PQC + Threshold

State of the Art in Threshold Quantum-Resistant Signatures

Guilhem Niot

CryptoDay @ Télécom Paris - 18/09/2025

SHIELD

Threshold Signatures

Centralized setting

Sig

keygen orimitive

Threshold Signatures

What if the party is corrupted or becomes unresponsive...
Question: can we split the trust among several parties?

Threshold Signatures

What if the party is corrupted or becomes unresponsive...
Question: can we split the trust among several parties?

Interactive protocol to distribute the scheme:
I-out-of-N parties can collaborate to sign and sig

T — 1 parties cannot.

Applications of Threshold Signatures

Cryptocurrency wallets & DeFi

Distributed signing for CDNs

Distributed consensus in Tor

NIST Call for Threshold Schemes

NIST IR 8214C (2nd Public Draft)

NIST First Call for Multi-Party Threshold Schemes

f X in %

Date Published: March 27,2025
Comments Due: April 30, 2025
Email Comments to: nistir-8214C-comments@nist.gov

Author(s)
Luis T. A. N. Brandao (NIST, Strativia), Rene Peralta (NIST)

Announcement

This is a second public draft. Threshold schemes should NOT be submitted until the final version of this report is
published. However, the present draft can be used as a baseline to prepare for future submissions.

The scope of the call is organized into categories related to signing (Sign), public-key encryption (PKE),
symmetric-key cryptography and hashing (Symm), key generation (KeyGen), fully homomorphic encryption

5

Goal of this talk

o Provide an overview of the most practical PQ threshold signatures

o Explain their technical and practical differences

The trade-offs of threshold schemes

Select a base scheme

Lattice-based
Hash-based
Multivariate-based
|Isogeny-based

The trade-offs of threshold schemes

Select a base scheme efficiency
Lattice-based
- Gap #corruptions / #signers
Hash-basec trade-off
Multivariate-based — _
|Isogeny-based (DKG)
Identifiable Aborts (IA) properties

Post-Quantum Threshold Signatures?

Lattice-based
Threshold ML-DSA

Threshold Signatures Reloaded
ML-DSA and Enhanced Raccoon with Identifiable
Aborts

Giacomo Borin!, Sofia Celi?, Rafael del Pino®, Thomas Espitau®, Guilhem Niot3*,
Thomas Prest?®

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*¥, Leo de Castro*™*, Daniel Escudero*¥, Antigoni Polychroniadou*i, Akira Takahashi*¥
JPMorgan Chase & Co.
*JPMC AlgoCRYPT CoE, TJPMC CTC Cryptography, *JPMC Al Research
{firstname}.{lastname}@jpmchase.com

+ Standard

+ DKG
- Limited scalability

Post-Quantum Threshold Signatures?

Lattice-based
Threshold ML-DSA

Threshold Signatures Reloaded
ML-DSA and Enhanced Raccoon with Identifiable
Aborts

Giacomo Borin!, Sofia Celi?, Rafael del Pino®, Thomas Espitau®, Guilhem Niot3*,
Thomas Prest?®

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*?, Leo de Castro*", Daniel Escudero*¥, Antigoni Polychroniadou**, Akira Takahashi*?
JPMorgan Chase & Co.
*JPMC AlgoCRYPT CoE, fgpMcC cTC Cryptography, YJPMC AI Research
{firstname}.{lastname}@jpmchase.com

+ Standard

+ DKG
- Limited scalability

FN-DSA based?

Post-Quantum Threshold Signatures?

Lattice-based
Threshold ML-DSA

Threshold Signatures Reloaded
ML-DSA and Enhanced Raccoon with Identifiable
Aborts

Giacomo Borin!, Sofia Celi?, Rafael del Pino®, Thomas Espitau®, Guilhem Niot3*,

Thomas Prest?

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*¥, Leo de Castro*™*, Daniel Escudero*¥, Antigoni Polychroniadou*i, Akira Takahashi*¥
JPMorgan Chase & Co.
*JPMC AlgoCRYPT CoE, fgpMcC cTC Cryptography, YJPMC AI Research
{firstname}.{lastname}@jpmchase.com

+ Standard

+ DKG
- Limited scalability

FN-DSA based?

Raccoon based

Threshold Raccoon: Practical Threshold Signatures
from Standard Lattice Assumptions

Rafael del Pino', Shuichi Katsumata!?, Mary Maller!3, Fabrice Mouhartem*, Thomas
Prest!, Markku-Juhani Saarinen®

Simple and Efficient Lattice Threshold
Signatures with Identifiable Aborts

Rafael del Pino' @, Thomas Espitau®! @, Guilhem Niot!? ®, and Thomas
Prest!

