
Mithril: Efficient Threshold ML-DSA
from Short Secret Sharing

NIST MPTS Workshop 2026 - 01/2026

1

Rafael del Pino, Sofía Celi, Gustavo Delerue, Thomas Espitau, Guilhem Niot, Thomas Prest

Efficient Post-Quantum Threshold Signatures?

2

Raccoon

Efficient Post-Quantum Threshold Signatures?

2

In 2023, NIST selected 3 post-quantum signature schemes for standardization.

ML-DSA

FN-DSA
SLH-DSA

Based on lattices Based on hash functions

Raccoon

ML-DSA signatures

3

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed.𝖬𝖫𝖶𝖤 𝗏𝗄

Signing Fiat-Shamir transform applied to protocol proving knowledge of → (𝗌𝗄, 𝖾)

1 Randomness + Commitment: Sample short , and commit .r w = ⌊A ⋅ r⌉

2 Challenge: Derive challenge .c = H(w, 𝗆𝗌𝗀)

3 Response: Compute .z = c ⋅ 𝗌𝗄 + r

Verification Check that can be recovered from , and is short.→ w z z

ML-DSA signatures

3

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed.𝖬𝖫𝖶𝖤 𝗏𝗄

Signing Fiat-Shamir transform applied to protocol proving knowledge of → (𝗌𝗄, 𝖾)

1 Randomness + Commitment: Sample short , and commit .r w = ⌊A ⋅ r⌉

2 Challenge: Derive challenge .c = H(w, 𝗆𝗌𝗀)

3 Response: Compute .z = c ⋅ 𝗌𝗄 + r
• If

• If

z ∉ S

z ∈ S

restart

output
Rejection sample:

Verification Check that can be recovered from , and is short.→ w z z

Distributing ML-DSA

4

Tailored + Game-based

• Focus on specific properties, unforgeability

and correctness

MPC + UC framework

• Protocol simulatable from a trusted

execution

Quorum Trilithium Mithril

Key properties

5

Mithril

Compatibility: Valid
FIPS 204 signatures.

Security:
• Dishonest Majority (up to

 corruptions)

• Active security

• Arguably adaptive security

T − 1

Distributing ML-DSA

6

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Signing prove knowledge of → (𝗌𝗄, 𝖾)

1 Randomness + Commitment: Sample short , and commit .r w = ⌊A ⋅ r⌉

2 Challenge: Derive challenge .c = H(w, 𝗆𝗌𝗀)

3 Response: Compute . Rejection sample:z = c ⋅ 𝗌𝗄 + r
• If

• If

z ∉ S

z ∈ S

restart

output

Distributing ML-DSA: Mithril at a high level
Centralized Distributed

Sample short r Sample short ri … …

r = ∑
i

riAggregate

Distributing ML-DSA: Mithril at a high level

8

Centralized Distributed

Sample short r Sample short ri … …

Rejection sample z Rejection sample zi … …

yes noyes

, accept if all acceptz = ∑ zi

no

Aggregate

Technique 1: Replicated Secret Sharing

9

For this to work, we need a short partial secret per party for each session.

𝗌𝗄𝗉𝖺𝗋𝗍
1 …

Sample short ri … …

Rejection sample zi … …

𝗌𝗄 = ∑
i

𝗌𝗄𝗉𝖺𝗋𝗍
i 𝗌𝗄𝗉𝖺𝗋𝗍

2

Technique 1: Replicated Secret Sharing

10

For this to work, we need a short partial secret per party for each session.

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Use Replicated Secret Sharing as in [dPN25].

1. When at most parties are corrupted,
at least one of these secrets remains hidden.

T − 1

2. parties can collaboratively reconstruct the
full secret.

T

Partition :

,

⊔i∈𝖲𝖲 mi = {I s.t. | I | = N − T + 1}

𝗌𝗄 = ∑
i∈SS

∑
I∈mi

𝗌𝗄I e = ∑
i∈SS

∑
I∈mi

eI

11

𝖬𝗂𝗍𝗁𝗋𝗂𝗅 . 𝖲𝗂𝗀𝗇(𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample short
•
• Broadcast
Round 2:
• Broadcast
Round 3:

• + abort if inconsistent

•
•

• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗈𝗆𝗆𝗂𝗍i = H(wi)

wi

w = ∑i wi 𝖼𝗈𝗆𝗆𝗂𝗍i

c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ ∑

I∈mi

𝗌𝗄I + ri, yi = c ⋅ ∑
I∈mi

𝖾I + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Distributing ML-DSA: Mithril at a high level

1 Randomness + Commitment: Sample
short , and commit .r w = ⌊A ⋅ r⌉

2 Challenge: Derive challenge
.c = H(w, 𝗆𝗌𝗀)

3 Response: Compute .
Rejection sample:

z = c ⋅ 𝗌𝗄 + r

ML-DSA signing Our protocol

Technique 2: Optimized rejection sampling

12

When users sign proba that all parties pass rejection sampling is .T → pT

Exponential degradation over centralized setting.

