Efficient Threshold ML-DSA up to 6 Parties

Post-Quantum Threshold Signatures Compatible with the NIST
Standard

Guilhem Niot

joint work with Rafael del Pino, Sofia Celi, Thomas Espitau, Thomas Prest
NIST Sixth PQC Standardization Conference

SHIELD

1

Threshold Signatures

Centralized setting

Sig

keygen orimitive

Threshold Signatures

What if the party is corrupted or becomes unresponsive...
Question: can we split the trust among several parties?

Threshold Signatures

What if the party is corrupted or becomes unresponsive...
Question: can we split the trust among several parties?

Interactive protocol to distribute the scheme:
I-out-of-N parties can collaborate to sign and sig

T — 1 parties cannot.

NIST Call for Threshold Schemes

NIST IR 8214C (2nd Public Draft)

NIST First Call for Multi-Party Threshold Schemes

f X in %

Date Published: March 27,2025
Comments Due: April 30, 2025
Email Comments to: nistir-8214C-comments@nist.gov

Author(s)
Luis T. A. N. Brandao (NIST, Strativia), Rene Peralta (NIST)

Announcement

This is a second public draft. Threshold schemes should NOT be submitted until the final version of this report is
published. However, the present draft can be used as a baseline to prepare for future submissions.

The scope of the call is organized into categories related to signing (Sign), public-key encryption (PKE),
symmetric-key cryptography and hashing (Symm), key generation (KeyGen), fully homomorphic encryption

4

Post-Quantum Threshold Signatures?

Raccoon

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Cecilia Boschini Darya Kaviani Russell W. F. Lai Giulio Malavolta
ETH Ziirich, Switzerland UC Berkeley, USA Aalto University, Finland Bocconi University, Italy

Threshold Raccoon: Practical Threshold Signatures

Akira Takahashi Mehdi Tibouchi
JPMorgan Al Research & AlgoCRYPT CoE, USA NTT Social Informatics Laboratories, Japan

Two-Round Threshold Lattice-Based Signatures
from Threshold Homomorphic Encryption*

from Standard Lattice Assumptions

Rafael del Pino!, Shuichi Katsumata®?, Mary Maller!:?, Fabrice Mouhartem?, Thomas
Prest!, Markku-Juhani Saarinen!»®

Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature
from Lattices

Kamil Doruk Gur! ©, Jonathan Katz?** ®, and Tjerand Silde3* * *

, Guilhem Niot!? ®, and Thomas Prest!

Thomas Espitau’

Post-Quantum Threshold Signatures?

Raccoon

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Cecilia Boschini Darya Kaviani Russell W. F. Lai Giulio Malavolta
ETH Ziirich, Switzerland UC Berkeley, USA Aalto University, Finland Bocconi University, Italy

Threshold Raccoon: Practical Threshold Signatures

Akira Takahashi Mehdi Tibouchi
JPMorgan Al Research & AlgoCRYPT CoE, USA NTT Social Informatics Laboratories, Japan

Two-Round Threshold Lattice-Based Signatures
from Threshold Homomorphic Encryption*

from Standard Lattice Assumptions

Rafael del Pino', Shuichi Katsumata!?, Mary Maller!3, Fabrice Mouhartem*, Thomas
Prest!, Markku-Juhani Saarinen!»®

Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature
from Lattices

Kamil Doruk Gur! ©®, Jonathan Katz?** ©®, and Tjerand Silde3* * *

Thomas Espitau! ®, Guilhem Niot!? @, and Thomas Prest’

In 2023, NIST selected 3 signature schemes for standardization.

ML-DSA

SLH-DSA
FN-DSA

Based on lattices Based on hash functions

Thresholdizing ML-DSA

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
vk = A - sk + e, for sk, e short for A wide enough (more inputs than outputs)

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r W
Q w=A-r

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r W
Q w=A-r

C Sample challenge ¢ with high entropy Q

ML-DSA signatures

« vk =A"-sk+ e, for sk, e short

MLWE assumption: vk appears uniformly distributed
for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

O

O

Prover

Sample short r
w=A-r

Compute response
Z=c-sk+r

10

Challenger

Sample challenge ¢ with high entropy Q

Verify that z is short
Verify w — (A - Z — ¢ - vk) is short

ML-DSA signatures

« vk =A"-sk+ e, for sk, e short

MLWE assumption: vk appears uniformly distributed
for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

O

O

Prover

Sample short r
w=A-r

Compute response
Z=c-sk+r

11

Challenger

Sample challenge ¢ with high entropy Q

Verify that z is short
Verify w — (A - Z — ¢ - vk) is short

ML-DSA signatures

« vk =A"-sk+ e, for sk, e short

MLWE assumption: vk appears uniformly distributed
for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

O

O

Prover

Sample short r
w=A-r

Compute response
Z=c-sk+r

12

Challenger

Sample challenge ¢ with high entropy Q

Verify that z is short
Verify |[wW| — (A -z — ¢ - vk) is short

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger
Sample short r
Q w=A-r
Q c = H(|w], msg)
Compute response // . .
Q Z=c- -Sk+r Verity that z is short

Verify |[wW| — (A -z — ¢ - vk) is short

13

Rejection sampling

Sample r in a centered hypercube.

Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of Z depends on the secret.

14

J\c-sk

Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of Z depends on the secret.

We reject any 7 outside of .
The resulting distribution is independent of the secret.

7= c - Sk-

14

ML-DSA signatures

ML-DSA . Keygen() — sk, vk

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

ML-DSA . Sign(sk, msg) — sig ML-DSA . Verify(vk, msg, sig = (z, |wW|))

Sample short r c = H(|w], msg)
W=A-r |lW| — (A -z —c - vk) is short
c = H(|w|, msg) Assert Z is small

Z=c-sk+r

If Z notin §, restart

If Z— c-enotiny’, restart
Outout sig = (z, |W])

15

Our approach

Q Design a variant of ML-DSA that is threshold-friendly for 7' = N parties.

Idea: Sample N independent ML-DSA secrets in Keygen and prove their knowledge
independently.

16

Our approach

Q Design a variant of ML-DSA that is threshold-friendly for 7' = N parties.

Idea: Sample N independent ML-DSA secrets in Keygen and prove their knowledge
independently.

Note: The success probability decreases exponentially with N, works well for N < 6.

16

Our approach

O Design a variant of ML-DSA that is threshold-friendly for 7' = N parties.

Idea: Sample N independent ML-DSA secrets in Keygen and prove their knowledge
independently.

Note: The success probability decreases exponentially with N, works well for N < 6.

Q N-out-of-N Threshold ML-DSA.

16

Our approach

O Design a variant of ML-DSA that is threshold-friendly for 7' = N parties.

Idea: Sample N independent ML-DSA secrets in Keygen and prove their knowledge
independently.

Note: The success probability decreases exponentially with N, works well for N < 6.

Q N-out-of-N Threshold ML-DSA.

€) ExtendtoT#N.

16

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For1 <1 < N, vk; = A - sk; + e;, where sk, e short

vk = Zi Vki

Sample N secrets, and aggregate the knowledge proofs.

c = H(|w], msg)
|lW| — (A -z — ¢ - vk) is short
Assert Z is small

17

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For1 <1< N, vk; = A - sk; + e;, where sk, e; short

vk = Zi Vki

Sample N secrets, and aggregate the knowledge proofs.

ML-DSA" . Sign(sk, msg) — sig

¢« Forl<i<N

o Sample shortr,, €; . ¢=H(|w], msg)

o W,=A -r; +e « |wW]—=(A-Z—c-vk)isshort
. W= Ziwi « Assertzis small

Sample a w; for each secret, and do not rely on

rounding for security:
reintroduce error in W, for rejection sampling on €

18

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For1 <1< N, vk; = A - sk; + e;, where sk, e; short

vk = Zi Vki

Sample N secrets, and aggregate the knowledge proofs.

ML-DSA" . Sign(sk, msg) — sig

Forl <i <N

o Sample shortr,, € . c¢=H(|w]|,msg)

o W,=A r;+e e |W]—=(A:z—c-vk)isshort
W = Ziwi « AssertZis small

c = H(|w], msg)

Sample a w; for each secret, and do not rely on

rounding for security:
reintroduce error in W, for rejection sampling on €

19

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

Sample N secrets, and aggregate the knowledge proofs.
vk = Zini

ML-DSA" . Sign(sk, msg) — sig
e Forl <i<N
o Sample shortr;, elf . ¢ = H(Lw] , msg)
o W,=A-r;+ € « |wW|—-(A-z—c-vk)isshort
W=D W, . Assert Z is small
c = H(|w], msg)

Forl <i <N\,

z,=c-ski+r,y,=c-e;+e Sample a w. for each secret, and do not rely on
If any (z,,y;) notin S, restart rounding for security:
reintroduce error in W, for rejection sampling on €

20

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

Sample N secrets, and aggregate the knowledge proofs.
vk = Zini

ML-DSA" . Sign(sk, msg) — sig
e Forl <i<N
o Sample shortr;, elf . ¢ = H(Lw] , msg)
o W,=A-r;+ € « |wW|—-(A-z—c-vk)isshort
W=D W, . Assert Z is small
c = H(|w], msg)

Forl <i <N\,

z,=c-ski+r,y,=c-e +eé Sample a w. for each secret, and do not rely on
If any (z;,y;) notin S, restart rounding for security:

sig = (2.2, [W]) reintroduce error in W, for rejection sampling on e
If sig not in S, restart
return sig

