PQC + Threshold

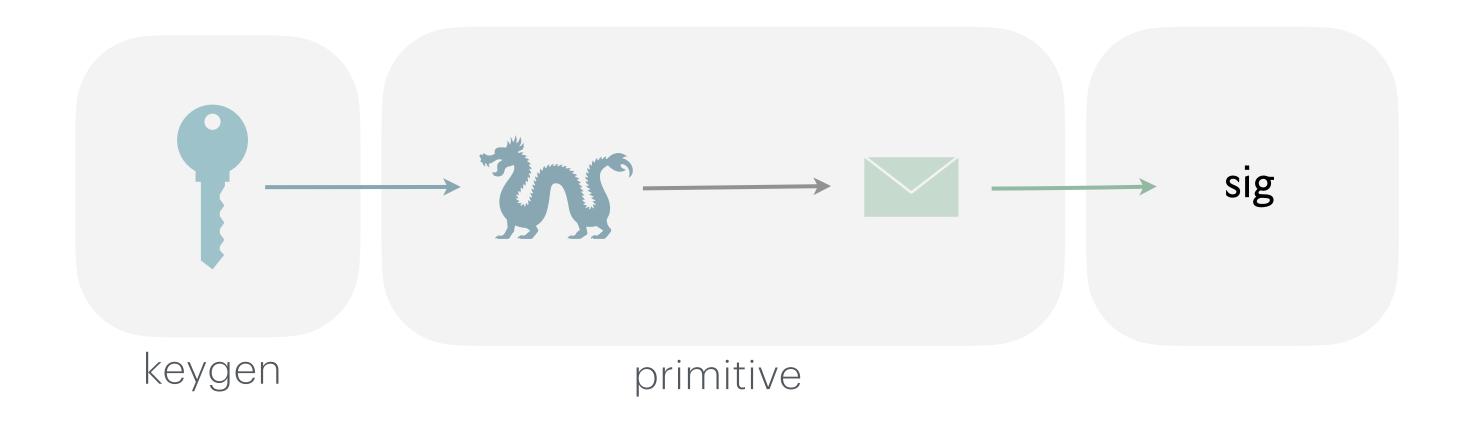
State of the Art in Threshold Quantum-Resistant Signatures

Guilhem Niot

CryptoDay @ Télécom Paris - 18/09/2025

Threshold Signatures

Centralized setting



Threshold Signatures

What if the party is corrupted or becomes unresponsive...

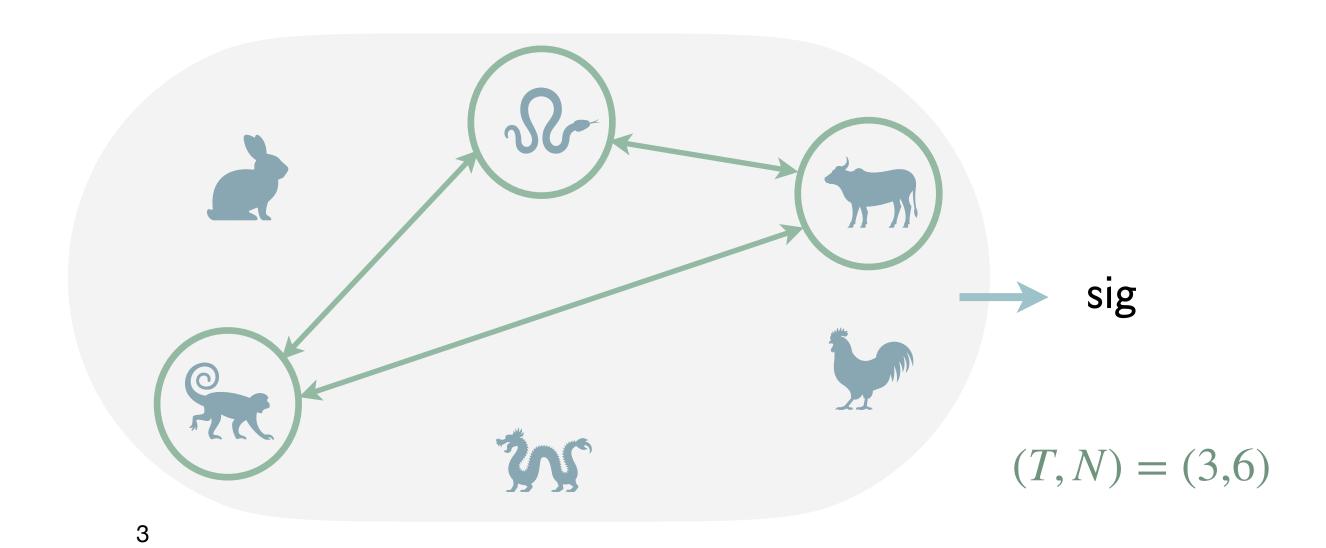
Question: can we split the trust among several parties?

Threshold Signatures

What if the party is corrupted or becomes unresponsive...

Question: can we split the trust among several parties?

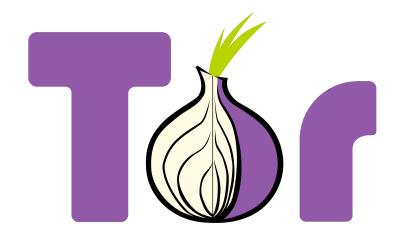
Interactive protocol to distribute the scheme: T-out-of-N parties can collaborate to sign and T-1 parties cannot.



Applications of Threshold Signatures

Cryptocurrency wallets & DeFi

Distributed signing for CDNs



Distributed consensus in Tor

NIST Call for Threshold Schemes

PUBLICATIONS

NIST IR 8214C (2nd Public Draft)

NIST First Call for Multi-Party Threshold Schemes

Date Published: March 27, 2025 **Comments Due:** April 30, 2025

Email Comments to: <u>nistir-8214C-comments@nist.gov</u>

Author(s)

Luís T. A. N. Brandão (NIST, Strativia), Rene Peralta (NIST)

Announcement

This is a second public draft. Threshold schemes should NOT be submitted until the final version of this report is published. However, the present draft can be used as a baseline to prepare for future submissions.

The scope of the call is organized into categories related to signing (Sign), public-key encryption (PKE), symmetric-key cryptography and hashing (Symm), key generation (KeyGen), fully homomorphic encryption

Goal of this talk

- Provide an overview of the most practical PQ threshold signatures
- Explain their technical and practical differences

The trade-offs of threshold schemes

Select a base scheme

Lattice-based

Hash-based

Multivariate-based

Isogeny-based

The trade-offs of threshold schemes

Select a base scheme

Lattice-based

Hash-based

Multivariate-based

Isogeny-based

trade-off

Speed

Rounds

Communication

Gap #corruptions / #signers

Distributed Key Generation (DKG)

Detecting Malicious Parties: Identifiable Aborts (IA)

Backward compatibility

efficiency

advanced properties

Post-Quantum Threshold Signatures? Lattice-based

Threshold ML-DSA

Threshold Signatures Reloaded
ML-DSA and Enhanced Raccoon with Identifiable
Aborts

Giacomo Borin¹, Sofia Celi², Rafael del Pino³, Thomas Espitau³, Guilhem Niot^{3,4}, Thomas Prest³

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*[‡], Leo de Castro*^{†⊠}, Daniel Escudero*[‡], Antigoni Polychroniadou*[‡], Akira Takahashi*[‡]

**JPMC AlgoCRYPT CoE, [†]JPMC CTC Cryptography, [‡]JPMC AI Research

{firstname}.{lastname}@jpmchase.com

- + Standard
- + DKG
- Limited scalability

Post-Quantum Threshold Signatures? Lattice-based

Threshold ML-DSA

Threshold Signatures Reloaded
ML-DSA and Enhanced Raccoon with Identifiable
Aborts

Giacomo Borin¹, Sofia Celi², Rafael del Pino³, Thomas Espitau³, Guilhem Niot^{3,4}, Thomas Prest³

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*[‡], Leo de Castro*^{†⊠}, Daniel Escudero*[‡], Antigoni Polychroniadou*[‡], Akira Takahashi*[‡]

**JPMC AlgoCRYPT CoE, [†]JPMC CTC Cryptography, [‡]JPMC AI Research

{firstname}.{lastname}@jpmchase.com

- + Standard
- + DKG
- Limited scalability

FN-DSA based?

