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In 2023, NIST selected 3 post-quantum signature schemes for standardization.

ML-DSA

SLH-DSA
FN-DSA

Based on lattices Based on hash functions



ML-DSA signatures

MLWE assumption: vk appears uniformly distributed.
« vk = A -sk+ e, forsk, e short

Signing — Fiat-Shamir transform applied to protocol proving knowledge of (sk, e)

Randomness + Commitment: Sample short r, and commit w = |A - r|.
Challenge: Derive challenge ¢ = H(w, msg).

Response: Compute Z = ¢ - sk + .

Verification — Check that w can be recovered from z, and Z is short.
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Signing — Fiat-Shamir transform applied to protocol proving knowledge of (sk, e)

Randomness + Commitment: Sample short r, and commit w = |A - r|.

Challenge: Derive challenge ¢ = H(w, msg). restart

e IfZ &S

Response: Compute Z = ¢ - sk + r. Rejection sample:
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Verification — Check that w can be recovered from z, and Z is short.
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Distributing ML-DSA

MPC + UC framework Tailored + Game-based
e Protocol simulatable from a trusted * Focus on specific properties, unforgeability
execution and correctness

Mithril



Key properties

Security:

* Dishonest Majority (up to
T — 1 corruptions)

e Active security
* Arguably adaptive security

Compatibility: Valid
FIPS 204 signatures.




Distributing ML-DSA

MLWE assumption: vk appears uniformly distributed
vk = A - sk + e, for sk, e short for A wide enough (more inputs than outputs)

Signing — prove knowledge of (sk, e)

Randomness + Commitment:{Sample short r,Jand commit w = [A - r].

Challenge: Derive challenge ¢ = H(w, msg). restart

e IfZz & S

Response: Compute Z = ¢ - sk + r. Rejection sample:

e IfZz€E S output




Distributing ML-DSA: Mithril at a high level

Centralized Distributed

Sample short r Sample short r; D D

----------------

Aggregate



Distributing ML-DSA: Mithril at a high level

Centralized Distributed

Sample short r Sample short r; D D

Rejection sample z Rejection sample Z; ;] Q
YES NO

--------------------------

Aggregate E 7 = z , accept If all accept :

--------------------------




Technique 1: Replicated Secret Sharing

For this to work, we need a short partial secret per party for each session.

art
l

Sample short r; Q .
Rejection sample z; D .




Technique 1: Replicated Secret Sharing

For this to work, we need a short partial secret per party for each session.

Use Replicated Secret Sharing as in [dPN25].

10

ML-DSA" . Keygen() — sk, vk

For every possible set  of N — T + 1 parties
O vk; = A - sk; + e, where sk;, €; short

O Distribute skj, €; to parties in [
vk = Zin]

1. When at most 7' — 1 parties are corrupted,
at least one of these secrets remains hidden.

2. 1 parties can collaboratively reconstruct the
full secret.

Partition Uiess M; = Ust. [I|=N-T+1}:

sk = Z skl,‘i e = ZEZeIE

-------------



Distributing ML-DSA: Mithril at a high level

ML-DSA signing Our protocol
Mithril . Sign(msg) — sig
Round 1:
Randomness + Commitment: Sample - Sample short r;, €;
short r, and commit w = |A - r]. » W, =A-T;+¢
. Broadcast commit; = H(w,)
Round 2:
_ - Broadcast w;
Challenge: Derive challenge
—H Round 3:
¢ = (W’ msg)' W = Ziwi + abort if inconsistent commit;
¢ = H(|w]|, msg)
Response: Computez = c - sk +r. Iem, Iem,
Rejection sample: . If(z;y,) in S, broadcast z,, else abort

Combine:
sig = (2,25 [W])
If sig not in &', restart
return sig
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Technique 2: Optimized rejection sampling

When 1" users sign — proba that all parties pass rejection sampling is pT.

Exponential degradation over centralized setting.
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Then, the distribution of z depends on the secret.

J\c-sk
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Technique 2: Optimized rejection sampling

When 1" users sign — proba that all parties pass rejection sampling is pT.