21

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

Sample N secrets, and aggregate the knowledge proofs.
vk = Zini

ML-DSA" . Sign(sk, msg) — sig
Forl <i<N
o Sample shortr;, elf . ¢ = H(Lw] , msg)
o W,=A-r;+ € « |wW|—-(A-z—c-vk)isshort
W=D W, . Assert Z is small
c = H(|w], msg)

Forl <i <N\,

Z,=c-skj+r,y,=c-e +e
If any (z;,y,) notin S, restart We use more compact distributions
sig = (2.2, |[W]) than ML-DSA to still pass verification
If sig not in S, restart -~ supports up to 6 parties
return sig

22

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — 44 o _ _
Rejection sampling with hyperballs \
Forl <i <N, vk

vk = Zi Vki

> knowledge proofs.

ML-DSA" . Sign(sk, msg

e Forl <i<N
o Sample short
O Wi=A°l’i+

. W=Q.W,

. c¢=H(|w],ms
e Forl <i<N|,
Zl=C°Sk,+I’l, e S L 7

e Ifany(z;,y;) notin S, restart

. sig=(T,z (W)
« Ifsig notin §’, restart
return sig

%

We use more compact distributions
than ML-DSA to still pass verification
- supports up to 6 parties

22

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk
« Forl <i<N,vk;=A-sk;+ e, where sk, e, short Th-ML-DSA . Sign(sk, msg) — sig

. Vk= Z,-Vki Round 1:
Sample short r;, €’
ML-DSA" . Sign(sk, msg) — sig + Broadcastw; = A - 1,

e Forl <i<N
o Sample shortr,, €; W = Z,-Wi
o W,=A-r;,+e ¢ = H(|w]|, msg)
sziwi Z,=c-sk;+r,y,=c-e +e
¢ = H(|w], msg) If (z;,y;) in S, broadcast Z;, else abort
Forl1 <i <N, Comb_ine:
Z,=c-skj+r,y,=c-e +e . SIg_=(Zizi, [w])

If any (z,y,) notin S, restart » Ifsignotin §’, restart

sig = (Zizi, W) . return sig

If sig not in S, restart

return sig

23

Threshold ML-DSA for N parties (7T = N)

ML-DSA". Keygen() — sk, vk

Th-ML-DSA . Sign(sk, msg) — sig

. For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

. vk= 2 vk

Round 1:
Sample short r;, €’
Broadcast w, = A - r,

But, the scheme is only
ML-DSA" . Sign(sk, msg) — sig = secure if corrupted parties
. Forl<i<N do not bias w

o Sample shortr;, €
o W, = A - r; + elf

. W=Q.W,

+ ¢ =H(|w], msg)

e Forl <i<N\,

Z,=c-skj+r,y,=c-e +e

e Ifany(z;,y;) notin S, restart

. Sig= (Z,-Zia [w])

« Ifsignotin §’, restart

return sig

l
c = H(|w], msg)
Z,=c-sk;+r,y,=c-e +e
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
« Ifsignotin§’, restart
« returnsig

23

Threshold ML-DSA for N parties (7' = N)

ML-DSA . Keygen() = sk, vk Th-ML-DSA . Sign(sk, msg) — sig

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short Round 1:
. vk=Y vk . Sample short r;,
l /
Broadcast commit; = H(w,)

Round 2:
Broadcast w;

Round 3:
W = > W, + abort if inconsistent commit;
c = H(LW] , Msg)
Z.=c-skj+r;,y,=c-e;,+e
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
. Ifsig notin §’, restart
e returnsig

ML-DSA" . Sign(sk, msg) — sig

For] <i<N
o Sample shortr,, €;
o W, = A - r; + elf
W= Ziwi
c = H(|w]|, msg)
Forl <i <N,
Z,=c-skj+r,y,=c-e +e
If any (z;,y,) notin S, restart
sig = (2,25 [W])
If sig not in S, restart
return sig

24 Techniques from [dPN25].

Threshold ML-DSA for 7 £ N parties

Use Replicated Secret Sharing [dPN25]

ML-DSA" . Keygen() — sk, vk

For every possible set [of N — T + 1 parties
O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, e; to parties in /
vk = Zi Vk]

1. When at most ' — 1 parties are corrupted,
at least one of these secrets remains hidden.

25

Threshold ML-DSA for 7 £ N parties

Use Replicated Secret Sharing [dPN25]

ML-DSA" . Keygen() — sk, vk

For every possible set [of N — T + 1 parties
O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, e; to parties in /
vk = Zi Vk]

1. When at most ' — 1 parties are corrupted,
at least one of these secrets remains hidden.

2. 1 parties can collaboratively reconstruct the
full secret.