Post-Quantum Threshold Signatures? Lattice-based

Threshold ML-DSA

Threshold Signatures Reloaded
ML-DSA and Enhanced Raccoon with Identifiable
Aborts

Giacomo Borin¹, Sofia Celi², Rafael del Pino³, Thomas Espitau³, Guilhem Niot^{3,4}, Thomas Prest³

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*[‡], Leo de Castro*^{†⊠}, Daniel Escudero*[‡], Antigoni Polychroniadou*[‡], Akira Takahashi*[‡]

**JPMC AlgoCRYPT CoE, [†]JPMC CTC Cryptography, [‡]JPMC AI Research

{firstname}.{lastname}@jpmchase.com

- + Standard
- + DKG
- Limited scalability

FN-DSA based?

Raccoon based

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

Simple and Efficient Lattice Threshold Signatures with Identifiable Aborts

Rafael del Pino¹, Thomas Espitau¹, Guilhem Niot^{1,2}, and Thomas Prest¹

Two-Round Threshold Signature from Algebraic One-More Learning with Errors

Thomas Espitau¹, Shuichi Katsumata^{1,2}, Kaoru Takemure* ^{1,2}

- + Efficient and scalable
- + DKG + Abort identification
- Non standard (~10KB sig)

Post-Quantum Threshold Signatures? Hash-based

Threshold SPHINCS+?

Post-Quantum Threshold Signatures? Hash-based

Threshold SPHINCS+?

Aggregating and thresholdizing hash-based signatures using STARKs

Irakliy Khaburzaniya Polygon/Meta irakliy81@gmail.com

> Kevin Lewi Meta klewi@fb.com

Kostantinos Chalkias Meta chalkiaskostas@gmail.com

Harjasleen Malvai UIUC / IC3 hmalvai2@illinois.edu

- Non-standard
- Large >100KB signatures

Post-Quantum Threshold Signatures? Hash-based

Threshold SPHINCS+?

Aggregating and thresholdizing hash-based signatures using STARKs

Irakliy Khaburzaniya Polygon/Meta irakliy81@gmail.com

> Kevin Lewi Meta klewi@fb.com

Kostantinos Chalkias Meta chalkiaskostas@gmail.com

Harjasleen Malvai UIUC / IC3 hmalvai2@illinois.edu

- Non-standard
- Large >100KB signatures

Turning Hash-Based Signatures into Distributed Signatures and Threshold Signatures

Delegate Your Signing Capability, and Distribute it Among Trustees

John Kelsey^{1,2} , Nathalie Lang³ and Stefan Lucks³

- Non-standard
- Stateful
- Small number of parties

Post-Quantum Threshold Signatures? Multivariate

UOV and MAYO

Share the MAYO: thresholdizing MAYO

Sofia Celi¹, Daniel Escudero², and Guilhem Niot³

+ NIST candidates (UOV and MAYO)

Post-Quantum Threshold Signatures? Isogeny based

CSI-FiSh based

Threshold Schemes from Isogeny Assumptions

Luca De Feo
1 [0000-0002-9321-0773] and Michael Meyer
2,3*

- + Efficient
- Non-standard
- Less trusted assumption

Post-Quantum Threshold Signatures?

Focus:

- NIST standard or candidate: Threshold ML-DSA, UOV, MAYO
- Raccoon: scalable + efficient advanced properties

UOV

o Small signatures: as small as 96 bytes.

MAYO

Parameter set	MAY0_one	MAY0_two	MAY0_three	MAYO_five
security level	1	1	3	5
secret key size	24 B	24 B	32 B	40 B
public key size	1420 B	4912 B	2986 B	5554 B
signature size	454 B	186 B	681 B	964 B

Multivariate Quadratic (MQ) cryptography is based on the assumed hardness of finding a solution to a system of multivariate quadratic equations (over a finite field).

The current record mod 31 is solving a system of 22 equations in 22 variables.

$$x + 5x^2 + 3xy = 4 \mod 7$$
$$x^2 + 5xy + 5y^2 = 1 \mod 7$$

Multivariate Quadratic (MQ) cryptography is based on the assumed hardness of finding a solution to a system of multivariate quadratic equations (over a finite field).

The current record mod 31 is solving a system of 22 equations in 22 variables.

$$x + 5x^2 + 3xy = 4 \mod 7$$

$$x^2 + 5xy + 5y^2 = 1 \mod 7$$
Define a multivariate map $\mathscr{P}(\mathbf{x}) = \mathbf{t}$

How to design a signature scheme from MQ?

Add some structure to \mathscr{P} : define a secret subspace O such that $\mathscr{P}(O) = 0$.

Signing process:

- Derive a target $\mathbf{t} = H(\text{msg})$. Goal: find \mathbf{x} such that $\mathcal{P}(\mathbf{x}) = \mathbf{t}$.
- Sample a random vector v.
- Search for $\mathbf{o} \in O$ such that $\mathcal{P}(\mathbf{v} + \mathbf{o}) = \mathbf{t}$

How to design a signature scheme from MQ?

Add some structure to \mathscr{P} : define a secret subspace O such that $\mathscr{P}(O) = 0$.

Signing process:

- Derive a target $\mathbf{t} = H(\text{msg})$. Goal: find \mathbf{x} such that $\mathcal{P}(\mathbf{x}) = \mathbf{t}$.
- Sample a random vector v.
- Search for $\mathbf{o} \in O$ such that $\mathcal{P}(\mathbf{v} + \mathbf{o}) = \mathbf{t}$

$$= \mathcal{P}(\mathbf{v}) + \mathcal{P}(\mathbf{o}) + \Delta_{\mathbf{v}}(\mathbf{o})$$

$$= 0 \qquad \text{linear}$$

High-level signing process

Compute target $\mathbf{t} = H(\text{msg})$

Solve $\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$, for

- A a randomized function of the secret
- y a function of t

High-level signing process

UOV . Sign(sk, msg) \rightarrow sig

- Compute $\mathbf{t} = H(\text{msg})$
- Sample uniform matrix V
- Derive system A = ComputeA(sk, V)
- Derive y = ComputeY(t, V)
- Return $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{y}$

Compute target $\mathbf{t} = H(\text{msg})$

Solve $\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$, for

- A a randomized function of the secret
- y a function of t

High-level signing process

UOV . Sign(sk, msg) \rightarrow sig

- Compute $\mathbf{t} = H(\text{msg})$
- Sample uniform matrix V
- Derive system A = ComputeA(sk, V)
- Derive y = ComputeY(t, V)
- Return $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{y}$

 ComputeA and ComputeY are composed of secret addition and multiplications

High-level signing process

UOV . Sign(sk, msg) \rightarrow sig

- Compute $\mathbf{t} = H(\text{msg})$
- Sample uniform matrix V
- Derive system A = ComputeA(sk, V)
- Derive y = ComputeY(t, V)
- Return $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{y}$

 ComputeA and ComputeY are composed of secret addition and multiplications

Addition: share all secret values

$$\mathbf{a} = \mathbf{a}_1 + \ldots + \mathbf{a}_T$$

High-level signing process

UOV . Sign(sk, msg) → sig

- Compute $\mathbf{t} = H(\text{msg})$
- Sample uniform matrix V
- Derive system A = ComputeA(sk, V)
- Derive y = ComputeY(t, V)
- Return $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{y}$

 ComputeA and ComputeY are composed of secret addition and multiplications

Addition: share all secret values

$$\mathbf{a} = \mathbf{a}_1 + \ldots + \mathbf{a}_T$$

$$a + b = (a_1 + b_1) + ... + (a_T + b_T)$$

High-level signing process

UOV . Sign(sk, msg) \rightarrow sig

- Compute $\mathbf{t} = H(\text{msg})$
- Sample uniform matrix V
- Derive system A = ComputeA(sk, V)
- Derive y = ComputeY(t, V)
- Return $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{y}$

 ComputeA and ComputeY are composed of secret addition and multiplications

Addition: share all secret values

$$\mathbf{a} = \mathbf{a}_1 + \ldots + \mathbf{a}_T$$

$$a + b = (a_1 + b_1) + ... + (a_T + b_T)$$

Multiplication

Possible with pre-shared triples (a, b, ab)

High-level signing process

UOV . Sign(sk, msg) → sig

- Compute $\mathbf{t} = H(\text{msg})$
- Sample uniform matrix V
- Derive system A = ComputeA(sk, V)
- Derive y = ComputeY(t, V)
- Return $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{y}$