Two-Round Threshold Signature from
Algebraic One-More Learning with Errors

Thomas Espitau®, Shuichi Katsumata'?, Kaoru Takemure* 12

+ Efficient and scalable
+ DKG + Abort identification
- Non standard (~10KB sig)

Post-Quantum Threshold Signatures?
Hash-based

Threshold SPHINCS+?

Post-Quantum Threshold Signatures?
Hash-based

Threshold SPHINCS+?

Aggregating and thresholdizing hash-based signatures using
STARKSs

Irakliy Khaburzaniya Kostantinos Chalkias

Polygon/Meta Meta
irakliy81@gmail.com chalkiaskostas@gmail.com

Kevin Lewi Harjasleen Malvai
Meta UIUC / IC3
klewi@fb.com hmalvai2@illinois.edu

- Non-standard
- Large >100KB signatures

10

Post-Quantum Threshold Signatures?
Hash-based

Threshold SPHINCS+?

Turning Hash-Based Signatures into Distributed
Signatures and Threshold Signatures

Aggregating and thresholdizing hash-based signatures using
STARKSs

Irakliy Khaburzaniya Kostantinos Chalkias

Polygon/Meta Meta Delegate Your Signing Capability, and Distribute it Among Trustees

irakliy81@gmail.com chalkiaskostas@gmail.com

John Kelsey?? ©®, Nathalie Lang® ® and Stefan Lucks?

Kevin Lewi Harjasleen Malvai
Meta UIUC / IC3
klewi@fb.com hmalvai2@illinois.edu

- Non-standard - Non-standard

- Large >100KB signatures - Stateful
- Small number of parties

10

Post-Quantum Threshold Signatures?
Multivariate

UOV and MAYO

+ NIST candidates (UOV and MAYO)

11

Post-Quantum Threshold Signatures?
Isogeny based

CSI-FiSh based

+ Efficient
- Non-standard
- Less trusted assumption

12

Post-Quantum Threshold Signatures?

Focus:

 NIST standard or candidate: Threshold ML-DSA, UOV, MAYO

 Raccoon: scalable + efficient advanced properties

Threshold MAYO and UOV

MAYO and UOV

UOV

o Small signatures: as small as 96 bytes.

MAYO

MAYO one | MAYO two | MAYO three | MAYO five

public key size 1420 B 4912 B 2986 B 5554 B
ssas | 1ses | esme | oeees

MAYO and UOV

Multivariate Quadratic (MQ) cryptography is based on the assumed
hardness of finding a solution to a system of multivariate quadratic
equations (over a finite field).

The current record mod 31 is solving a system of 22 equations in 22 variables.

X+ 5x*+3xy=4mod 7
x*+5xy+5y*=1mod 7

MAYO and UOV

Multivariate Quadratic (MQ) cryptography is based on the assumed
hardness of finding a solution to a system of multivariate quadratic
equations (over a finite field).

The current record mod 31 is solving a system of 22 equations in 22 variables.

X+ 5x% +3xy=4mod 7 Define a multivariate map &
x*+5xy+5y*=1mod 7 P(x) =t

MAYO and UOV

How to design a signature scheme from MQ?

Add some structure to <: define a secret subspace O such that (0) = 0.

Signing process:

) Deriveatargett = H(msg). Goal: find X such that £(x) = t.

Q Sample a random vector v.

© search for 0 € O such that Pv+o0)=t

MAYO and UOV

How to design a signature scheme from MQ?

Add some structure to <: define a secret subspace O such that (0) = 0.

Signing process:

) Deriveatargett = H(msg). Goal: find X such that £(x) = t.

Q Sample a random vector v.

© search for 0 € O such that Pv+o0)=t
= P(v) + F(0) + Ay(0)

=0 liInear

Threshold MAYO and UOV

High-level signing process

Compute target t = H(msg)
Solve A - X =y, for

- A a randomized function of
the secret

- y a function of t

Threshold MAYO and UOV

High-level signing process

Compute target t = H(msg)

* Compute t = H(msg) Solve A - X =y, for

« Sample uniform matrix V

. Derive system A = ComputeA(sk, V) - A a randomized function of
* Derive y = ComputeY(t, V) the secret

- Retunx=A"!.y

- y a function of t

Threshold MAYO and UOV

High-level signing process « ComputeA and ComputeY are composed of
secret addition and multiplications

e Compute t = H(msg)

« Sample uniform matrix V

» Derive system A = ComputeA(sk, V)
« Derivey = ComputeY(t, V)

- Retunx=A"1.y

Threshold MAYO and UOV

High-level signing process « ComputeA and ComputeY are composed of
secret addition and multiplications

