
Efficient Threshold ML-DSA up to 6 Parties

NIST Sixth PQC Standardization Conference

1

Post-Quantum Threshold Signatures Compatible with the NIST
Standard

Guilhem Niot
joint work with Rafael del Pino, Sofía Celi, Thomas Espitau, Thomas Prest

Threshold Signatures

2

keygen primitive

𝗌𝗂𝗀

Centralized setting

Threshold Signatures

3

What if the party is corrupted or becomes unresponsive…

Question: can we split the trust among several parties?

Threshold Signatures

3

What if the party is corrupted or becomes unresponsive…

Question: can we split the trust among several parties?

(T, N) = (3,6)

Interactive protocol to distribute the scheme:
 -out-of- parties can collaborate to sign and

 parties cannot.
T N

T − 1
𝗌𝗂𝗀

NIST Call for Threshold Schemes

4

Post-Quantum Threshold Signatures?

5

Raccoon

Post-Quantum Threshold Signatures?

5

In 2023, NIST selected 3 signature schemes for standardization.

ML-DSA

FN-DSA
SLH-DSA

Based on lattices Based on hash functions

Raccoon

Thresholdizing ML-DSA

6

ML-DSA signatures

7

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

ML-DSA signatures

8

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = A ⋅ r1 w

Challenger

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

ML-DSA signatures

9

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = A ⋅ r1 w

Challenger

Sample challenge with high entropycc
2

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

ML-DSA signatures

10

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

Prover

Sample short r
w = A ⋅ r1 w

Challenger

Sample challenge with high entropycc
2

Compute response  
z = c ⋅ 𝗌𝗄 + r3 Verify that is short

Verify is short
z

w − (A ⋅ z − c ⋅ 𝗏𝗄)
z

ML-DSA signatures

11

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = A ⋅ r1

Challenger

Sample challenge with high entropycc
2

Compute response  

If , restart
z = c ⋅ 𝗌𝗄 + r

z ∉ S

3 z

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

w

Verify that is short
Verify is short

z
w − (A ⋅ z − c ⋅ 𝗏𝗄)

ML-DSA signatures

12

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = A ⋅ r1

⌊w⌉

Challenger

Sample challenge with high entropycc
2

Compute response  

If , restart

If , restart

z = c ⋅ 𝗌𝗄 + r
z ∉ S
w − c ⋅ e ∉ S′￼

3 z

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

Verify that is short
Verify is short

z
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

ML-DSA signatures

13

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = A ⋅ r1

Challenger

3 z

c = H(⌊w⌉, 𝗆𝗌𝗀)2

Compute response  

If , restart

If , restart

z = c ⋅ 𝗌𝗄 + r
z ∉ S
w − c ⋅ e ∉ S′￼

Verify that is short
Verify is short

z
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

Rejection sampling

14

Sample in a centered hypercube.r

r

Rejection sampling

14

Sample in a centered hypercube.r

r

c ⋅ 𝗌𝗄

z = c ⋅ 𝗌𝗄 + r

Then, the distribution of depends on the secret.z

Rejection sampling

14

Sample in a centered hypercube.r

r

c ⋅ 𝗌𝗄

z = c ⋅ 𝗌𝗄 + r

Then, the distribution of depends on the secret.z

We reject any outside of . 
The resulting distribution is independent of the secret.

z

ML-DSA signatures

15

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample short
•
•
•
• If not in , restart
• If not in , restart
• Output

r
w = A ⋅ r
c = H(⌊w⌉, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
z − c ⋅ e S′￼

𝗌𝗂𝗀 = (z, ⌊w⌉)

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Our approach

16

Design a variant of ML-DSA that is threshold-friendly for parties.T = N1

Idea: Sample independent ML-DSA secrets in Keygen and prove their knowledge
independently.

N

Our approach

16

Design a variant of ML-DSA that is threshold-friendly for parties.T = N1

Idea: Sample independent ML-DSA secrets in Keygen and prove their knowledge
independently.

N

Note: The success probability decreases exponentially with , works well for .N N ≤ 6

Our approach

16

Design a variant of ML-DSA that is threshold-friendly for parties.T = N1

Idea: Sample independent ML-DSA secrets in Keygen and prove their knowledge
independently.

N

Note: The success probability decreases exponentially with , works well for .N N ≤ 6

2 -out-of- Threshold ML-DSA.N N

Our approach

16

Design a variant of ML-DSA that is threshold-friendly for parties.T = N1

Idea: Sample independent ML-DSA secrets in Keygen and prove their knowledge
independently.

N

Note: The success probability decreases exponentially with , works well for .N N ≤ 6

2 -out-of- Threshold ML-DSA.N N

3 Extend to .T ≠ N

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

Threshold ML-DSA for parties ()N T = N

17

Sample secrets, and aggregate the knowledge proofs.N

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Threshold ML-DSA for parties ()N T = N

18

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Sample a for each secret, and do not rely on
rounding for security:

reintroduce error in for rejection sampling on

wi

wi e

Sample secrets, and aggregate the knowledge proofs.N

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

Threshold ML-DSA for parties ()N T = N

19

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Sample a for each secret, and do not rely on
rounding for security:

reintroduce error in for rejection sampling on

wi

wi e

Sample secrets, and aggregate the knowledge proofs.N

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S

Threshold ML-DSA for parties ()N T = N

20

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Sample a for each secret, and do not rely on
rounding for security:

reintroduce error in for rejection sampling on

wi

wi e

Sample secrets, and aggregate the knowledge proofs.N

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Threshold ML-DSA for parties ()N T = N