 ComputeA and ComputeY are composed of secret addition and multiplications

 Inversion algorithm can be implemented efficiently by revealing a masked matrix A (multiplied on both sides by random matrices)

High-level signing process

$UOV.Sign(sk, msg) \rightarrow sig$

- Compute $\mathbf{t} = H(\text{msg})$
- Sample uniform matrix V
- Derive system A = ComputeA(sk, V)
- Derive y = ComputeY(t, V)
- Return $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{y}$

- ComputeA and ComputeY are composed of secret addition and multiplications
- Inversion algorithm can be implemented efficiently by revealing a masked matrix A (multiplied on both sides by random matrices)
- 1. Compute and reveal $\mathbf{R} \cdot \mathbf{A} \cdot \mathbf{T}$ and
- 2. Compute $(\mathbf{R} \cdot \mathbf{A} \cdot \mathbf{T})^{-1}$
- 3. Compute $\mathbf{x} = \mathbf{T} \cdot (\mathbf{R} \cdot \mathbf{A} \cdot \mathbf{T})^{-1} \cdot \mathbf{R} \cdot \mathbf{y}$

Lattice-based Threshold Signatures

ML-DSA signatures

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

MLWE assumption: vk appears uniformly distributed for **A** wide enough (more inputs than outputs)

ML-DSA signatures

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

MLWE assumption: vk appears uniformly distributed for **A** wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

1

Sample short \mathbf{r} $\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$ W

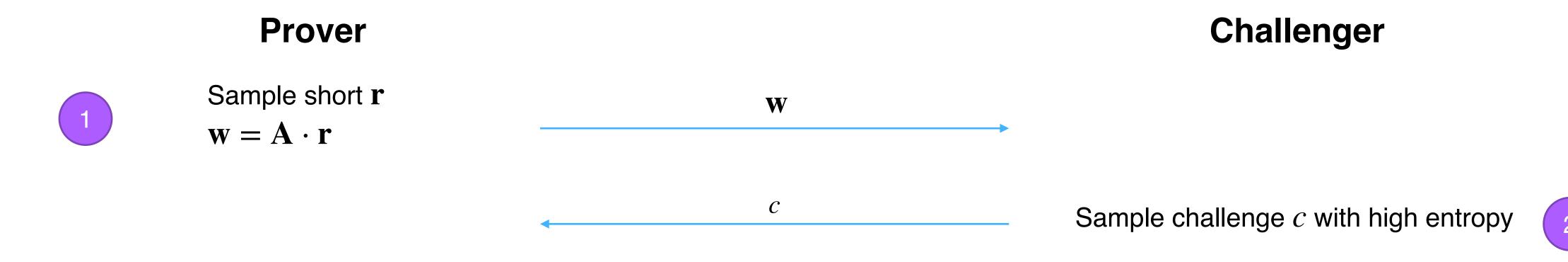
ML-DSA signatures

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

MLWE assumption: vk appears uniformly distributed for **A** wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

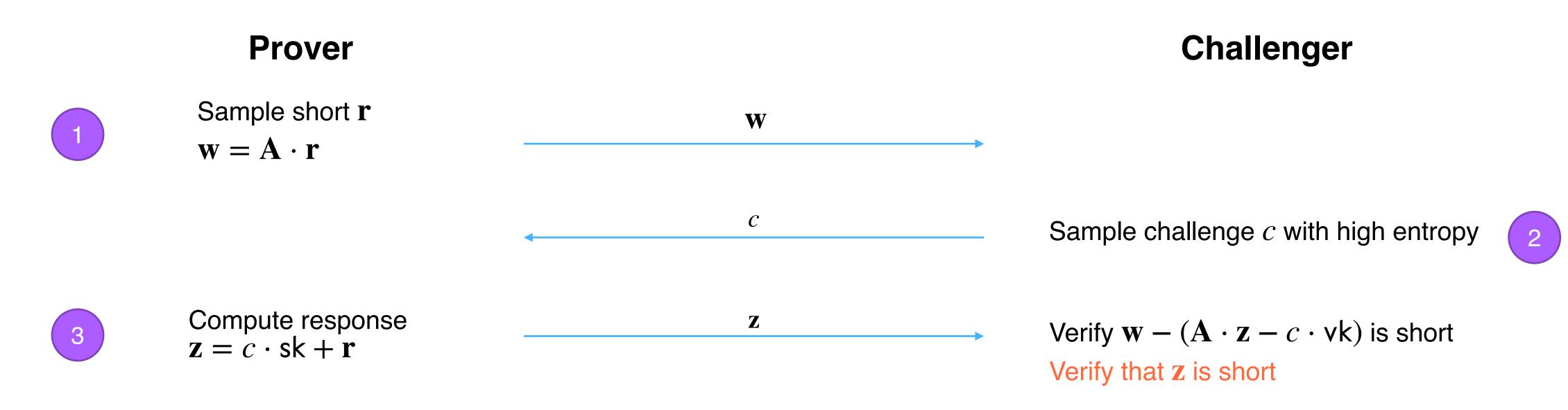


ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

MLWE assumption: vk appears uniformly distributed for **A** wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)



ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

MLWE assumption: vk appears uniformly distributed for **A** wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short \mathbf{r} $\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$ \mathbf{v} Sample challenge c with high entropy

Compute response $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$ If $\mathbf{z} \notin S$, restart

Verify $\mathbf{w} - (\mathbf{A} \cdot \mathbf{z} - c \cdot \mathbf{vk})$ is short Verify that \mathbf{z} is short

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

MLWE assumption: vk appears uniformly distributed for **A** wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover

Sample short \mathbf{r} $\mathbf{w} = [\mathbf{A} \cdot \mathbf{r}]$ \mathbf{v} Sample challenge c with high entropy

Compute response $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$ If $\mathbf{z} \notin S$, restart

If $\mathbf{A} \cdot \mathbf{r} - c \cdot \mathbf{e} \notin S'$, restart

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

MLWE assumption: vk appears uniformly distributed for **A** wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover

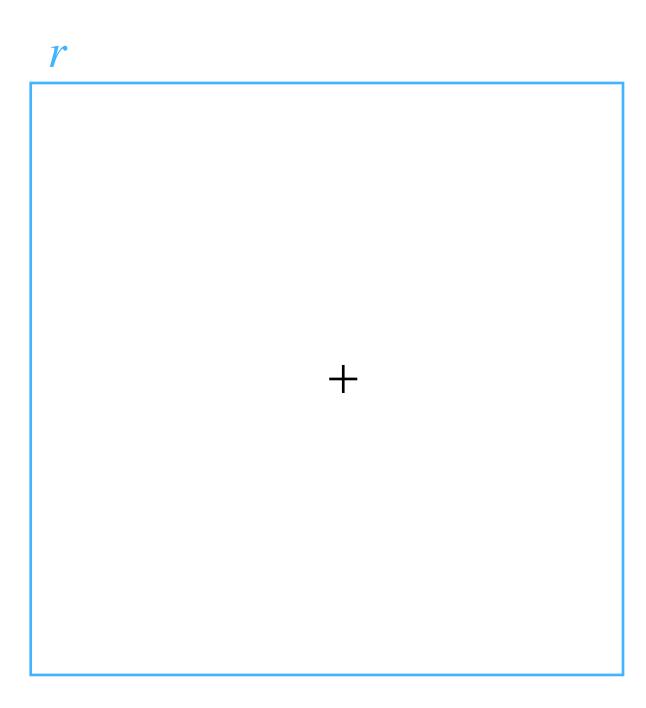
- Sample short \mathbf{r} $\mathbf{w} = [\mathbf{A} \cdot \mathbf{r}]$
- $c = H(\mathbf{w}, \mathsf{msg})$

If $\mathbf{A} \cdot \mathbf{r} - c \cdot \mathbf{e} \not\in S'$, restart

Compute response $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$ $\mathbf{z} \neq S$, restart $\mathbf{z} \neq S$, restart $\mathbf{z} \neq S$. Verify $\mathbf{w} - (\mathbf{A} \cdot \mathbf{z} - c \cdot \mathbf{vk})$ is short $\mathbf{z} \neq S$.

