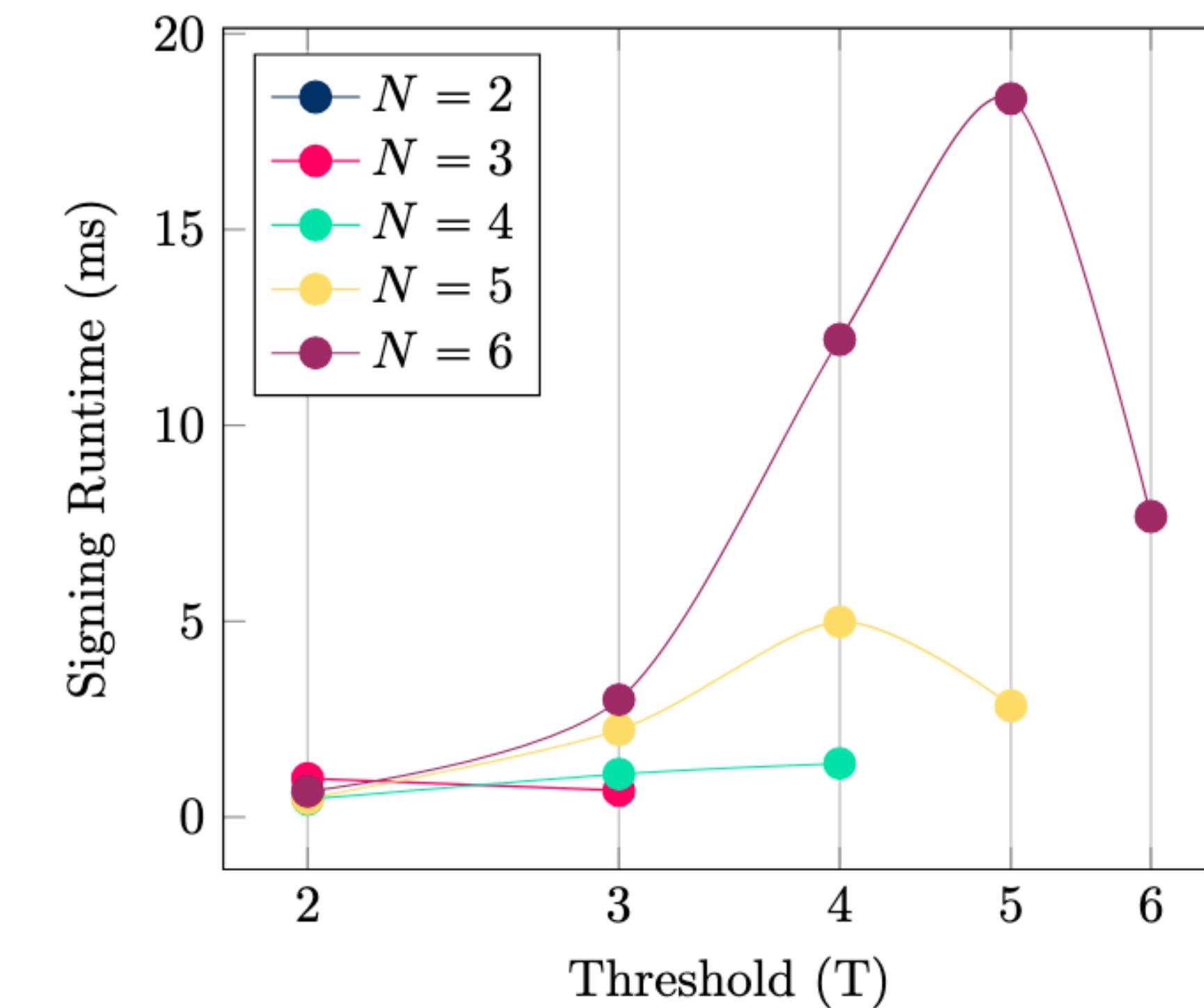
Offline efficient



Performance: Bandwidth and local latency

Parameters aim for a success probability 1/2 for each attempt (vs $\sim 1/4$ in original ML-DSA).

Efficient up to 6 parties.



Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)

Parties are executed in parallel, and we average over successful attempts.

