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Threshold Signatures

What if the party is corrupted or becomes unresponsive...
Question: can we split the trust among several parties?

Interactive protocol to distribute the scheme:
I-out-of-N parties can collaborate to sign and sig

T — 1 parties cannot.
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Announcement

This is a second public draft. Threshold schemes should NOT be submitted until the final version of this report is
published. However, the present draft can be used as a baseline to prepare for future submissions.

The scope of the call is organized into categories related to signing (Sign), public-key encryption (PKE),
symmetric-key cryptography and hashing (Symm), key generation (KeyGen), fully homomorphic encryption
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In 2023, NIST selected 3 signature schemes for standardization.

ML-DSA

SLH-DSA
FN-DSA

Based on lattices Based on hash functions
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ML-DSA signatures

« vk =A"-sk+ e, for sk, e short

MLWE assumption: vk appears uniformly distributed
for A wide enough (more inputs than outputs)
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O
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Prover

Sample short r
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Compute response
Z=c-sk+r
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ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger
Sample short r
Q w=A-r
Q c = H(|w], msg)
Compute response // . .
Q Z=c- -Sk+r Verity that z is short

Verify |[wW| — (A -z — ¢ - vk) is short
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Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of Z depends on the secret.
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Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of Z depends on the secret.

We reject any 7 outside of .
The resulting distribution is independent of the secret.

7= c - Sk-
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ML-DSA signatures

ML-DSA . Keygen() — sk, vk

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

ML-DSA . Sign(sk, msg) — sig ML-DSA . Verify(vk, msg, sig = (z, |wW|))

Sample short r c = H(|w], msg)
W=A-r |lW| — (A -z —c - vk) is short
c = H(|w|, msg) Assert Z is small

Z=c-sk+r

If Z notin §, restart

If Z— c-enotiny’, restart
Outout sig = (z, |W])
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Our approach

Q Design a variant of ML-DSA that is threshold-friendly for 7' = N parties.

Idea: Sample N independent ML-DSA secrets in Keygen and prove their knowledge
independently.
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Our approach

O Design a variant of ML-DSA that is threshold-friendly for 7' = N parties.

Idea: Sample N independent ML-DSA secrets in Keygen and prove their knowledge
independently.

Note: The success probability decreases exponentially with N, works well for N < 6.

Q N-out-of-N Threshold ML-DSA.

€) ExtendtoT#N.
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For1 <1 < N, vk; = A - sk; + e;, where sk, e short

vk = Zi Vki

Sample N secrets, and aggregate the knowledge proofs.

c = H(|w], msg)
|lW| — (A -z — ¢ - vk) is short
Assert Z is small
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For1 <1< N, vk; = A - sk; + e;, where sk, e; short

vk = Zi Vki

Sample N secrets, and aggregate the knowledge proofs.

ML-DSA" . Sign(sk, msg) — sig

¢« Forl<i<N

o Sample shortr,, €; . ¢=H(|w], msg)

o W,=A -r; +e « |wW]—=(A-Z—c-vk)isshort
. W= Ziwi « Assertzis small

Sample a w; for each secret, and do not rely on

rounding for security:
reintroduce error in W, for rejection sampling on €
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

Sample N secrets, and aggregate the knowledge proofs.
vk = Zini

ML-DSA" . Sign(sk, msg) — sig
e Forl <i<N
o Sample shortr;, elf . ¢ = H( Lw] , msg)
o W,=A-r;+ € « |wW|—-(A-z—c-vk)isshort
W=D W, . Assert Z is small
c = H(|w], msg)

Forl <i <N\,

z,=c-ski+r,y,=c-e;+e Sample a w. for each secret, and do not rely on
If any (z,,y;) notin S, restart rounding for security:
reintroduce error in W, for rejection sampling on €
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

Sample N secrets, and aggregate the knowledge proofs.
vk = Zini

ML-DSA" . Sign(sk, msg) — sig
e Forl <i<N
o Sample shortr;, elf . ¢ = H( Lw] , msg)
o W,=A-r;+ € « |wW|—-(A-z—c-vk)isshort
W=D W, . Assert Z is small
c = H(|w], msg)

Forl <i <N\,

z,=c-ski+r,y,=c-e +eé Sample a w. for each secret, and do not rely on
If any (z;,y;) notin S, restart rounding for security:

sig = (2.2, [W]) reintroduce error in W, for rejection sampling on e
If sig not in S, restart
return sig
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