Rejection sampling

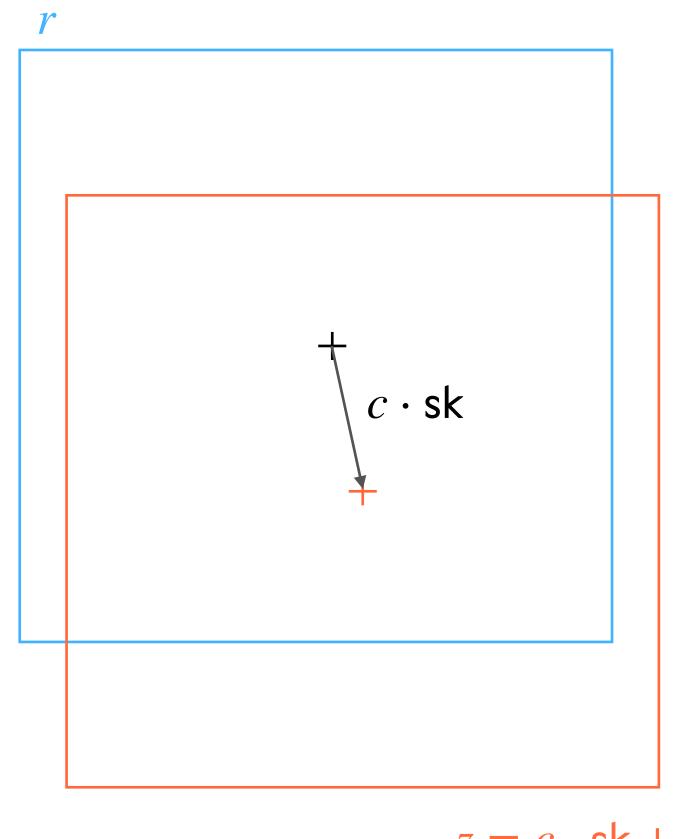
Sample *r* in a centered hypercube.



Rejection sampling

Sample *r* in a centered hypercube.

Then, the distribution of z depends on the secret.



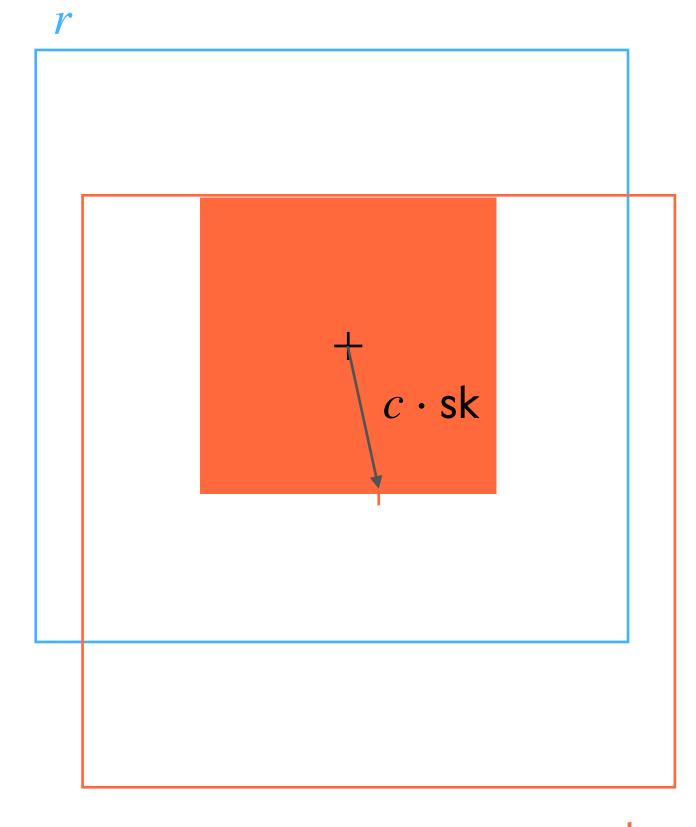
$$z = c \cdot sk + r$$

Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of z depends on the secret.

We reject any z outside of $\overline{}$. The resulting distribution is independent of the secret.



$$z = c \cdot sk + r$$

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

ML-DSA . Sign(sk, msg) \rightarrow sig

- Sample short **r**
- $\mathbf{w} = |\mathbf{A} \cdot \mathbf{r}|$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- If \mathbf{z} not in S, restart
- If $\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{e}$ not in S', restart
- Output sig = (z, w)

MLWE assumption: vk appears uniformly distributed for **A** wide enough (more inputs than outputs)

ML-DSA . Verify(vk, msg, sig = (z, w))

- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{w} (\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{v} \mathbf{k})$ is short
- Assert z is small

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

ML-DSA . Sign(sk, msg) \rightarrow sig

- Sample short **r**
- $\mathbf{w} = [\mathbf{A} \cdot \mathbf{r}]$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- If z not in S, restart
- If $\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{e}$ not in S', restart
- Output sig = (z, w)

MLWE assumption: vk appears uniformly distributed for **A** wide enough (more inputs than outputs)

ML-DSA. Verify(vk, msg, sig = (z, w))

- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{w} (\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{v} \mathbf{k})$ is short
- Assert z is small

Short vector sampling and rejection sampling are hard to thresholdize

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

ML-DSA . Sign(sk, msg) \rightarrow sig

- Sample short **r**
- $\mathbf{w} = [\mathbf{A} \cdot \mathbf{r}]$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- If \mathbf{z} not in S, restart
- If $\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{e}$ not in S', restart
- Output sig = (z, w)

First solution: Implement the signing algorithm with Generic MPC

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*[‡], Leo de Castro*^{†⊠}, Daniel Escudero*[‡], Antigoni Polychroniadou*[‡], Akira Takahashi*[‡]

**IPMC AlgoCRYPT CoE, [†]IPMC CTC Cryptography, [‡]IPMC AI Research

**\{firstname}.\{\text{lastname}\}\@jpmchase.com}

* * * *

* * * *

* * * *

* * * *

* * * *

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

ML-DSA . $Sign(sk, msg) \rightarrow sig$

- Sample short r
- $\mathbf{w} = |\mathbf{A} \cdot \mathbf{r} + \mathbf{e}|$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- If z not in S, restart
- If $\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{e}$ not in S', restart
- Output sig = (z, w)

First solution: Implement the signing algorithm with Generic MPC

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*[‡], Leo de Castro*^{†⊠}, Daniel Escudero*[‡], Antigoni Polychroniadou*[‡], Akira Takahashi*[‡]

**IPMC AlgoCRYPT CoE, [†]IPMC CTC Cryptography, [‡]IPMC AI Research

**\{\firstname\}.\{\lastname\}\@jpmchase.com}

• Small modification in ML-DSA to safely reveal \mathbf{w} and compute c in clear, relies on [dPN25]

* * * *

* * * *

* * * *

* * * *

* * * *

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

ML-DSA . Sign(sk, msg) \rightarrow sig

- Sample short r
- $\mathbf{w} = |\mathbf{A} \cdot \mathbf{r} + \mathbf{e}|$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- If \mathbf{z} not in S, restart
- If $\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{e}$ not in S', restart
- Output sig = (z, w)

First solution: Implement the signing algorithm with Generic MPC

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

Alexander Bienstock*[‡], Leo de Castro*^{†⊠}, Daniel Escudero*[‡], Antigoni Polychroniadou*[‡], Akira Takahashi*[‡]

**IPMC AlgoCRYPT CoE, [†]IPMC CTC Cryptography, [‡]IPMC AI Research

**IPMC AlgoCRYPT CoE, [†]Instrume}.{*Instrume}@*jpmchase.com

- Small modification in ML-DSA to safely reveal ${\bf w}$ and compute c in clear, relies on [dPN25]
- Batch comparisons for rejection sampling

* * * *

* * * *

* * * *

* * * *

* * * *

ML-DSA . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

ML-DSA . Sign(sk, msg) \rightarrow sig

- Sample short r
- $\mathbf{w} = |\mathbf{A} \cdot \mathbf{r} + \mathbf{e}|$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- If \mathbf{z} not in S, restart
- If $\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{e}$ not in S', restart
- Output sig = (z, w)

First solution: Implement the signing algorithm with Generic MPC

Efficient, Scalable Threshold ML-DSA Signatures: An MPC Approach

```
Alexander Bienstock*<sup>‡</sup>, Leo de Castro*<sup>†⊠</sup>, Daniel Escudero*<sup>‡</sup>, Antigoni Polychroniadou*<sup>‡</sup>, Akira Takahashi*<sup>‡</sup>

**IPMC AlgoCRYPT CoE, <sup>†</sup>IPMC CTC Cryptography, <sup>‡</sup>IPMC AI Research

**IPMC AlgoCRYPT CoE, <sup>†</sup>Instrume}.{*Instrume}@*jpmchase.com
```

Concretely,

- Online:
 - o 92 rounds w/ 1.2 MB comm
 - O 24 rounds w/ 2.3 MB comm
- Honest-majority for better efficiency (can only tolerate T/2 corruptions for T signers)
- Offline: ?

