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keygen primitive 

𝗌𝗂𝗀

Centralized setting
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What if the party is corrupted or becomes unresponsive…

Question: can we split the trust among several parties?

(T, N) = (3,6)

Interactive protocol to distribute the scheme: 
 -out-of-   parties can collaborate to sign and 

 parties cannot.
T N

T − 1
𝗌𝗂𝗀
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In 2023, NIST selected 3 signature schemes for standardization.

ML-DSA

FN-DSA
SLH-DSA

Based on lattices Based on hash functions

Raccoon
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𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption:  appears uniformly distributed
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𝖬𝖫𝖶𝖤 𝗏𝗄

A



ML-DSA signatures

8

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption:  appears uniformly distributed

for  wide enough (more inputs than outputs) 
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = A ⋅ r1 w

Challenger

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e



ML-DSA signatures

9

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption:  appears uniformly distributed

for  wide enough (more inputs than outputs) 
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = A ⋅ r1 w

Challenger

Sample challenge  with high entropycc
2

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e



ML-DSA signatures

10

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption:  appears uniformly distributed

for  wide enough (more inputs than outputs) 
𝖬𝖫𝖶𝖤 𝗏𝗄

A

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

Prover

Sample short r
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Sample challenge  with high entropycc
2
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Sample  in a centered hypercube.r

r

c ⋅ 𝗌𝗄

z = c ⋅ 𝗌𝗄 + r

Then, the distribution of  depends on the secret.z

We reject any  outside of         . 
The resulting distribution is independent of the secret.

z
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Design a variant of ML-DSA that is threshold-friendly for  parties.T = N1

Idea: Sample  independent ML-DSA secrets in Keygen and prove their knowledge 
independently.

N

Note: The success probability decreases exponentially with , works well for .N N ≤ 6

2 -out-of-   Threshold ML-DSA.N N

3 Extend to .T ≠ N
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ri

zi = c ⋅ 𝗌𝗄i + ri

Rejection sampling with hyperballs
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… plus some other 
optimizations to make 
parameters as tight as 

possible
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Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.



Evaluation

29

(T,N) Locations Signing (ms)

(2,6) T - S 27

(2,6) T - V 620

(4,6) T - V - L - L 750

(6,6) T - V - L - L - S - S 659

WAN signing latency (in ms) for Threshold ML-DSA-44 across different topologies.

L = London, S = Seoul, T = Taipei, V = Virginia
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* Communication and computation exclude cost of offline correlated randomness generation.

Average # rounds, and communication per party to obtain a valid signature

Scheme # Parties # Rounds Comm (MB) Computation Paradigm Security

Our work 6 6 0.021 to 1.05 Lightweight Game-based Dishonest Majority

Bienstock et al. Unlimited
96 >1.2* Online 

lightweight* UC Honest Majority
24 >2.3*

Trilithium 2 60 234 Heavy UC Trusted Party
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Scheme # Parties # Rounds Comm (MB)

Threshold ECDSA Unlimited
7 > 4.1T kB

3 > 45.3T kB

Scheme # Parties # Rounds Comm (MB) Computation Paradigm Security

Our work 6 6 0.021 to 1.05 Lightweight Game-based Dishonest Majority

Bienstock et al. Unlimited
96 >1.2* Online 

lightweight* UC Honest Majority
24 >2.3*

Trilithium 2 60 234 Heavy UC Trusted Party
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Other ML-DSA parameter sets


