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In 2023, NIST selected 3 post-quantum signature schemes for standardization.

ML-DSA

FN-DSA
SLH-DSA

Based on lattices Based on hash functions

Raccoon



ML-DSA signatures
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𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption:  appears uniformly distributed.𝖬𝖫𝖶𝖤 𝗏𝗄

Signing  Fiat-Shamir transform applied to protocol proving knowledge of → (𝗌𝗄, 𝖾)

1 Randomness + Commitment: Sample short , and commit .r w = ⌊A ⋅ r⌉

2 Challenge: Derive challenge .c = H(w, 𝗆𝗌𝗀)

3 Response: Compute .z = c ⋅ 𝗌𝗄 + r

Verification  Check that  can be recovered from , and  is short.→ w z z
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• If 

z ∉ S

z ∈ S

restart

output
Rejection sample:

Verification  Check that  can be recovered from , and  is short.→ w z z



Distributing ML-DSA
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Tailored + Game-based

• Focus on specific properties, unforgeability 

and correctness

MPC + UC framework

• Protocol simulatable from a trusted 

execution

Quorum Trilithium Mithril



Key properties
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Mithril

Compatibility: Valid 
FIPS 204 signatures.

Security:  
• Dishonest Majority (up to 

 corruptions)

• Active security

• Arguably adaptive security

T − 1
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𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption:  appears uniformly distributed

for  wide enough (more inputs than outputs) 
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Signing  prove knowledge of → (𝗌𝗄, 𝖾)

1 Randomness + Commitment: Sample short , and commit .r w = ⌊A ⋅ r⌉

2 Challenge: Derive challenge .c = H(w, 𝗆𝗌𝗀)

3 Response: Compute . Rejection sample:z = c ⋅ 𝗌𝗄 + r
• If 


• If 

z ∉ S

z ∈ S

restart

output



Distributing ML-DSA: Mithril at a high level
Centralized Distributed

Sample short r Sample short ri … …

r = ∑
i

riAggregate
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Centralized Distributed

Sample short r Sample short ri … …

Rejection sample z Rejection sample zi … …

yes noyes

, accept if all acceptz = ∑ zi

no

Aggregate
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For this to work, we need a short partial secret per party for each session.

𝗌𝗄𝗉𝖺𝗋𝗍
1 …

Sample short ri … …

Rejection sample zi … …

𝗌𝗄 = ∑
i

𝗌𝗄𝗉𝖺𝗋𝗍
i 𝗌𝗄𝗉𝖺𝗋𝗍

2
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For this to work, we need a short partial secret per party for each session.

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set  of  parties
, where  short

Distribute  to parties in 

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Use Replicated Secret Sharing as in [dPN25].

1. When at most  parties are corrupted, 
at least one of these secrets remains hidden.

T − 1

2.  parties can collaboratively reconstruct the 
full secret.

T

Partition :

,     

⊔i∈𝖲𝖲 mi = {I s.t.  | I | = N − T + 1}

𝗌𝗄 = ∑
i∈SS

∑
I∈mi

𝗌𝗄I e = ∑
i∈SS

∑
I∈mi

eI
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𝖬𝗂𝗍𝗁𝗋𝗂𝗅 . 𝖲𝗂𝗀𝗇(𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample short 
•
• Broadcast 
Round 2:
• Broadcast 
Round 3:

•  + abort if inconsistent 

•
•

• If  in , broadcast , else abort
Combine:
•
• If  not in , restart
• return 

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗈𝗆𝗆𝗂𝗍i = H(wi)

wi

w = ∑i wi 𝖼𝗈𝗆𝗆𝗂𝗍i

c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ ∑

I∈mi

𝗌𝗄I + ri, yi = c ⋅ ∑
I∈mi

𝖾I + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Distributing ML-DSA: Mithril at a high level