Technique 2: Optimized rejection sampling

13

When users sign proba that all parties pass rejection sampling is .T → pT

Sample in a centered hypercube.r

Exponential degradation over centralized setting.

Technique 2: Optimized rejection sampling

13

When users sign proba that all parties pass rejection sampling is .T → pT

Sample in a centered hypercube.r

c ⋅ 𝗌𝗄

z = c ⋅ 𝗌𝗄 + r

Then, the distribution of depends on the secret.z

Exponential degradation over centralized setting.

Technique 2: Optimized rejection sampling

13

When users sign proba that all parties pass rejection sampling is .T → pT

Sample in a centered hypercube.r

c ⋅ 𝗌𝗄

z = c ⋅ 𝗌𝗄 + r

Then, the distribution of depends on the secret.z

We reject any outside of . 
The resulting distribution is independent of the secret.

z

Exponential degradation over centralized setting.

Technique 2: Optimized rejection sampling

14

When users sign proba that all parties pass rejection sampling is .T → pT

Exponential degradation over centralized setting.

Sample in a centered hyperball.r

Then, the distribution of depends on the secret.z

We reject any outside of . 
The resulting distribution is independent of the secret.

z

ri

zi = c ⋅ 𝗌𝗄i + ri

Technique 2: Optimized rejection sampling

15

When users sign proba that all parties pass rejection sampling is .T → pT

Exponential degradation over centralized setting.

Sample in a centered hyperball.r

Then, the distribution of depends on the secret.z

We reject any outside of . 
The resulting distribution is independent of the secret.

z

ri

zi = c ⋅ 𝗌𝗄i + ri

Key properties

16

Mithril

Target: Small number
of parties ()N ≤ 8

Compatibility: Valid
FIPS 204 signatures.

Security:
• Dishonest Majority (up to

 corruptions)

• Active security

• Arguably adaptive security

T − 1

Real-world efficiency:
Few rounds, low
communication/

computation

Key management

17

Distributed key generation A posteriori key distribution
4 rounds
High efficiency

Max 7-12 bits security loss in
case of corruptions

Distributed key generation

18

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Distributed key generation

19

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Rounds 1-2:

• Exchange shared secret for each
group of parties.

• Collaboratively sample .

KI
I N − T + 1

𝖼𝗈𝗂𝗇

Distributed key generation

19

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Rounds 1-2:

• Exchange shared secret for each
group of parties.

• Collaboratively sample .

KI
I N − T + 1

𝖼𝗈𝗂𝗇

Rounds 3-4:

• Derive secrets .

• Commit-and-reveal .

• Define .

𝗌𝗄I = H(𝖼𝗈𝗂𝗇, KI)
𝗏𝗄I = [A I] ⋅ 𝗌𝗄I

𝗏𝗄 = ∑
I

𝗏𝗄I

A posteriori key generation

20

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

A posteriori key generation

20

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Given an ML-DSA secret key :

• Sample Gaussians such that

• Corrupting all but one share can be seen as
obtaining a hint on .

𝗌𝗄
(𝗌𝗄I)I ∑

I

𝗌𝗄I = 𝗌𝗄

𝗌𝗄

Implementation

21

PoC in Go

Already
open-source

Reference

Ongoing work

NIST Submission

Full spec

Performance: Number of rounds

22

Online efficient

Quorum

Trilithium

23 Or 79 (comm. optimized)

60

4 Mithril

Honest majority

Trusted party

Dishonest majority

Security setting

Performance: Number of rounds

23

Offline efficient

Quorum

Trilithium

37 Or 136 (comm. optimized)

—

2 Mithril

Honest majority

Trusted party

Dishonest majority

Security setting

Performance: Bandwidth and local latency

24

Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)
Parties are executed in parallel, and we average over successful attempts.

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.

Performance: WAN latency

25

T=2, N=6

27m

Latency of threshold signing for ML-DSA 44. 
Parties are executed in parallel, and we average over successful attempts.

Performance: WAN latency

26

T=2, N=6

620m

Latency of threshold signing for ML-DSA 44. 
Parties are executed in parallel, and we average over successful attempts.

Performance: WAN latency

27

T=4, N=6

750m

Latency of threshold signing for ML-DSA 44. 
Parties are executed in parallel, and we average over successful attempts.

Questions?

28

“Efficient Threshold ML-DSA”
By Rafael del Pino, Sofía Celi, Thomas Espitau,

Guilhem Niot, Thomas Prest
USENIX Security 2026
eprint.iacr.org/2026/013

http://eprint.iacr.org/2026/013

Evaluation

29

Other ML-DSA parameter sets