21

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Sample a for each secret, and do not rely on
rounding for security:

reintroduce error in for rejection sampling on

wi

wi e

Sample secrets, and aggregate the knowledge proofs.N

Sample secrets, and aggregate the knowledge proofs.N

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Threshold ML-DSA for parties ()N T = N

22

We use more compact distributions
than ML-DSA to still pass verification

 supports up to 6 parties→

Sample secrets, and aggregate the knowledge proofs.N

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Threshold ML-DSA for parties ()N T = N

22

We use more compact distributions
than ML-DSA to still pass verification

 supports up to 6 parties→

ri

zi = c ⋅ 𝗌𝗄i + ri

Rejection sampling with hyperballs

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Threshold ML-DSA for parties ()N T = N

23

𝖳𝗁-𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample short
• Broadcast
Round 2:

•
•
•
• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ 𝖾i + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Threshold ML-DSA for parties ()N T = N

23

𝖳𝗁-𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample short
• Broadcast
Round 2:

•
•
•
• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ 𝖾i + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

But, the scheme is only
secure if corrupted parties

do not bias w

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Threshold ML-DSA for parties ()N T = N

24

𝖳𝗁-𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample short
•
• Broadcast
Round 2:
• Broadcast
Round 3:

• + abort if inconsistent

•
•
• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗈𝗆𝗆𝗂𝗍i = H(wi)

wi

w = ∑i wi 𝖼𝗈𝗆𝗆𝗂𝗍i

c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ 𝖾i + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Techniques from [dPN25].

Threshold ML-DSA for partiesT ≠ N

25

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Use Replicated Secret Sharing [dPN25]

1. When at most parties are corrupted,
at least one of these secrets remains hidden.

T − 1

Threshold ML-DSA for partiesT ≠ N

25

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Use Replicated Secret Sharing [dPN25]

1. When at most parties are corrupted,
at least one of these secrets remains hidden.

T − 1

2. parties can collaboratively reconstruct the
full secret.

T

Partition :

,

⊔i∈𝖲𝖲 mi = {I s.t. | I | = N − T + 1}

𝗌𝗄 = ∑
i∈SS

∑
I∈mi

𝗌𝗄I e = ∑
i∈SS

∑
I∈mi

eI

Techniques from [dPN25].

Round 1:
• Sample short
•
• Broadcast
Round 2:
• Broadcast
Round 3:

• + abort if inconsistent

•

•
• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗈𝗆𝗆𝗂𝗍i = H(wi)

wi

w = ∑i wi 𝖼𝗈𝗆𝗆𝗂𝗍i

c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ ∑

I∈mi

𝗌𝗄I + ri, yi = c ⋅ ∑
I∈mi

𝖾I + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

𝖳𝗁-𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Threshold ML-DSA for partiesT ≠ N

25

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Use Replicated Secret Sharing [dPN25]

1. When at most parties are corrupted,
at least one of these secrets remains hidden.

T − 1

2. parties can collaboratively reconstruct the
full secret.

T

Partition :

,

⊔i∈𝖲𝖲 mi = {I s.t. | I | = N − T + 1}

𝗌𝗄 = ∑
i∈SS

∑
I∈mi

𝗌𝗄I e = ∑
i∈SS

∑
I∈mi

eI

Threshold ML-DSA for partiesT ≠ N

26

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Use Replicated Secret Sharing [dPN25]

1. When at most parties are corrupted,
at least one of these secrets remains hidden.

T − 1

2. parties can collaboratively reconstruct the
full secret.

T

Partition :

,

⊔i∈𝖲𝖲 mi = {I s.t. | I | = N − T + 1}

𝗌𝗄 = ∑
i∈SS

∑
I∈mi

𝗌𝗄I e = ∑
i∈SS

∑
I∈mi

eI

𝖳𝗁-𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample short
•
• Broadcast
Round 2:
• Broadcast
Round 3:

• + abort if inconsistent

•

•
• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗈𝗆𝗆𝗂𝗍i = H(wi)

wi

w = ∑i wi 𝖼𝗈𝗆𝗆𝗂𝗍i

c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ ∑

I∈mi

𝗌𝗄I + ri, yi = c ⋅ ∑
I∈mi

𝖾I + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Techniques from [dPN25].

… plus some other
optimizations to make
parameters as tight as

possible

Evaluation

27

Evaluation

28

Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.

Evaluation

29

(T,N) Locations Signing (ms)

(2,6) T - S 27

(2,6) T - V 620

(4,6) T - V - L - L 750

(6,6) T - V - L - L - S - S 659

WAN signing latency (in ms) for Threshold ML-DSA-44 across different topologies.

L = London, S = Seoul, T = Taipei, V = Virginia

Conclusion

30

Conclusion

31

* Communication and computation exclude cost of offline correlated randomness generation.

Average # rounds, and communication per party to obtain a valid signature

Scheme # Parties # Rounds Comm (MB) Computation Paradigm Security

Our work 6 6 0.021 to 1.05 Lightweight Game-based Dishonest Majority

Bienstock et al. Unlimited
96 >1.2* Online

lightweight* UC Honest Majority
24 >2.3*

Trilithium 2 60 234 Heavy UC Trusted Party

Conclusion

32

Scheme # Parties # Rounds Comm (MB)

Threshold ECDSA Unlimited
7 > 4.1T kB

3 > 45.3T kB

Scheme # Parties # Rounds Comm (MB) Computation Paradigm Security

Our work 6 6 0.021 to 1.05 Lightweight Game-based Dishonest Majority

Bienstock et al. Unlimited
96 >1.2* Online

lightweight* UC Honest Majority
24 >2.3*

Trilithium 2 60 234 Heavy UC Trusted Party

Questions?

33

Evaluation

34

Other ML-DSA parameter sets