Partition L;-qgm;, = {Is.t. |I|=N-T+ 1}

sk=) Y sk, e=) De

€SS Iem,; €SS Iem,
25

Threshold ML-DSA for 7 £ N parties

Th-ML-DSA . Sign(sk, msg) — sig

Use Replicated Secret Sharing [dPN25]

Round 1:
! Sample short r;, €
ML-DSA .Keygen() — sk, vk ,
W, =A-r;+ €
« For every possible set I of N — T + 1 parties Broadcast commit; = H(W))
O vk; = A - sk; + e, where sk;, e; short Round 2:
O Distribute sk, €, to parties in / Broadcast w;
. Vk= Zi‘/kl Round 3:
W = > W, +abort if inconsistent commit;
1. When at most 7' — 1 parties are corrupted, ¢ = H(|w], msg)
at least one of these secrets remains hidden. Z,=¢C- Z sk;+r,y,=c- Z e; + €
lem, lem,
2. T parties can collaboratively reconstruct the If (z;, y;) in S, broadcast z;, else abort
full secret. Combine:
Partition Ll;.qgm, = {Is.t. |I|=N—-T+ 1} - sig=(2,% WD

« Ifsignotin .y’ restart

sk = Z Z Skl, € = Z Z C; e returnsig

€SS Iem,; €SS Iem,

25 Techniques from [dPN25].

Threshold ML-DSA for 7 £ N parties

Use Replicated Secret Sharing [dPN25] P SERE e
Round 1:

/
Sample shortr;, €;

ML-DSA™ . K k, vk
eygen() — sk, v . W,-=A-ri+e,f

For every possible set of N — T+ 1 pe

O vk; = A - sk; + e, where sk, €; sho

O Distribute sk;, e; to parties in / Ty plUS Some Other
vk =Y vk, optimizations to make
SEIEINSCIERCERIe[)lE-ERR 3" w; + abort if inconsistent commit,

1. When at most ' — 1 parties are possible H([w], msg)

at least one of these secrets remai C - Z skj +1,,y;=c- Z e+ ¢
lem, lem,
. If(z,,y;) in S, broadcast z, else abort

Combine:
. Sig= (Z,-Zia [w])

« Ifsignotin .y’ restart
e returnsig

ast w;

2. 1 parties can collaboratively reconstruct the
full secret.

Partition Ll;.qgm, = {Is.t. |I|=N—-T+ 1}

sk=) Y sk, e=) De

1€SS Iem,; €SS Iem,

26 Techniques from [dPN25].

Evaluation

Evaluation

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.

| 20
o N =2 * - N =2
& N =3 \\ @ N =3
= N =4 z 15 N =4
= 400 N —) N =
= o N = = @ N =6
g é 10 -
E = 5
3
3 g 5
<+~ o0
& 2 |
ol & - i ol & Be
l 1
2 3 4 o 6 2 3 4 D 6
Threshold (T) Threshold (T)

Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)

28

Evaluation

WAN signing latency (in ms) for Threshold ML-DSA-44 across different topologies.

L = London, S = Seoul, T = Taipel, V = Virginia

(T,N) Locations Sighing (ms)
(2,6) T-S 27
(2,6) T-V 620
(4,6) T-V-L-L 750
(6,6) T-V-L-L-S-S 659

29

Conclusion

Conclusion

Scheme # Parties # Rounds Comm (MB) | Computation Paradigm Security
Our work 6 6 0.021 to 1.05 Lightweight Game-based | Dishonest Majority
. . 96 >1.27 Online .
Bienstock et al. Unlimited ightweight* UC Honest Majority
24 2.3 JNtWelg
Trilithium 2 60 234 Heavy UC Trusted Party

Average # rounds, and communication per party to obtain a valid signature

* Communication and computation exclude cost of offline correlated randomness generation.

31

Conclusion

Scheme # Parties # Rounds Comm (MB) | Computation Paradigm Security
Our work 6 6 0.021 to 1.05 Lightweight Game-based | Dishonest Majority
. . 96 >1.27 Online L
Bienstock et al. Unlimited ightweight* UC Honest Majority
24 2.3 JNtWelg
Trilithium 2 60 234 Heavy UC Trusted Party
Scheme # Parties # Rounds Comm (MB)
14 > 41T kB
Threshold ECDSA Unlimited
3 > 45.3T kB

32

Questions?

Evaluation

Other ML-DSA parameter sets

Communication costs for Threshold ML-DSA-65 Communication costs for Threshold ML-DSA-87
10,000 |
|- N
@ N
n 8,000 N
@ N
= 6,000 | o N
I
£)
= 4,000
M
=
; 2.000
0 — 0l = -
l l
2 3 4 5 6 2 3 4 5) 6

Threshold (T) Threshold (T)

34