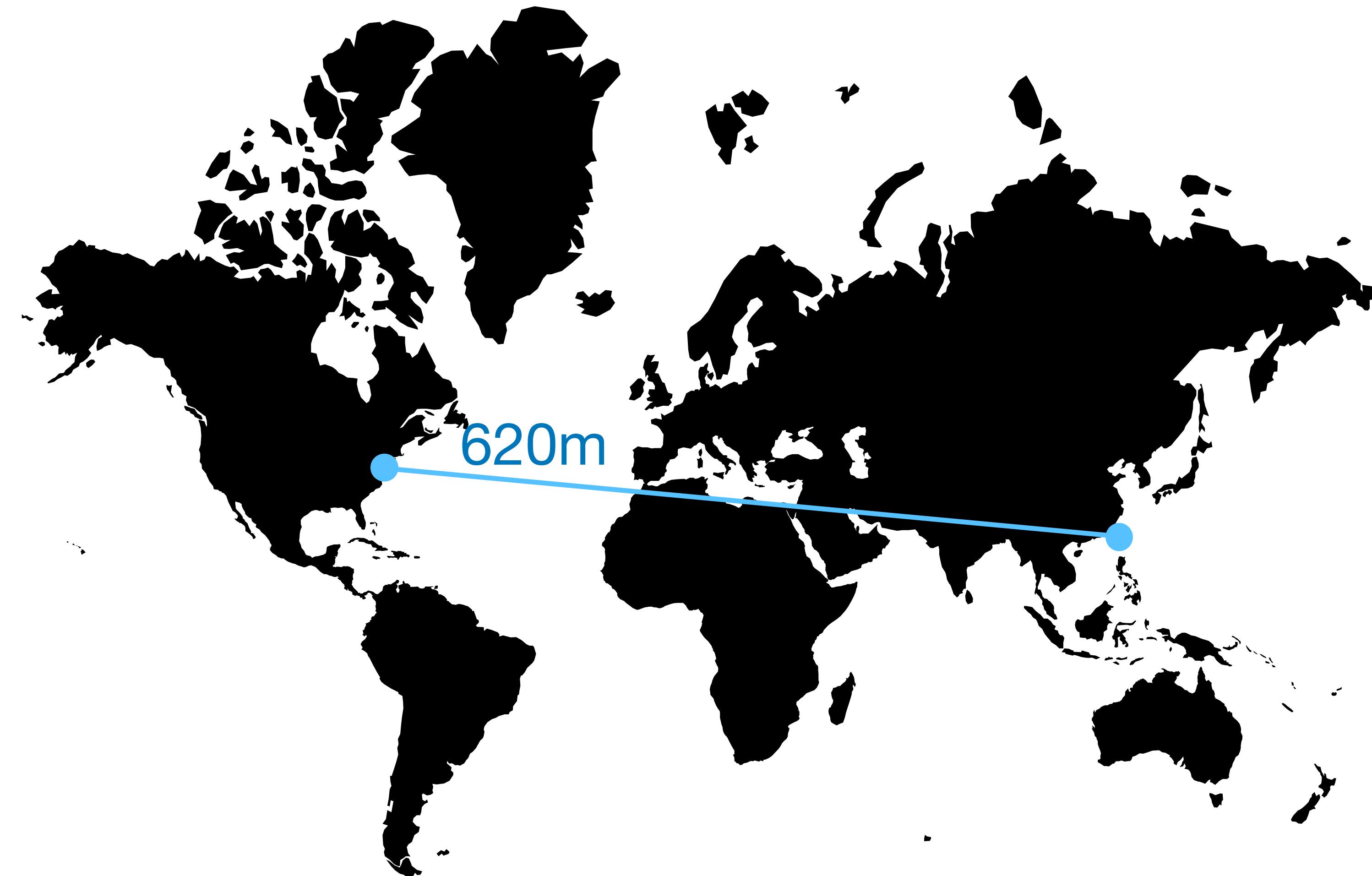
Performance: WAN latency

$T=2, N=6$

*Latency of threshold signing for ML-DSA 44.
Parties are executed in parallel, and we average over successful attempts.*