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For $1 \le i \le N$, $vk_i = A \cdot sk_i + e_i$, where sk, e_i short
- $vk = \sum_{i} vk_{i}$

Second solution: More tailored / using lattice properties Sample N secrets, and aggregate the knowledge proofs.

ML-DSA . Verify(vk, msg, sig = $(z, \lfloor w \rfloor)$)

- $c = H(\lfloor \mathbf{w} \rceil, \mathsf{msg})$
- $[\mathbf{w}] (\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{vk})$ is short
- Assert z is small

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For $1 \le i \le N$, $vk_i = A \cdot sk_i + e_i$, where sk, e_i short
- $vk = \sum_{i} vk_{i}$

$ML-DSA^*$. Sign(sk, msg) \rightarrow sig

- For $1 \le i \le N$
 - \circ Sample short $\mathbf{r}_i, \mathbf{e}_i'$
 - $\circ \mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}_i'$
- $\mathbf{w} = \sum_i \mathbf{w}_i$

Second solution: More tailored / using lattice properties Sample N secrets, and aggregate the knowledge proofs.

ML-DSA . Verify(vk, msg, sig = $(z, \lfloor w \rfloor)$)

- $c = H(|\mathbf{w}|, \mathsf{msg})$
- $|\mathbf{w}| (\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{vk})$ is short
- Assert z is small

Sample a \mathbf{w}_i for each secret, and do not rely on rounding for security: reintroduce error in \mathbf{w}_i for rejection sampling on \mathbf{e}

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For $1 \le i \le N$, $vk_i = A \cdot sk_i + e_i$, where sk, e_i short
- $vk = \sum_{i} vk_{i}$

$ML-DSA^*$. Sign(sk, msg) \rightarrow sig

- For $1 \le i \le N$
 - \circ Sample short $\mathbf{r}_i, \mathbf{e}'_i$
 - $\circ \mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}_i'$
- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(|\mathbf{w}|, \mathsf{msg})$
- For $1 \le i \le N$, $\mathbf{z}_i = c \cdot \mathsf{sk}_i + \mathbf{r}_i, \mathbf{y}_i = c \cdot \mathbf{e}_i + \mathbf{e}_i'$
- If any $(\mathbf{z}_i, \mathbf{y}_i)$ not in S, restart

Second solution: More tailored / using lattice properties Sample N secrets, and aggregate the knowledge proofs.

ML-DSA . Verify(vk, msg, sig = $(z, \lfloor w \rfloor)$)

- $c = H(|\mathbf{w}|, \mathsf{msg})$
- $[\mathbf{w}] (\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{vk})$ is short
- Assert z is small

Sample a \mathbf{w}_i for each secret, and do not rely on rounding for security: reintroduce error in \mathbf{w}_i for rejection sampling on \mathbf{e}

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For $1 \le i \le N$, $vk_i = A \cdot sk_i + e_i$, where sk, e_i short
- $vk = \sum_{i} vk_{i}$

$ML-DSA^*$. Sign(sk, msg) \rightarrow sig

- For $1 \le i \le N$
 - \circ Sample short $\mathbf{r}_i, \mathbf{e}'_i$
 - $\circ \mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}_i'$
- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(|\mathbf{w}|, \mathsf{msg})$
- For $1 \le i \le N$, $\mathbf{z}_i = c \cdot \mathsf{sk}_i + \mathbf{r}_i, \mathbf{y}_i = c \cdot \mathbf{e}_i + \mathbf{e}_i'$
- If any $(\mathbf{z}_i, \mathbf{y}_i)$ not in S, restart
- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rfloor)$
- If sig not in S', restart
- return sig

Second solution: More tailored / using lattice properties Sample N secrets, and aggregate the knowledge proofs.

ML-DSA . Verify(vk, msg, sig = $(z, \lfloor w \rfloor)$)

- $c = H(|\mathbf{w}|, \mathsf{msg})$
- $[\mathbf{w}] (\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{vk})$ is short
- Assert z is small

Sample a \mathbf{w}_i for each secret, and do not rely on rounding for security:

reintroduce error in \mathbf{w}_i for rejection sampling on \mathbf{e}

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For $1 \le i \le N$, $vk_i = A \cdot sk_i + e_i$, where sk, e_i short
- $vk = \sum_{i} vk_{i}$

$ML-DSA^*$. Sign(sk, msg) \rightarrow sig

- For $1 \le i \le N$
 - \circ Sample short $\mathbf{r}_i, \mathbf{e}'_i$
 - $\circ \mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}_i'$
- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(|\mathbf{w}|, \mathsf{msg})$
- For $1 \le i \le N$, $\mathbf{z}_i = c \cdot \mathsf{sk}_i + \mathbf{r}_i, \mathbf{y}_i = c \cdot \mathbf{e}_i + \mathbf{e}_i'$
- If any $(\mathbf{z}_i, \mathbf{y}_i)$ not in S, restart
- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rceil)$
- If sig not in S', restart
- return sig

Second solution: More tailored / using lattice properties Sample N secrets, and aggregate the knowledge proofs.

ML-DSA . Verify(vk, msg, sig = $(z, \lfloor w \rfloor)$)

- $c = H(|\mathbf{w}|, \mathsf{msg})$
- $[\mathbf{w}] (\mathbf{A} \cdot \mathbf{z} c \cdot \mathbf{vk})$ is short
- Assert z is small

We use more compact distributions than ML-DSA to still pass verification

→ supports up to 6 parties

ML-DSA*. Keygen() \rightarrow

- For $1 \le i \le N$, vk
- $vk = \sum_{i} vk_{i}$

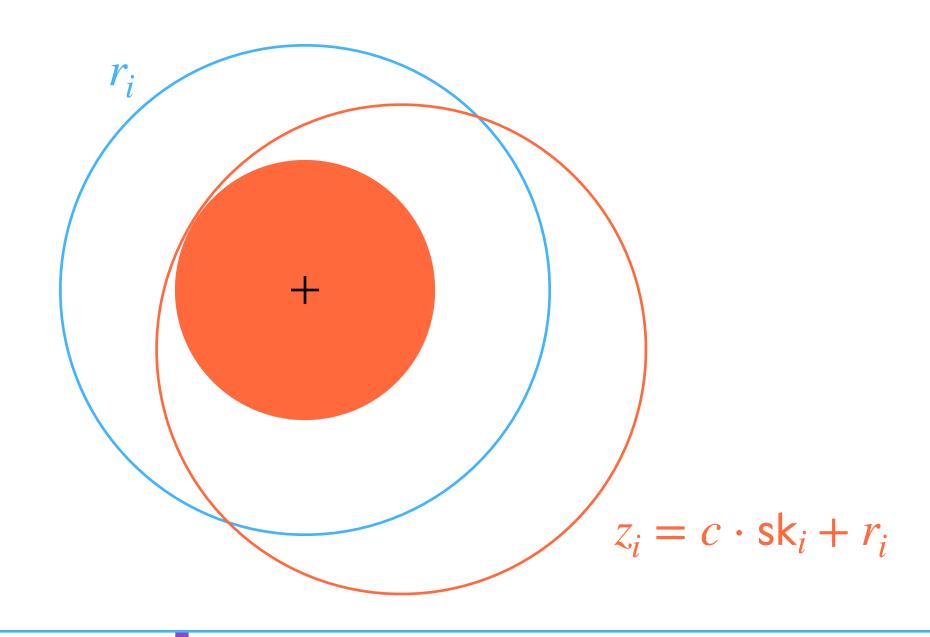
ML-DSA*. Sign(sk, msg)

- For $1 \le i \le N$
 - Sample short :

$$\circ \mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i +$$

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\lfloor \mathbf{w} \rfloor, \mathsf{ms})$
- For $1 \le i \le N$, $\mathbf{z}_i = c \cdot \mathsf{sk}_i + \mathbf{r}_i, \mathbf{y}_i c \cdot \mathbf{c}_i + \mathbf{c}_i$
- If any $(\mathbf{z}_i, \mathbf{y}_i)$ not in S, restart
- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rceil)$
- If sig not in S', restart
- return sig

Rejection sampling with hyperballs



g lattice properties knowledge proofs.