. Compute t = H(msg) Addition: share all secret values

« Sample uniform matrix V QA = al 4+ ..+ aT
» Derive system A = ComputeA(sk, V)

« Derivey = ComputeY(t, V)
- Retunx=A"1.y

Threshold MAYO and UOV

High-level signing process « ComputeA and ComputeY are composed of
secret addition and multiplications

. Compute t = H(msg) Addition: share all secret values

« Sample uniform matrix V QA = al 4+ ...+ aT

» Derive system A = ComputeA(sk, V)

 Derivey = ComputeY(t, V) a+ b = (al + bl) 4+ ..+ (aT 4 bT)
- Retunx=A"!.y

Threshold MAYO and UOV

High-level signing process » ComputeA and ComputeY are composed of
secret addition and multiplications

. Compute t = H(msg) Addition: share all secret values

« Sample uniform matrix V QA = al + ...+ aT

» Derive system A = ComputeA(sk, V)

 Derivey = ComputeY(t, V) a+ b = (al + bl) 4+ ..+ (aT 4 bT)
- Retunx=A"!.y

Multiplication
Possible with pre-shared triples (a, b, ab)

Threshold MAYO and UOV

High-level signing process « ComputeA and ComputeY are composed of
secret addition and multiplications

» Compute t = H(msg) * |nversion algorithm can be implemented

« Sample uniform matrix V iantiv b |' od oA
* Derive system A = ComputeA(sk, V) emciently Dy revealing a maskead matrix

. Derive y = ComputeY(t, V) (multiplied on both sides by random matrices)

+ Retunx=A"!".y

Threshold MAYO and UOV

High-level signing process « ComputeA and ComputeY are composed of
secret addition and multiplications

» Compute t = H(msg) * |nversion algorithm can be implemented

« Sample uniform matrix V iantiv b |' od oA
* Derive system A = ComputeA(sk, V) emciently Dy revealing a maskead matrix

. Derive y = ComputeY(t, V) (multiplied on both sides by random matrices)

+ Retunx=A"!".y

1. Compute andreveal R- A - T and
2. Compute (R-A - T)~!
3. Computex=T - (R-A-T)"'-R.y

Lattice-based Threshold Signatures

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
vk = A - sk + e, for sk, e short for A wide enough (more inputs than outputs)

23

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r W
Q w=A-r

24

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r W
Q w=A-r

C Sample challenge ¢ with high entropy Q

25

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r W
Q w=A-r

C Sample challenge ¢ with high entropy Q

Compute response // . A .
Q Z=c-sk+r Verify w — (A - Z — ¢ - vk) is short

26

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r W
Q w=A-r

C Sample challenge ¢ with high entropy Q

Compute response // . A .
Q Z=c-sk+r Verify w — (A - Z — ¢ - vk) is short

27

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger
Sample short r W
Q w=[A-r]
C Sample challenge ¢ with high entropy Q

Compute response // . A .
Q Z=c-sk+r Verify w — (A - Z — ¢ - vk) is short

28

ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger
Sample short r
Q w=|A r]
Q c = H(w, msg)

Compute response // . A .
Q Z=c-sk+r Verify w — (A - Z — ¢ - vk) is short

29

Rejection sampling

Sample r in a centered hypercube.

Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of Z depends on the secret.

30

J\c-sk

Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of Z depends on the secret.

We reject any 7 outside of .
The resulting distribution is independent of the secret.

7= c - Sk-

30

ML-DSA signatures

ML-DSA . Keygen() — sk, vk

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

ML-DSA . Sign(sk, msg) — sig ML-DSA . Verify(vk, msg, sig = (z,w))

Sample short r c = H(w, msg)
w=|A-r] w— (A -Z— c - vk) is short
¢ = H(w, msg) Assert Z is small

Z=c-sk+r

If Z notin §, restart
fA-zZ—c-enotiny’ restart
Output sig = (z, w)

31

ML-DSA signatures

ML-DSA . Keygen() — sk, vk

« vk =A"-sk+ e, for sk, e short

ML-DSA . Sign(sk, msg) — sig

Sample short r

w=|A-r
c = H(w, msg)

Z=c-sk+r

If Z notin S, restart
fA-Z—c-enotin§’ restart

Output sig = (z, W)

MLWE assumption: vk appears uniformly distributed
for A wide enough (more inputs than outputs)