Performance: WAN latency

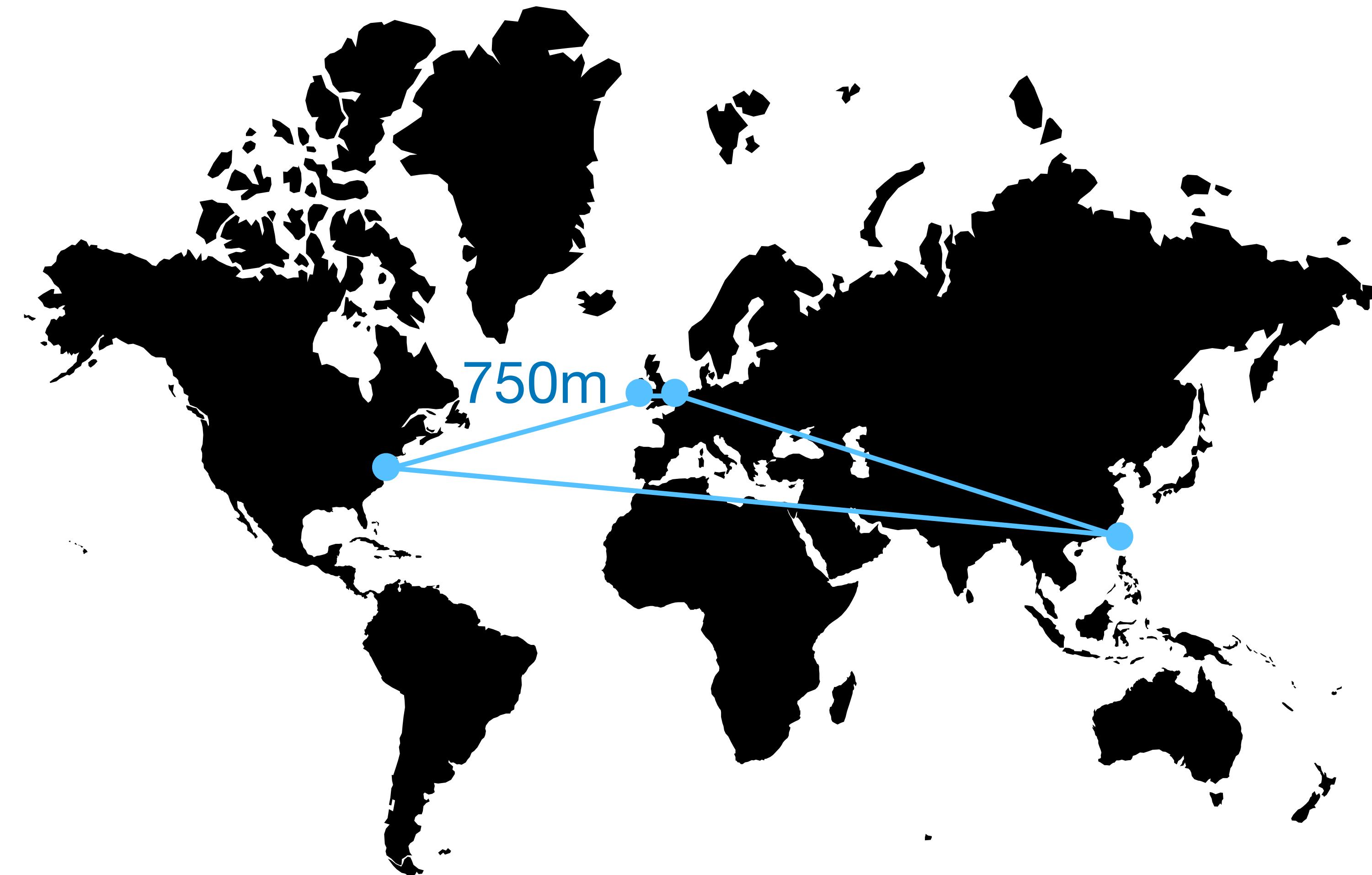
$T=2, N=6$



*Latency of threshold signing for ML-DSA 44.
Parties are executed in parallel, and we average over successful attempts.*