Exponential degradation over centralized setting.

Sample r in a centered hypercube.

Then, the distribution of z depends on the secret.

We reject any z outside of .

The resulting distribution is independent of the secret.
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z=c-Sk+7r




Technique 2: Optimized rejection sampling

When 1" users sign — proba that all parties pass rejection sampling is pT.

Exponential degradation over centralized setting.

Sample r in a centered hyperball.

Then, the distribution of z depends on the secret.

We reject any Z outside of ‘ .
The resulting distribution is independent of the secret.
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Technique 2: Optimized rejection sampling

When 1" users sign — proba that all parties pass rejection sampling is pT.

Exponential degradation over centralized setting.

Sample r in a centered hyperball. I

Then, the distribution of z depends on the secret.

We reject any Z outside of ‘ .
The resulting distribution is independent of the secret.
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Key properties

Target: Small number
of parties (N < 8)

Compatibility: Valid
FIPS 204 signatures.
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Security:

* Dishonest Majority (up to
T — 1 corruptions)

e Active security
* Arguably adaptive security

Real-world efficiency:
Few rounds, low
communication/

computation




Key management

Distributed key generation A posteriori key distribution

4 rounds Max 7-12 bits security loss in
High efficiency case of corruptions
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Distributed key generation

ML-DSA". Keygen() — sk, vk

For every possible set [ of N — T + 1 parties
O vk; = A - sk; + e, where sk;, €; short

O Distribute sk;, €; to parties in [
vk = Zi Vk]
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Distributed key generation

Rounds 1-2:

« Exchange shared secret K; for each

ML-DSA” . Keygen() — sk, vk group [ of N — T + 1 parties.

For every possible set [ of N — T + 1 parties : .
* Collaboratively sample coln.

O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, €; to parties in [
vk = Zi Vk]
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Distributed key generation

Rounds 1-2:
« Exchange shared secret K; for each
ML-DSA® . Keygen() — sk, vk group [ of N — T'+ 1 parties.

For every possible set [ of N — T + 1 parties : .
* Collaboratively sample coln.

O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, €; to parties in [

vk =3 vk; Rounds 3-4:
» Derive secrets sk; = H(coin, K;).

« Commit-and-reveal vk; = [A 1] - sk;.

» Define vk = Z vk;.
I
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A posteriori key generation

ML-DSA". Keygen() — sk, vk

For every possible set [ of N — T + 1 parties
O vk; = A - sk; + e, where sk;, €; short

O Distribute sk;, €; to parties in [
vk = Zi Vk]
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A posteriori key generation

ML-DSA" . Keygen() — sk. vk Given an ML-DSA secret key sk:

For every possible set / of N — T'+ 1 parties » Sample Gaussians (sk;); such that Z sk; = sk

I
* Corrupting all but one share can be seen as

obtaining a hint on sk.

O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, €; to parties in [
vk = Zi Vk]
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Implementation

PoC in Go Reference NIST Submission

Already |
open-source Ongoing work

Full spec
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Performance: Number of rounds

Online efficient

Security setting
23 Or 79 (comm. optimized) : Quorum Honest majority
60 Trilithium Trusted party
4 Mithril Dishonest majority
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Performance: Number of rounds

Offline efficient

37 Or 136 (comm. optimized) i Quorum
— Trilithium
2 Mithril
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Security setting

Honest majority

Trusted party

Dishonest majority



Performance: Bandwidth and local latency

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.
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Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)
Parties are executed in parallel, and we average over successful attempts.
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Performance: WAN latency
T=2, N=6

~n

A S

Latency of threshold signing for ML-DSA 44.
Parties are executed in parallel, and we average over successftul attempts.
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T=2, N=6
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Latency of threshold signing for ML-DSA 44.
Parties are executed in parallel, and we average over successftul attempts.



Performance: WAN latency
T=4, N=6

Latency of threshold signing for ML-DSA 44.
Parties are executed in parallel, and we average over successftul attempts.
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Evaluation

Other ML-DSA parameter sets

Communication costs for Threshold ML-DSA-65 Communication costs for Threshold ML-DSA-87
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