We use more compact distributions than ML-DSA to still pass verification

→ supports up to 6 parties

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For $1 \le i \le N$, $vk_i = A \cdot sk_i + e_i$, where sk, e_i short
- $vk = \sum_{i} vk_{i}$

$ML-DSA^*$. Sign(sk, msg) \rightarrow sig

- For $1 \le i \le N$
 - \circ Sample short $\mathbf{r}_i, \mathbf{e}'_i$
 - $\circ \mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}_i'$
- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(|\mathbf{w}|, \mathsf{msg})$
- For $1 \le i \le N$, $\mathbf{z}_i = c \cdot \mathsf{sk}_i + \mathbf{r}_i, \mathbf{y}_i = c \cdot \mathbf{e}_i + \mathbf{e}_i'$
- If any $(\mathbf{z}_i, \mathbf{y}_i)$ not in S, restart
- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rceil)$
- If sig not in S', restart
- return sig

Th-ML-DSA . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample short $\mathbf{r}_i, \mathbf{e}'_i$
- Broadcast $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$

Round 2:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\lfloor \mathbf{w} \rceil, \mathsf{msg})$
- $\mathbf{z}_i = c \cdot \mathsf{sk}_i + \mathbf{r}_i, \mathbf{y}_i = c \cdot \mathbf{e}_i + \mathbf{e}_i'$
- If $(\mathbf{z}_i, \mathbf{y}_i)$ in S, broadcast \mathbf{z}_i , else abort

- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rceil)$
- If sig not in S', restart
- return sig

But, the scheme is only

secure if corrupted parties

do not bias w

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For $1 \le i \le N$, $vk_i = A \cdot sk_i + e_i$, where sk, e_i short
- $vk = \sum_{i} vk_{i}$

$ML-DSA^*$. Sign(sk, msg) \rightarrow sig

• For $1 \le i \le N$

 \circ Sample short $\mathbf{r}_i, \mathbf{e}_i'$

$$\circ \mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}_i'$$

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\lfloor \mathbf{w} \rfloor, \mathsf{msg})$
- For $1 \le i \le N$,

$$\mathbf{z}_i = c \cdot \mathsf{sk}_i + \mathbf{r}_i, \mathbf{y}_i = c \cdot \mathbf{e}_i + \mathbf{e}_i'$$

- If any $(\mathbf{z}_i, \mathbf{y}_i)$ not in S, restart
- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rceil)$
- If sig not in S', restart
- return sig

Th-ML-DSA . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample short $\mathbf{r}_i, \mathbf{e}'_i$
- Broadcast $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$

Round 2:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\lfloor \mathbf{w} \rceil, \mathsf{msg})$
- $\mathbf{z}_i = c \cdot \mathsf{sk}_i + \mathbf{r}_i, \mathbf{y}_i = c \cdot \mathbf{e}_i + \mathbf{e}_i'$
- If $(\mathbf{z}_i, \mathbf{y}_i)$ in S, broadcast \mathbf{z}_i , else abort

- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rceil)$
- If sig not in S', restart
- return sig

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For $1 \le i \le N$, $vk_i = A \cdot sk_i + e_i$, where sk, e_i short
- $vk = \sum_{i} vk_{i}$

$ML-DSA^*$. Sign(sk, msg) \rightarrow sig

- For $1 \le i \le N$
 - \circ Sample short $\mathbf{r}_i, \mathbf{e}'_i$
 - $\circ \mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}_i'$
- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\lfloor \mathbf{w} \rceil, \mathsf{msg})$
- For $1 \le i \le N$, $\mathbf{z}_i = c \cdot \mathsf{sk}_i + \mathbf{r}_i, \mathbf{y}_i = c \cdot \mathbf{e}_i + \mathbf{e}_i'$
- If any $(\mathbf{z}_i, \mathbf{y}_i)$ not in S, restart
- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rceil)$
- If sig not in S', restart
- return sig

Th-ML-DSA . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample short $\mathbf{r}_i, \mathbf{e}'_i$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- Broadcast commit_i = $H(\mathbf{w}_i)$

Round 2:

• Broadcast W_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$ + abort if inconsistent commit_i
- $c = H(\lfloor \mathbf{w} \rfloor, \mathsf{msg})$
- $\mathbf{z}_i = c \cdot \mathsf{sk}_i + \mathbf{r}_i, \mathbf{y}_i = c \cdot \mathbf{e}_i + \mathbf{e}_i'$
- If $(\mathbf{z}_i, \mathbf{y}_i)$ in S, broadcast \mathbf{z}_i , else abort

- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rceil)$
- If sig not in S', restart
- return sig

Use Replicated Secret Sharing [dPN25]

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For every possible set I of N-T+1 parties
 - \circ vk_I = $\mathbf{A} \cdot \operatorname{sk}_I + \mathbf{e}_I$, where sk_I, \mathbf{e}_I short
 - O Distribute sk_I , e_I to parties in I
- $vk = \sum_{i} vk_{I}$
- 1. When at most T-1 parties are corrupted, at least one of these secrets remains hidden.

Use Replicated Secret Sharing [dPN25]

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For every possible set I of N-T+1 parties
 - \circ $vk_I = \mathbf{A} \cdot sk_I + \mathbf{e}_I$, where sk_I , \mathbf{e}_I short
 - O Distribute sk_I , e_I to parties in I
- $vk = \sum_{i} vk_{I}$
- 1. When at most T-1 parties are corrupted, at least one of these secrets remains hidden.
- 2. *T* parties can collaboratively reconstruct the full secret.

Partition
$$\bigsqcup_{i \in SS} m_i = \{I \text{ s.t. } |I| = N - T + 1\}$$
:

$$\operatorname{sk} = \sum_{i \in SS} \sum_{I \in m_i} \operatorname{sk}_{I}, \quad \mathbf{e} = \sum_{i \in SS} \sum_{I \in m_i} \mathbf{e}_{I}$$

Use Replicated Secret Sharing [dPN25]

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For every possible set I of N-T+1 parties
 - \circ $vk_I = \mathbf{A} \cdot sk_I + \mathbf{e}_I$, where sk_I , \mathbf{e}_I short
 - O Distribute sk_I , e_I to parties in I
- $vk = \sum_{i} vk_{I}$
- 1. When at most T-1 parties are corrupted, at least one of these secrets remains hidden.
- 2. T parties can collaboratively reconstruct the full secret.

Partition
$$\bigsqcup_{i \in SS} m_i = \{I \text{ s.t. } |I| = N - T + 1\}$$
:

$$\operatorname{sk} = \sum_{i \in SS} \sum_{I \in m_i} \operatorname{sk}_{I}, \quad \mathbf{e} = \sum_{i \in SS} \sum_{I \in m_i} \mathbf{e}_{I}$$

Th-ML-DSA . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample short $\mathbf{r}_i, \mathbf{e}'_i$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}_i'$
- Broadcast commit_i = $H(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$ + abort if inconsistent commit_i
- $c = H(\lfloor \mathbf{w} \rfloor, \mathsf{msg})$

$$\mathbf{z}_i = c \cdot \sum_{I \in m_i} \operatorname{sk}_I + \mathbf{r}_i, \mathbf{y}_i = c \cdot \sum_{I \in m_i} \mathbf{e}_I + \mathbf{e}_i'$$

• If $(\mathbf{z}_i, \mathbf{y}_i)$ in S, broadcast \mathbf{z}_i , else abort

- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rceil)$
- If sig not in S', restart
- return sig

Use Replicated Secret Sharing [dPN25]

$ML-DSA^*$. Keygen() \rightarrow sk, vk

- For every possible set I of N-T+1 parameters
 - $\circ vk_I = \mathbf{A} \cdot sk_I + \mathbf{e}_I$, where sk_I , \mathbf{e}_I sho
 - O Distribute sk_I , e_I to parties in I
- $vk = \sum_{i} vk_{I}$
- 1. When at most T-1 parties are at least one of these secrets remain
- 2. T parties can collaboratively reconstruct the full secret.