1 Randomness + Commitment: Sample 
short , and commit .r w = ⌊A ⋅ r⌉

2 Challenge: Derive challenge 
.c = H(w, 𝗆𝗌𝗀)

3 Response: Compute . 
Rejection sample:

z = c ⋅ 𝗌𝗄 + r

ML-DSA signing Our protocol



Technique 2: Optimized rejection sampling

12

When  users sign  proba that all parties pass rejection sampling is .T → pT

Exponential degradation over centralized setting.
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When  users sign  proba that all parties pass rejection sampling is .T → pT

Sample  in a centered hypercube.r

c ⋅ 𝗌𝗄

z = c ⋅ 𝗌𝗄 + r

Then, the distribution of  depends on the secret.z

We reject any  outside of         . 
The resulting distribution is independent of the secret.

z

Exponential degradation over centralized setting.



Technique 2: Optimized rejection sampling
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When  users sign  proba that all parties pass rejection sampling is .T → pT

Exponential degradation over centralized setting.

Sample  in a centered hyperball.r

Then, the distribution of  depends on the secret.z

We reject any  outside of         . 
The resulting distribution is independent of the secret.

z

ri

zi = c ⋅ 𝗌𝗄i + ri
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When  users sign  proba that all parties pass rejection sampling is .T → pT

Exponential degradation over centralized setting.

Sample  in a centered hyperball.r

Then, the distribution of  depends on the secret.z

We reject any  outside of         . 
The resulting distribution is independent of the secret.

z

ri

zi = c ⋅ 𝗌𝗄i + ri



Key properties
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Mithril

Target: Small number 
of parties ( )N ≤ 8

Compatibility: Valid 
FIPS 204 signatures.

Security:  
• Dishonest Majority (up to 

 corruptions)

• Active security

• Arguably adaptive security

T − 1

Real-world efficiency: 
Few rounds, low 
communication/

computation



Key management

17

Distributed key generation A posteriori key distribution
4 rounds
High efficiency

Max 7-12 bits security loss in 
case of corruptions
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• Exchange shared secret  for each 
group  of  parties.


• Collaboratively sample .

KI
I N − T + 1

𝖼𝗈𝗂𝗇
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Rounds 1-2: 


• Exchange shared secret  for each 
group  of  parties.


• Collaboratively sample .

KI
I N − T + 1

𝖼𝗈𝗂𝗇

Rounds 3-4: 


• Derive secrets .


• Commit-and-reveal .


• Define .

𝗌𝗄I = H(𝖼𝗈𝗂𝗇, KI)
𝗏𝗄I = [A I] ⋅ 𝗌𝗄I

𝗏𝗄 = ∑
I

𝗏𝗄I
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𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄
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Distribute  to parties in 

•

I N − T + 1
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Given an ML-DSA secret key :


• Sample Gaussians  such that 


• Corrupting all but one share can be seen as 
obtaining a hint on .

𝗌𝗄
(𝗌𝗄I)I ∑

I

𝗌𝗄I = 𝗌𝗄

𝗌𝗄



Implementation
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PoC in Go

Already 
open-source

Reference

Ongoing work

NIST Submission

Full spec
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Online efficient

Quorum

Trilithium

23 Or 79 (comm. optimized)

60

4 Mithril

Honest majority

Trusted party

Dishonest majority

Security setting
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Offline efficient

Quorum

Trilithium

37 Or 136 (comm. optimized)

—

2 Mithril

Honest majority

Trusted party

Dishonest majority

Security setting



Performance: Bandwidth and local latency
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Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)
Parties are executed in parallel, and we average over successful attempts.

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.
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T=2, N=6

27m

Latency of threshold signing for ML-DSA 44. 
Parties are executed in parallel, and we average over successful attempts.
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T=2, N=6

620m

Latency of threshold signing for ML-DSA 44. 
Parties are executed in parallel, and we average over successful attempts.



Performance: WAN latency
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T=4, N=6

750m

Latency of threshold signing for ML-DSA 44. 
Parties are executed in parallel, and we average over successful attempts.
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Other ML-DSA parameter sets