ML-DSA . Verify(vk, msg, sig = (z,w))

c = H(w, msg)

w— (A -Z— c - vk) is short
Assert Z is small

Short vector sampling and rejection
sampling are hard to thresholdize

31

Threshold ML-DSA with generic MPC

First solution: Implement the signing
algorithm with Generic MPC

« vk =A"-sk+ e, for sk, e short

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*¥, Leo de Castro*™, Daniel Escudero*¥, Antigoni Polychroniadou*i, Akira Takahashi*¥
JPMorgan Chase & Co.
*JPMC AlgoCRYPT CoE, fgpMcC cTC Cryptography, YJPMC AI Research
{firstname}.{lastname}@jpmchase.com

« Sample shortr

. w=|A r|

« = H(w,msg)

e Z=c-Sk+r

e IfzZnotin S, restart

e« IfA-zZ—c-enotiny’ restart
e Output sig = (z, w)

32

vk = A - sk + e, for sk, e short

Sample short r
w= |A- -r+e]
c = H(w, msg)

Z=c-sk+r

If Z notin S, restart
fA-Z—c-enotiny’ restart
Output sig = (z, W)

X Xk 3k %k
X Xk 3k %k

X Xk 3k %k
X Xk 3k %k
X Xk 3k %k

33

Threshold ML-DSA with generic MPC

First solution: Implement the signing
algorithm with Generic MPC

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*¥, Leo de Castro*™, Daniel Escudero*¥, Antigoni Polychroniadou*i, Akira Takahashi*¥
JPMorgan Chase & Co.
*JPMC AlgoCRYPT CoE, fgpMcC cTC Cryptography, YJPMC AI Research
{firstname}.{lastname}@jpmchase.com

Small modification in ML-DSA to safely reveal
W and compute c Iin clear, relies on [dPN25]

vk = A - sk + e, for sk, e short

Sample short r
w= |A- -r+e]
c = H(w, msg)

Z=c-sk+r

If Z notin S, restart
fA-zZ—c-enotin.y’ restart
Output sig = (z, W)

X Xk 3k %k
X Xk 3k %k

X Xk 3k %k
X Xk 3k %k
X Xk 3k %k

Threshold ML-DSA with generic MPC

First solution: Implement the signing
algorithm with Generic MPC

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*¥, Leo de Castro*™, Daniel Escudero*¥, Antigoni Polychroniadou*i, Akira Takahashi*¥
JPMorgan Chase & Co.
*JPMC AlgoCRYPT CoE, fgpMcC cTC Cryptography, YJPMC AI Research
{firstname}.{lastname}@jpmchase.com

* Small modification in ML-DSA to safely reveal
W and compute c Iin clear, relies on [dPN25]

 Batch comparisons for rejection sampling

33

vk = A - sk + e, for sk, e short

Sample short r

w= |A- -r+e]

c = H(w, msg)

Z=c-sk+r

If Z not in S, restart
fA-zZ—c-enotin.y’ restart
Output sig = (z, W)

X Xk 3k %k
X Xk 3k %k

X Xk 3k %k
X Xk 3k %k
X Xk 3k %k

Threshold ML-DSA with generic MPC

First solution: Implement the signing
algorithm with Generic MPC

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*¥, Leo de Castro*™, Daniel Escudero*¥, Antigoni Polychroniadou*i, Akira Takahashi*¥
JPMorgan Chase & Co.
*JPMC AlgoCRYPT CoE, fgpMcC cTC Cryptography, YJPMC AI Research
{firstname}.{lastname}@jpmchase.com

Concretely,

* Online:
O 92 rounds w/ 1.2 MB comm
O 24 rounds w/ 2.3 MB comm

 Honest-majority for better efficiency (can
only tolerate 7/2 corruptions for 7" signers)

e Offline:; ?

34

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

. Second solution: More tailored / using lattice properties
For 1 <i <N, vk; = A - sk; + e;, where sk, e; short Sample N secrets, and aggregate the knowledge proofs.

vk = Zi Vki

c = H(|w], msg)
|lW| — (A -z — ¢ - vk) is short
Assert Z is small

35

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

| Second solution: More tailored / using lattice properties
For 1 <i <N, vk; = A - sk; + e;, where sk, e; short Sample N secrets, and aggregate the knowledge proofs.

vk = Zi Vki

ML-DSA" . Sign(sk, msg) — sig

Forl <i<N

o Sample shortr,, €; . ¢=H(|w], msg)

o W,=A -r; +e « |wW]—=(A-Z—c-vk)isshort
W = Ziwi « AssertZis small

Sample a w; for each secret, and do not rely on

rounding for security:
reintroduce error in W, for rejection sampling on €

36

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

Second solution: More tailored / using lattice properties

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short Sample N secrets, and aggregate the know|edge proofs_

vk = Zi Vki

ML-DSA" . Sign(sk, msg) — sig

Forl <i<N
o Sample shortr,, € . c¢=H(|w]|,msg)
o W,=A r;+e e |W]—=(A:z—c-vk)isshort