Sample N secrets, and aggregate the knowledge proofs.
vk = Zini

ML-DSA" . Sign(sk, msg) — sig
Forl <i<N
o Sample shortr;, elf . ¢ = H( Lw] , msg)
o W,=A-r;+ € « |wW|—-(A-z—c-vk)isshort
W=D W, . Assert Z is small
c = H(|w], msg)

Forl <i <N\,

Z,=c-skj+r,y,=c-e +e
If any (z;,y,) notin S, restart We use more compact distributions
sig = (2.2, |[W]) than ML-DSA to still pass verification
If sig not in S, restart -~ supports up to 6 parties
return sig
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — 44 o _ _
Rejection sampling with hyperballs \
Forl <i <N, vk

vk = Zi Vki

> knowledge proofs.

ML-DSA" . Sign(sk, msg

e Forl <i<N
o Sample short
O Wi=A°l’i+

. W=Q.W,

. c¢=H(|w],ms
e Forl <i<N|,
Zl=C°Sk,+I’l, e S L 7

e Ifany(z;,y;) notin S, restart

. sig=(T,z (W)
« Ifsig notin §’, restart
return sig

%

We use more compact distributions
than ML-DSA to still pass verification
- supports up to 6 parties
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk
« Forl <i<N,vk;=A-sk;+ e, where sk, e, short Th-ML-DSA . Sign(sk, msg) — sig

. Vk= Z,-Vki Round 1:
Sample short r;, €’
ML-DSA" . Sign(sk, msg) — sig + Broadcastw; = A - 1,

e Forl <i<N
o Sample shortr,, €; W = Z,-Wi
o W,=A-r;,+e ¢ = H(|w]|, msg)
sziwi Z,=c-sk;+r,y,=c-e +e
¢ = H(|w], msg) If (z;,y;) in S, broadcast Z;, else abort
Forl1 <i <N, Comb_ine:
Z,=c-skj+r,y,=c-e +e . SIg_=(Zizi, [w])

If any (z,y,) notin S, restart » Ifsignotin §’, restart

sig = (Zizi, W) .  return sig

If sig not in S, restart

return sig
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Threshold ML-DSA for N parties (7T = N)

ML-DSA". Keygen() — sk, vk

Th-ML-DSA . Sign(sk, msg) — sig

. For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

. vk= 2 vk

Round 1:
Sample short r;, €’
Broadcast w, = A - r,

But, the scheme is only
ML-DSA" . Sign(sk, msg) — sig = secure if corrupted parties
. Forl<i<N do not bias w

o Sample shortr;, €
o W, = A - r; + elf

. W=Q.W,

+ ¢ =H(|w], msg)

e Forl <i<N\,

Z,=c-skj+r,y,=c-e +e

e Ifany(z;,y;) notin S, restart

. Sig= (Z,-Zia [w])

« Ifsignotin §’, restart

return sig

l
c = H(|w], msg)
Z,=c-sk;+r,y,=c-e +e
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
« Ifsignotin§’, restart
« returnsig
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Threshold ML-DSA for N parties (7' = N)

ML-DSA . Keygen() = sk, vk Th-ML-DSA . Sign(sk, msg) — sig

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short Round 1:
. vk=Y vk . Sample short r;,
l /
Broadcast commit; = H(w,)

Round 2:
Broadcast w;

Round 3:
W = > W, + abort if inconsistent commit;
c = H( LW] , Msg)
Z.=c-skj+r;,y,=c-e;,+e
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
. Ifsig notin §’, restart
e returnsig

ML-DSA" . Sign(sk, msg) — sig

For] <i<N
o Sample shortr,, €;
o W, = A - r; + elf
W= Ziwi
c = H(|w]|, msg)
Forl <i <N,
Z,=c-skj+r,y,=c-e +e
If any (z;,y,) notin S, restart
sig = (2,25 [W])
If sig not in S, restart
return sig

24 Techniques from [dPN25].



Threshold ML-DSA for 7 £ N parties

Use Replicated Secret Sharing [dPN25]

ML-DSA" . Keygen() — sk, vk

For every possible set [ of N — T + 1 parties
O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, e; to parties in /
vk = Zi Vk]

1. When at most ' — 1 parties are corrupted,
at least one of these secrets remains hidden.
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ML-DSA" . Keygen() — sk, vk

For every possible set [ of N — T + 1 parties
O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, e; to parties in /
vk = Zi Vk]

1. When at most ' — 1 parties are corrupted,
at least one of these secrets remains hidden.

2. 1 parties can collaboratively reconstruct the
full secret.