Partition
$$\bigsqcup_{i \in SS} m_i = \{I \text{ s.t. } |I| = N - T + 1\}$$
:
$$\mathsf{sk} = \sum_{i \in SS} \sum_{I \in m_i} \mathsf{sk}_I, \quad \mathbf{e} = \sum_{i \in SS} \sum_{I \in m_i} \mathbf{e}_I$$

Th-ML-DSA . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample short $\mathbf{r}_i, \mathbf{e}'_i$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}_i'$

cast commit_i = $H(\mathbf{w}_i)$

cast \mathbf{w}_i

 $\sum_{i} \mathbf{w}_{i}$ + abort if inconsistent commit_i $H(\lfloor \mathbf{w} \rfloor, \mathsf{msg})$

$$c \cdot \sum_{I \in m_i} \operatorname{sk}_I + \mathbf{r}_i, \mathbf{y}_i = c \cdot \sum_{I \in m_i} \mathbf{e}_I + \mathbf{e}_i'$$

• If $(\mathbf{z}_i, \mathbf{y}_i)$ in S, broadcast \mathbf{z}_i , else abort

Combine:

- $\operatorname{sig} = (\sum_{i} \mathbf{z}_{i}, \lfloor \mathbf{w} \rceil)$
- If sig not in S', restart
- return sig

Techniques from [dPN25].

... plus some other

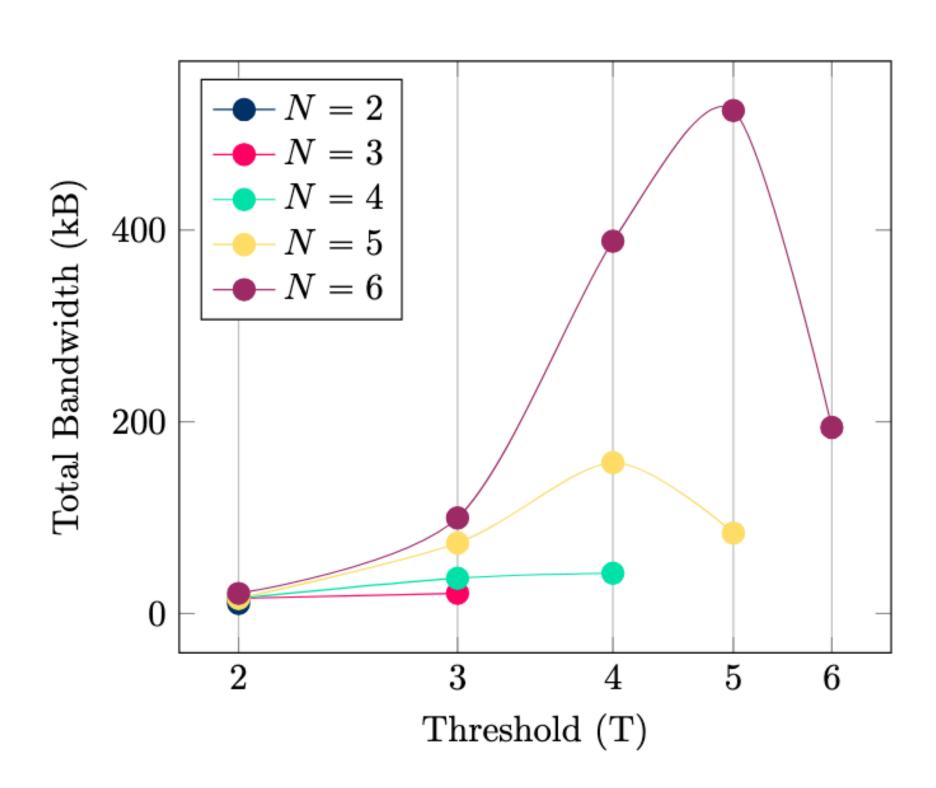
optimizations to make

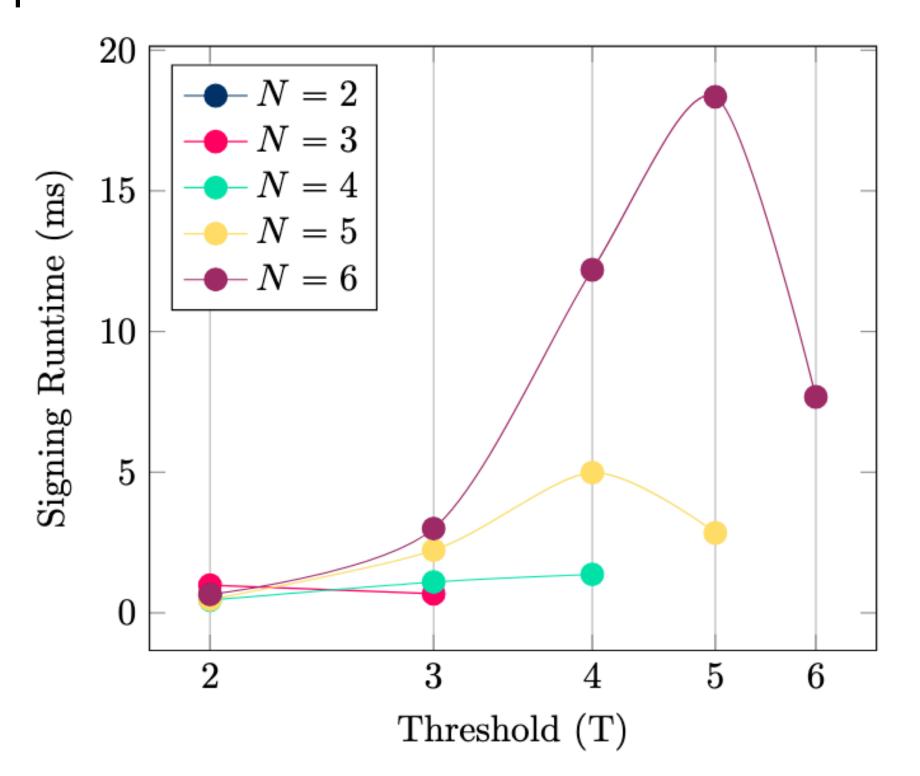
parameters as tight as

possible

Evaluation

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA). Efficient up to 6 parties.





Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)

Threshold ML-DSA

Scheme	# Parties	# Rounds	Comm (MB)	Computation	Paradigm	Security
Our work	6	6	0.021 to 1.05	Lightweight	Game-based	Standard
Bienstock et al.	Unlimited	96	>1.2*	Online	UC	Honest Majority
DIGITISTOCK GL al.	Offilitied	24	>2.3*	lightweight*		i ionest iviajonty

Average # rounds, and communication per party to obtain a valid signature

^{*} Communication and computation exclude cost of offline correlated randomness generation.

Threshold ML-DSA

Scheme	# Parties	# Rounds	Comm (MB)	Computation	Paradigm	Security
Our work	6	6	0.021 to 1.05	Lightweight	Game-based	Standard
Bienstock et al.	Unlimited	96	>1.2*	Online	UC	Honest Majority
Dielistock et al.	Offilittled	24	>2.3*	lightweight*		i ioriost iviajority

Advanced properties?

DKG √

Threshold ML-DSA

Scheme	# Parties	# Rounds	Comm (MB)	Computation	Paradigm	Security
Our work	6	6	0.021 to 1.05	Lightweight	Game-based	Standard
Bienstock et al.	Unlimited	96	>1.2*	Online	UC	Honest Majority
DICHSTOCK CT al.		24	>2.3*	lightweight*		

Advanced properties?

DKG √

Identifiable Aborts X

Single online round **X**

Efficient for many parties X

Raccoon: ML-DSA without aborts

Raccoon . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

Raccoon . Sign(sk, msg) → sig

- Sample a short \mathbf{r}, \mathbf{e}'
- $\mathbf{w} = \mathbf{A} \cdot \mathbf{r} + \mathbf{e}'$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- If z not in S, restart
- Output sig = (w, z)

Let's remove the rejection sampling!

Raccoon: ML-DSA without aborts

Raccoon . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

Raccoon . Sign(sk, msg) → sig

- Sample a short \mathbf{r}, \mathbf{e}'
- $\mathbf{w} = \mathbf{A} \cdot \mathbf{r} + \mathbf{e}'$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- If z not in S, restart
- Output sig = (w, z)

Unforgeable under

- Hint-MLWE
- SelfTargetMSIS

vk	sig
2.3 kB	11.5 kB

Hint-MLWE assumption [KLSS23].