W=D W, . Assert Z is small

c = H(|w], msg)

Forl <i <N\,

z,=c-ski+r,y,=c-e;+e Sample a w. for each secret, and do not rely on

If any (z;,y,) notin S, restart rounding for security:

reintroduce error in W, for rejection sampling on €

37

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

Second solution: More tailored / using lattice properties

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short Sample N secrets, and aggregate the know|edge proofs_

vk = Zi Vki

ML-DSA" . Sign(sk, msg) — sig
Forl <i<N
o Sample shortr;, elf . ¢ = H(Lw] , msg)
o W,=A-r;+ € « |wW|—-(A-z—c-vk)isshort
W=D W, . Assert Z is small
c = H(|w], msg)

Forl <i <N\,

z,=c-ski+r,y,=c-e +eé Sample a w. for each secret, and do not rely on
If any (z;,y;) notin S, restart rounding for security:

sig = (2.2, [W]) reintroduce error in W, for rejection sampling on e
If sig not in S, restart
return sig

38

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

Second solution: More tailored / using lattice properties

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short Sample N secrets, and aggregate the know|edge proofs_

vk = Zi Vki

ML-DSA" . Sign(sk, msg) — sig
Forl <i<N
o Sample shortr;, elf . ¢ = H(Lw] , msg)
o W,=A-r;+ € « |wW|—-(A-z—c-vk)isshort
W=D W, . Assert Z is small
c = H(|w], msg)

Forl <i <N\,

Z,=c-skj+r,y,=c-e +e
If any (z;,y,) notin S, restart We use more compact distributions
sig = (2.2, |[W]) than ML-DSA to still pass verification
If sig not in S, restart -~ supports up to 6 parties
return sig

39

Threshold ML-DSA for N parties (7' = N)

ML-DSA™ . Keygen() — 48 o . .
Rejection sampllng with hyperballs \V lattice properties
For1 <i <N, vk > knowledge proofs.

vk = Zi Vki

ML-DSA" . Sign(sk, msg

For] <i <N
o Sample short
O Wi=A°l’i+

. W=Q.W,

. c¢=H(|w],ms
e Forl <i<N|,
Zl=C°Sk,+I’l, i—b'bi] bi

e Ifany(z;,y;) notin S, restart

. sig=(T,z (W)
« Ifsig notin §’, restart
return sig

%

We use more compact distributions
than ML-DSA to still pass verification
- supports up to 6 parties

39

Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk
« Forl <i<N,vk;=A-sk;+ e, where sk, e, short Th-ML-DSA . Sign(sk, msg) — sig

. Vk= Z,-Vki Round 1:
Sample short r;, €’
ML-DSA" . Sign(sk, msg) — sig + Broadcastw; = A - 1,

e Forl <i<N
o Sample shortr,, €; W = Z,-Wi
o W,=A-r;,+e ¢ = H(|w]|, msg)
sziwi Z,=c-sk;+r,y,=c-e +e
¢ = H(|w], msg) If (z;,y;) in S, broadcast Z;, else abort
Forl1 <i <N, Comb_ine:
Z,=c-skj+r,y,=c-e +e . SIg_=(Zizi, [w])

If any (z,y,) notin S, restart » Ifsignotin §’, restart

sig = (Zizi, W) . return sig

If sig not in S, restart

return sig

40

Threshold ML-DSA for N parties (7T = N)

ML-DSA". Keygen() — sk, vk

Th-ML-DSA . Sign(sk, msg) — sig

. For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

. vk= 2 vk

Round 1:
Sample short r;, €’
Broadcast w, = A - r,

But, the scheme is only
ML-DSA" . Sign(sk, msg) — sig = secure if corrupted parties
. Forl<i<N do not bias w

o Sample shortr;, €
o W, = A - r; + elf

. W=Q.W,

+ ¢ =H(|w], msg)

e Forl <i<N\,

Z,=c-skj+r,y,=c-e +e

e Ifany(z;,y;) notin S, restart

. Sig= (Z,-Zia [w])

« Ifsignotin §’, restart

return sig

l
c = H(|w], msg)
Z,=c-sk;+r,y,=c-e +e
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
« Ifsignotin§’, restart
« returnsig

40

Threshold ML-DSA for N parties (7' = N)

ML-DSA . Keygen() = sk, vk Th-ML-DSA . Sign(sk, msg) — sig

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short Round 1:
. vk=Y vk . Sample short r;,
l /
Broadcast commit; = H(w,)

Round 2:
Broadcast w;

Round 3:
W = > W, + abort if inconsistent commit;
c = H(LW] , Msg)
Z.=c-skj+r;,y,=c-e;,+e
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
. Ifsig notin §’, restart
e returnsig