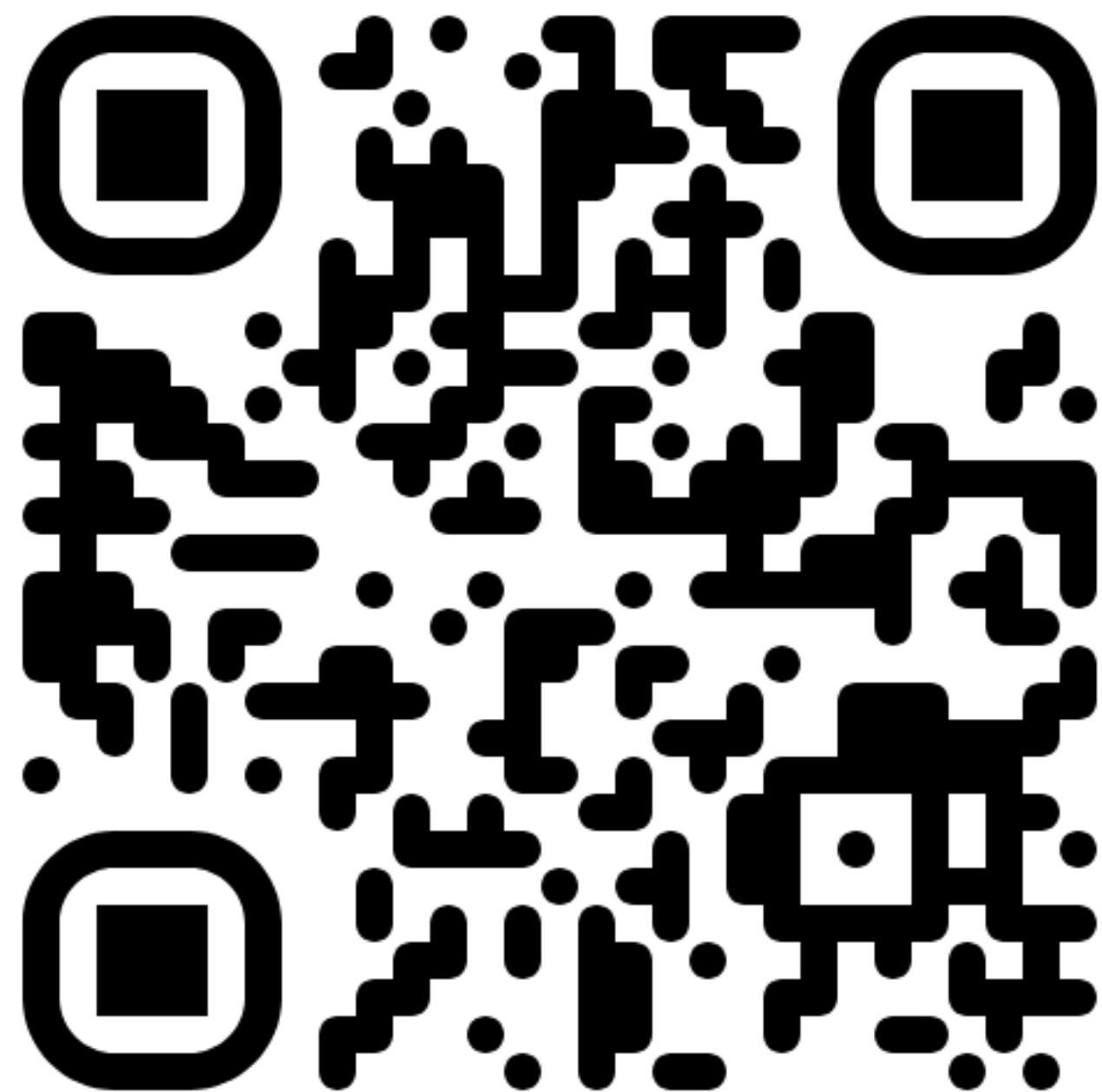
Performance: WAN latency

$T=4, N=6$



*Latency of threshold signing for ML-DSA 44.
Parties are executed in parallel, and we average over successful attempts.*

Questions?



“Efficient Threshold ML-DSA”

*By Rafael del Pino, Sofía Celi, Thomas Espitau,
Guilhem Niot, Thomas Prest*

USENIX Security 2026
eprint.iacr.org/2026/013

Evaluation

Other ML-DSA parameter sets