Partition L;-qgm;, = {Is.t. |I|=N-T+ 1}
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Threshold ML-DSA for 7 £ N parties

Th-ML-DSA . Sign(sk, msg) — sig

Use Replicated Secret Sharing [dPN25]

Round 1:
! Sample short r;, €
ML-DSA .Keygen() — sk, vk ,
W, =A-r;+ €
«  For every possible set I of N — T + 1 parties Broadcast commit; = H(W))
O vk; = A - sk; + e, where sk;, e; short Round 2:
O Distribute sk, €, to parties in / Broadcast w;
. Vk= Zi‘/kl Round 3:
W = > W, +abort if inconsistent commit;
1. When at most 7' — 1 parties are corrupted, ¢ = H(|w], msg)
at least one of these secrets remains hidden. Z,=¢C- Z sk;+r,y,=c- Z e; + €
lem, lem,
2. T parties can collaboratively reconstruct the If (z;, y;) in S, broadcast z;, else abort
full secret. Combine:
Partition Ll;.qgm, = {Is.t. |I|=N—-T+ 1} - sig=(2,% WD

« Ifsignotin .y’ restart

sk = Z Z Skl, € = Z Z C; e returnsig

€SS Iem,; €SS Iem,

25 Techniques from [dPN25].



Threshold ML-DSA for 7 £ N parties

Use Replicated Secret Sharing [dPN25] P SERE e
Round 1:

/
Sample shortr;, €;

ML-DSA™ . K k, vk
eygen() — sk, v . W,-=A-ri+e,f

For every possible set  of N — T+ 1 pe

O vk; = A - sk; + e, where sk, €; sho

O Distribute sk;, e; to parties in / Ty plUS Some Other
vk =Y vk, optimizations to make
SEIEINSCIERCERIe[)lE-ERR 3" w; + abort if inconsistent commit,

1. When at most ' — 1 parties are possible H([w], msg)

at least one of these secrets remai C - Z skj +1,,y;=c- Z e+ ¢
lem, lem,
. If(z,,y;) in S, broadcast z, else abort

Combine:
. Sig= (Z,-Zia [w])

« Ifsignotin .y’ restart
e returnsig

ast w;

2. 1 parties can collaboratively reconstruct the
full secret.

Partition Ll;.qgm, = {Is.t. |I|=N—-T+ 1}

sk= ) Y sk, e=) De

1€SS Iem,; €SS Iem,
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Evaluation

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.
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Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)
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Evaluation

WAN signing latency (in ms) for Threshold ML-DSA-44 across different topologies.

L = London, S = Seoul, T = Taipel, V = Virginia

(T,N) Locations Sighing (ms)
(2,6) T-S 27
(2,6) T-V 620
(4,6) T-V-L-L 750
(6,6) T-V-L-L-S-S 659
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Conclusion

Scheme # Parties # Rounds Comm (MB) | Computation Paradigm Security
Our work 6 6 0.021 to 1.05 Lightweight Game-based | Dishonest Majority
. . 96 >1.27 Online .
Bienstock et al. Unlimited ightweight* UC Honest Majority
24 2.3 JNtWelg
Trilithium 2 60 234 Heavy UC Trusted Party

Average # rounds, and communication per party to obtain a valid signature

* Communication and computation exclude cost of offline correlated randomness generation.
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Conclusion

Scheme # Parties # Rounds Comm (MB) | Computation Paradigm Security
Our work 6 6 0.021 to 1.05 Lightweight Game-based | Dishonest Majority
. . 96 >1.27 Online L
Bienstock et al. Unlimited ightweight* UC Honest Majority
24 2.3 JNtWelg
Trilithium 2 60 234 Heavy UC Trusted Party
Scheme # Parties # Rounds Comm (MB)
14 > 41T kB
Threshold ECDSA Unlimited
3 > 45.3T kB
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Evaluation

Other ML-DSA parameter sets

Communication costs for Threshold ML-DSA-65 Communication costs for Threshold ML-DSA-87
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