ML-DSA" . Sign(sk, msg) — sig

For] <i<N
o Sample shortr,, €;
o W, = A - r; + elf
W= Ziwi
c = H(|w]|, msg)
Forl <i <N,
Z,=c-skj+r,y,=c-e +e
If any (z;,y,) notin S, restart
sig = (2,25 [W])
If sig not in S, restart
return sig

41

Threshold ML-DSA for 7 £ N parties

Use Replicated Secret Sharing [dPN25]

ML-DSA" . Keygen() — sk, vk

For every possible set [of N — T + 1 parties
O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, e; to parties in /
vk = Zi Vk]

1. When at most ' — 1 parties are corrupted,
at least one of these secrets remains hidden.

42

Threshold ML-DSA for 7 £ N parties

Use Replicated Secret Sharing [dPN25]

ML-DSA" . Keygen() — sk, vk

For every possible set [of N — T + 1 parties
O vk; = A - sk; + e, where sk;, e; short

O Distribute sk;, e; to parties in /
vk = Zi Vk]

1. When at most ' — 1 parties are corrupted,
at least one of these secrets remains hidden.

2. 1 parties can collaboratively reconstruct the
full secret.

Partition L;-qgm;, = {Is.t. |I|=N-T+ 1}

sk=) Y sk, e=) De

€SS Iem,; €SS Iem,
42

Threshold ML-DSA for 7 £ N parties

Th-ML-DSA . Sign(sk, msg) — sig

Use Replicated Secret Sharing [dPN25]

Round 1:
! Sample short r;, €
ML-DSA .Keygen() — sk, vk ,
W, =A-r;+ €
« For every possible set I of N — T + 1 parties Broadcast commit; = H(W))
O vk; = A - sk; + e, where sk;, e; short Round 2:
O Distribute sk, €, to parties in / Broadcast w;
. Vk= Zi‘/kl Round 3:
W = > W, +abort if inconsistent commit;
1. When at most 7' — 1 parties are corrupted, ¢ = H(|w], msg)
at least one of these secrets remains hidden. Z,=¢C- Z sk;+r,y,=c- Z e; + €
lem, lem,
2. T parties can collaboratively reconstruct the If (z;, y;) in S, broadcast z;, else abort
full secret. Combine:
Partition Ll;.qgm, = {Is.t. |I|=N—-T+ 1} - sig=(2,% WD

« Ifsignotin .y’ restart

sk = Z Z Skl, € = Z Z C; e returnsig

€SS Iem,; €SS Iem,

42 Techniques from [dPN25].

Threshold ML-DSA for 7 £ N parties

Use Replicated Secret Sharing [dPN25] P SERE e
Round 1:

/
Sample shortr;, €;

ML-DSA™ . K k, vk
eygen() — sk, v . W,-=A-ri+e,f

For every possible set of N — T+ 1 pe

O vk; = A - sk; + e, where sk, €; sho

O Distribute sk;, e; to parties in / Ty plUS Some Other
vk =Y vk, optimizations to make
SEIEINSCIERCERIe[)lE-ERR 3" w; + abort if inconsistent commit,

1. When at most ' — 1 parties are possible H([w], msg)

at least one of these secrets remai C - Z skj +1,,y;=c- Z e+ ¢
lem, lem,
. If(z,,y;) in S, broadcast z, else abort

Combine:
. Sig= (Z,-Zia [w])

« Ifsignotin .y’ restart
e returnsig

ast w;

2. 1 parties can collaboratively reconstruct the
full secret.

Partition Ll;.qgm, = {Is.t. |I|=N—-T+ 1}

sk=) Y sk, e=) De

1€SS Iem,; €SS Iem,

43 Techniques from [dPN25].

Evaluation

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.

| 20
o N =2 * - N =2
& N =3 \\ @ N =3
= N =4 z 15 N =4
= 400 N —) N =
= o N = = @ N =6
g é 10 -
E = 5
3
3 g 5
<+~ o0
& 2 |
ol & - i ol & Be
l 1
2 3 4 o 6 2 3 4 D 6
Threshold (T) Threshold (T)

Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)

44

Threshold ML-DSA

Scheme # Parties # Rounds Comm (MB) | Computation Paradigm Security
Our work 6 6 0.021 to 1.05 Lightweight Game-based Standard
96 >1.2"
. . Online .y
Bienstock et al. Unlimited . — UC Honest Majority
lightweight
24 >2.3"

Average # rounds, and communication per party to obtain a valid signature

* Communication and computation exclude cost of offline correlated randomness generation.