(A, vk) is pseudorandom even if given Q "hints":

$$(c_i, \mathbf{z}_i := c_i \cdot \mathsf{sk} + \mathbf{r}_i) \text{ for } i \in [Q]$$

As hard as MLWE_σ if

$$\sigma_{\mathbf{r}} \ge \sqrt{Q} \cdot \|c\| \cdot \sigma$$

Raccoon. Keygen() → sk, vk

• $vk = A \cdot sk + e$, for sk, e short

Raccoon . Sign(sk, msg) $\rightarrow sig$

- Sample a short \mathbf{r}, \mathbf{e}'
- $\mathbf{w} = \mathbf{A} \cdot \mathbf{r} + \mathbf{e}'$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- Output sig = (w, z)

Raccoon. Verify(vk, msg, sig = (w, z))

- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{y} = \mathbf{w} \mathbf{A} \cdot \mathbf{z} + c \cdot \mathbf{v} \mathbf{k}$
- Assert (y, z) short

Shamir sharing on secret $\mathbf{sk} \in \mathcal{R}_q^\ell$

Sample polynomial $f \in \mathcal{R}_q^{\ell}[X]$ s.t.

- $f(0) = \operatorname{sk} \operatorname{and} \operatorname{deg} f \le T 1$
- Partial signing keys $sk_i := [sk]_i = f(i)$

Properties:

- with < T shares, sk is perfectly hidden
- with a set S of $\geq T$ shares, reconstruct sk via Lagrange interpolation

$$\mathsf{sk} = \sum_{i \in S} L_{S,i} \cdot [\![\mathsf{sk}]\!]_i$$

Raccoon . Keygen() → sk, vk

• $vk = A \cdot sk + e$, for sk, e short

Raccoon . Sign(sk, msg) → sig

- Sample a short \mathbf{r}, \mathbf{e}'
- $\mathbf{w} = \mathbf{A} \cdot \mathbf{r} + \mathbf{e}'$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- Output sig = (w, z)

Raccoon. Verify(vk, msg, sig = (w, z))

- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{y} = \mathbf{w} \mathbf{A} \cdot \mathbf{z} + c \cdot \mathbf{v} \mathbf{k}$
- Assert (y, z) short

First (insecure) attempt

ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{e}_i'$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[\mathbf{s}k]]_i + \mathbf{r}_i$

$$(\mathbf{w}, \sum_{i \in S} \mathbf{z}_i)$$

• Prevent ROS attack with commit-reveal of \mathbf{w}_i

First (insecure) attempt

ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{e}_i'$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [\![\mathbf{s}k]\!]_i + \mathbf{r}_i$

$$(\mathbf{w}, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- ullet But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [\![\mathbf{s}k]\!]_i$ is large
 - \rightarrow Leaks $[sk]_i$

First (insecure) attempt

ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{e}'_i$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[\mathbf{s}k]]_i + \mathbf{r}_i$

$$(\mathbf{w}, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- ullet But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [\![\mathbf{s}k]\!]_i$ is large
 - \rightarrow Leaks $[sk]_i$

- Solution: add a zero-share Δ_i :
 - Derived with a PRF, using pre-shared pairwise keys
 - $^{\circ}$ Any set of < T values Δ_i is uniformly random
 - $\circ \quad \sum_{i \in S} \Delta_i = 0$

ThRaccoon. Sign(sk, msg) → sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{e}_i'$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{w}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

$$(\mathbf{w}, \sum_{i \in S} \mathbf{z}_i)$$

max N	Speed	Rounds	vk	sig	Total communication
1024	Fast	3	4 kB	13 kB	40 kB

Two-round ThRaccoon [EKT24]

2Rnd-ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample short $\mathbf{r}_{i,j}, \mathbf{e}'_{i,j}$ for $j \in [\text{rep}]$
- $\mathbf{w}_{i,j} = \mathbf{A} \cdot \mathbf{r}_{i,j} + \mathbf{e}'_{i,j}$ for $j \in [\text{rep}]$
- Broadcast $(\mathbf{w}_{i,j})_j$

Round 2:

- Derive coefficients $(\beta_{i,j})_{i,j} = H((\mathbf{w}_{i,j})_{i,j})$
- $\mathbf{w} = \sum_{i,j} \beta_{i,j} \mathbf{w}_{i,j}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[\mathbf{s}k]]_i + \sum_i \beta_{i,j} \mathbf{r}_{i,j} + \Delta_i$

Combine: the final signature is

$$(\mathbf{w}, \sum_{i \in S} \mathbf{z}_i)$$

ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{e}'_i$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[\mathbf{s}k]]_i + \mathbf{r}_i + \Delta_i$

$$(\mathbf{w}, \sum_{i \in S} \mathbf{z}_i)$$

Two-round ThRaccoon [EKT24]

2Rnd-ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample short $\mathbf{r}_{i,j}, \mathbf{e}'_{i,j}$ for $j \in [\text{rep}]$
- $\mathbf{w}_{i,j} = \mathbf{A} \cdot \mathbf{r}_{i,j} + \mathbf{e}'_{i,j}$ for $j \in [\text{rep}]$
- Broadcast $(\mathbf{w}_{i,j})_i$

Round 2:

- Derive coefficients $(\beta_{i,j})_{i,j} = H((\mathbf{w}_{i,j})_{i,j})$
- $\mathbf{w} = \sum_{i,j} \beta_{i,j} \mathbf{w}_{i,j}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[\mathbf{s}k]]_i + \sum_i \beta_{i,j} \mathbf{r}_{i,j} + \Delta_i$

Combine: the final signature is

$$(\mathbf{w}, \sum_{i \in S} \mathbf{z}_i)$$

Unforgeable under

- AOMLWE
- SelfTargetMSIS

vk	sig
5.5 kB	10.8 kB

~270 kB communication (offline + online): 5x TRaccoon

AOMLWE assumption.

 $(\mathbf{A}, \mathsf{vk})$ is pseudorandom even if given many (\mathbf{w}_j) , and adaptively choosing coefficients β_j to obtain:

$$(c_i, \mathbf{z}_i := c_i \cdot \operatorname{sk} + \sum_j \beta_j \cdot \mathbf{r}_j) \text{ for } i \in [Q]$$

Detecting signing failures origins

Identify aborts in ThRaccoon with NIZK

- We can identify aborts using NIZK.
- $^{\rm o}$ Hard to prove to prove correct computation of Δ_i , but we can prove all other computations with the NIZK
- o At a high-level, $\Delta_i = \sum_j m_{i,j}$ where $m_{i,j}$ is the output of a PRF known by i and j.
 - We can simply check that all i, j agree on $m_{i,j}$, if not one cheated and we can reveal the corresponding PRF key to check computations.

NIZK-ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{e}'_i$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[\mathbf{s}k]]_i + \mathbf{r}_i + \Delta_i$

$$(\mathbf{w}, \sum_{i \in S} \mathbf{z}_i)$$

DKG + Detecting signing failures origins

Identify aborts in ThRaccoon with sDKG

- We can also leverage a new class of secret sharings: "short secret sharing"
 - Secret sharing with shares of small norms: partial leak, but ok for lattices
 - In this case, we can remove the zero-share Δ_i !

sDKG-ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{e}_i'$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = c \cdot \langle L_{S,i} \cdot \mathsf{sk}_i \rangle + \mathbf{r}_i$

$$(\mathbf{w}, \sum_{i \in S} \mathbf{z}_i)$$

DKG + Detecting signing failures origins

Identify aborts in ThRaccoon with sDKG

- We can also leverage a new class of secret sharings: "short secret sharing"
 - Secret sharing with shares of small norms: partial leak, but ok for lattices
 - In this case, we can remove the zero-share Δ_i !
- Identifiable abort for free, but larger private key
- Scales up to 64 parties

sDKG-ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{e}_i'$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{e}'_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = c \cdot \langle L_{S,i} \cdot \mathsf{sk}_i \rangle + \mathbf{r}_i$

$$(\mathbf{w}, \sum_{i \in S} \mathbf{z}_i)$$

Conclusion

Conclusion

- Diverse proposal for Threshold Signatures: lattices, multivariate, hash-based, isogenies
- Practical schemes compatible with ML-DSA, UOV and MAYO
- Possible fallback to Threshold Raccoon for large thresholds / advanced properties

Questions?

Evaluation

Other ML-DSA parameter sets