45

Threshold ML-DSA

Scheme # Parties # Rounds Comm (MB) | Computation Paradigm Security
Our work 6 0.021 to 1.05 Lightweight Game-based Standard
96 >1.2"
. . Online .y
Bienstock et al. Unlimited . — UC Honest Majority
lightweight
24 >2.3"

Advanced properties?

DKG v

46

Threshold ML-DSA

Scheme # Parties # Rounds Comm (MB) | Computation Paradigm Security
Our work 6 6 0.021 to 1.05 Lightweight Game-based Standard
96 >1.2" |
Bienstock et al. Unlimited Iigri\r/]v“erilght* UC Honest Majority
24 >2.3"
Advanced properties? |dentifiable Aborts X

DKG v

Single online round X

Efficient for many parties X

46

Raccoon: ML-DSA without aborts

Let's remove the rejection sampling!

« vk = A - sk + e, for sk, e short

« Sample ashortr, e’
e W=A-r+¢€

e ¢ = H(w, msg)

e Z=c-sk+r
 Output sig = (W, z)

47

Raccoon: ML-DSA without aborts

Unforgeable under .
_ | vk | | sig |
« vk = A - sk + e, for sk, e short ¢ Hint-MLWE
¢ SelfTargetMSIS 2.3 kB 11.5 kB

/

« Sample a shortr,e

, Hint-MLWE assumption [KLSS23].
e wW=A-r+e

» ¢ = H(w, msg) (A, vk) is pseudorandom even if given
+z=c-sk+r Q “hints™:
. Output sig = (W, Z) (¢ 2;:=¢; - sk+1) fori € [(O]

As hard as MLWE,; if
6, 21/0 - llcll - o

48

Threshold Raccoon

« vk = A - sk + e, for sk, e short

« Sample ashortr, e’
e wW=A:r+e¢e

« ¢ = H(w, msg)

e Z=c-sk+r

» Output sig = (W, z)

« ¢ = H(w, msg)
cy=W—A-Z+c-vk
 Assert (Y, Z) short

49

Shamir sharing on secret sk € 9?5

Sample polynomial f € %g[X] s.t.
e f(0)=skanddegf<T-1
» Partial signing keys sk; := [[sk]]; = f(i)

Properties:

« with < T shares, sk is perfectly hidden

« with a set .S of > T shares, reconstruct sk via Lagrange

interpolation

sk =) L, - [skI,

€5

Threshold Raccoon

« vk = A - sk + e, for sk, e short

e Sample a shortr, €’
e W=A-r+e¢e

« ¢ = H(w, msg)

e Z=c-Sk+Tr

» Output sig = (W, z)

« ¢ = H(w, msg)
cy=W—A-Z+c-vk
 Assert (Y, Z) short

50

First (insecure) attempt

ThRaccoon . Sign(sk, msg) — sig
Round 1:
 Sample a shortr;, €
e W,=A r;,+ €
 Broadcast cmt; = H_ (W)

Round 2:
» Broadcast w;

» Broadcast z; = Lg; - ¢ - [sk]|; + r;

l

Combine: the final signature is

(W, ZieS Z;)

Threshold Raccoon

First (insecure) attempt

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:

 Sample a shortr;, €

e W,=A r;,+ €

» Broadcast cmt; = H_ (W)

Round 2:
« Broadcast w;

» Broadcast z; = Lg; - ¢ - [sk]|; + r;

Combine: the final signature is

(W, ZieS Z;)

51

Threshold Raccoon

First (insecure) attempt

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ But, r issmallvs L¢. - c - [[sk], is large . Sample a short T, €]

— Leaks [[sk]|. | o
» Broadcast cmt; = H_, (W)

Round 2:
» Broadcast w;

» Broadcastz; = Lg; - ¢ - [sk]|; + ;

Combine: the final signature is

(W, ZieS Z;)

51

Threshold Raccoon

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ BUt, I'l iS Sma” VS LS,Z - C - [[Sk]]l iS Iarge ° Samp|e a short rl., elf

— Leaks [[sk]]. | o
» Broadcast cmt; = H_, (W)

Round 2:

* Solution: add a zero-share A : » Broadcast w;

o Derived with a PRF, using pre-shared pairwise
keys

© Any set of < T values A, is uniformly random

- Broadcastz; = Lg; - ¢ - [[sk]l; + r; +A,

© Zieg Ai =0 Combine: the final signature is

(W, ZieS Z;)

52

Threshold Raccoon

max N Speed Rounds | vk | | sig | Tot?I .
communication
1024 Fast 3 4 kB 13 kB 40 kB

53

Two-round ThRaccoon [EKT24]

2Rnd-ThRaccoon . Sign(sk, msg) — sig ThRaccoon . Sign(sk, msg) — sig
Round 1: Round 1:

- Sample shortr, ;, e l] forj € [rep] e Sample a shortr;, €
« W, .=A - r; +e forje[rep] + W, =A T+ ¢

. Broadcast (Wl-, i » Broadcast cmt; = H ., (W;)

l

Round 2: Round 2:

» Derive coefficients (f;), ; = H((W, ;); ;) » Broadcast W,
Round 3:

N e ¢ = H(w, msg)
» Broadcast z; = Lg; - ¢ - [sk]];

» Broadcast z; = Lg; - ¢ - [[sk]|; + Z

J
Combine: the final signature is Combine: the final signature is

(W, ziES Zi) (W’ zieg Zi)

lJrlJ

54

https://eprint.iacr.org/2024/496.pdf

Two-round ThRaccoon [EKT24]

2Rnd-ThRaccoon . Sign(sk, msg) — sig Unforgeable under | vk | | sig |
Round 1: ¢ AOMLWE

» Sample short r; ;, €; ; for j € [rep] ¢ SelfTargetMSIS 5.5 kB 10.8 kB
.« W, =A-T; +e forje[rep]

. Broadcast (Wi,j)j ~270 KB communication (offline + online): 5x TRaccoon

Round 2:
- Derive coefficients (f; ;); ; = H((W; ;); ;) AOMLWE assumption.

(A, vk) is pseudorandom even if given many

(Wj), and adaptively choosing coefficients ,B]
+ Broadcastz; = Lg; - ¢ - [skll; +) B i+ A, to obtain:

j °
Combine: the final signature is (Cl’ i = G sk + Z IBJ ' rj) fori € [Q]

(W, z:ieS ;)

55

https://eprint.iacr.org/2024/496.pdf

Detecting signing failures origins

Identify aborts in ThRaccoon with NIZK
NIZK-ThRaccoon. Sign(sk, msg) — sig

. . . Round 1:
o We can identify aborts using NIZK. Sarmpy . e
« Sample a short r;, €;
© Hard to prove to prove correct computation of A, but e W.=A-T. + e
l l l

we can prove all other computations with the NIZK . Broadcast cmt; = H__ (W)

o At a high-level, A; = Z m; ; where m; : is the output of Round 2:

J « Broadcast w;
a PRF known by 7 and J. Round 3:

* We can simply check that all 7, j agree on m, ;, if not « W=)W,

one cheated and we can reveal the corresponding « ¢ = H(w, msg)
PRF key to check computations.

» Broadcast z; = Lg; - ¢ - [sk]];

Combine: the final signature is

(W, zieS Z;)

56

DKG + Detecting signing failures origins

Identify aborts in ThRaccoon with sDKG

sDKG-ThRaccoon . Sign(sk, msg) — sig
Round 1:

o We can also leverage a new class of secret sharings: ,
« Sample a shortr;, €.

“short secret sharing”

¢ Secret sharing with shares of small norms: partial ’ Lo

leak, but ok for lattices » Broadcast cmt; = H,,(W;)
Round 2:

* In this case, we can remove the zero-share A !
« Broadcast w;

« Broadcast z; = ¢ - (Lg; - sk;) + 1,

Combine: the final signature is

(W, ZieS Z;)

57

DKG + Detecting signing failures origins

Identify aborts in ThRaccoon with sDKG

sDKG-ThRaccoon . Sign(sk, msg) — sig
Round 1:

o We can also leverage a new class of secret sharings: ,
« Sample a shortr;, €.

“short secret sharing”

¢ Secret sharing with shares of small norms: partial ’ Lo

leak, but ok for lattices » Broadcast cmt; = H,,(W;)
Round 2:

* |In this case, we can remove the zero-share Ai! o
° roadcast Wi

O |dentifiable abort for free, but larger private key

O Scales up to 64 parties

« Broadcast z; = ¢ - (Lg; - sk;) + 1,

Combine: the final signature is

(W, ZieS Z;)

58

Conclusion

Conclusion

* Diverse proposal for Threshold Signatures: lattices, multivariate, hash-based, isogenies
* Practical schemes compatible with ML-DSA, UOV and MAYO

* Possible fallback to Threshold Raccoon for large thresholds / advanced properties

60

Questions?

Evaluation

Other ML-DSA parameter sets

Communication costs for Threshold ML-DSA-65 Communication costs for Threshold ML-DSA-87
10,000 |
|- N
@ N
n 8,000 N
@ N
= 6,000 | o N
I
£)
= 4,000
M
=
; 2.000
0 — 0l = -
l l
2 3 4 5 6 2 3 4 5) 6

Threshold (T) Threshold (T)

62

