
PQC + Threshold

CryptoDay @ Télécom Paris - 18/09/2025

1

State of the Art in Threshold Quantum-Resistant Signatures

Guilhem Niot

Threshold Signatures

2

keygen primitive

𝗌𝗂𝗀

Centralized setting

Threshold Signatures

3

What if the party is corrupted or becomes unresponsive…

Question: can we split the trust among several parties?

Threshold Signatures

3

What if the party is corrupted or becomes unresponsive…

Question: can we split the trust among several parties?

(T, N) = (3,6)

Interactive protocol to distribute the scheme:
 -out-of- parties can collaborate to sign and

 parties cannot.
T N

T − 1
𝗌𝗂𝗀

Applications of Threshold Signatures

4

Cryptocurrency wallets & DeFi

Distributed signing for CDNs

Distributed consensus in Tor

NIST Call for Threshold Schemes

5

Goal of this talk

Provide an overview of the most practical PQ threshold signatures

Explain their technical and practical differences

6

The trade-offs of threshold schemes

7

Lattice-based
Hash-based
Multivariate-based
Isogeny-based

Select a base scheme

The trade-offs of threshold schemes

trade-of

Detecting Malicious Parties:
Identifiable Aborts (IA)

Distributed Key Generation
(DKG)

advanced

properties

Backward compatibility

8

Speed

Rounds

Communication
efficiency

Gap #corruptions / #signers
Lattice-based
Hash-based
Multivariate-based
Isogeny-based

Select a base scheme

Post-Quantum Threshold Signatures?

9

Lattice-based
Threshold ML-DSA

+ Standard

+ DKG

- Limited scalability

Post-Quantum Threshold Signatures?

9

Lattice-based
Threshold ML-DSA

+ Standard

+ DKG

- Limited scalability
FN-DSA based?

Post-Quantum Threshold Signatures?

9

Lattice-based
Threshold ML-DSA Raccoon based

+ Efficient and scalable

+ DKG + Abort identification

- Non standard (~10KB sig)

+ Standard

+ DKG

- Limited scalability
FN-DSA based?

Post-Quantum Threshold Signatures?

10

Hash-based

Threshold SPHINCS+?

Post-Quantum Threshold Signatures?

10

Hash-based

- Non-standard

- Large >100KB signatures

Threshold SPHINCS+?

Post-Quantum Threshold Signatures?

10

Hash-based

- Non-standard

- Large >100KB signatures

- Non-standard

- Stateful

- Small number of parties

Threshold SPHINCS+?

11

Post-Quantum Threshold Signatures?
Multivariate

+ NIST candidates (UOV and MAYO)

UOV and MAYO

12

Post-Quantum Threshold Signatures?
Isogeny based

+ Efficient

- Non-standard

- Less trusted assumption

CSI-FiSh based

13

Post-Quantum Threshold Signatures?

Focus:

• NIST standard or candidate: Threshold ML-DSA, UOV, MAYO

• Raccoon: scalable + efficient advanced properties

Threshold MAYO and UOV

14

MAYO and UOV

MAYO

UOV
Small signatures: as small as 96 bytes.

MAYO and UOV
Multivariate Quadratic (MQ) cryptography is based on the assumed
hardness of finding a solution to a system of multivariate quadratic

equations (over a finite field).

The current record is solving a system of 22 equations in 22 variables.mod 31

x + 5x2 + 3xy = 4 mod 7
x2 + 5xy + 5y2 = 1 mod 7

MAYO and UOV
Multivariate Quadratic (MQ) cryptography is based on the assumed
hardness of finding a solution to a system of multivariate quadratic

equations (over a finite field).

The current record is solving a system of 22 equations in 22 variables.mod 31

x + 5x2 + 3xy = 4 mod 7
x2 + 5xy + 5y2 = 1 mod 7 𝒫(x) = t

Define a multivariate map 𝒫

MAYO and UOV

Add some structure to : define a secret subspace such that .𝒫 O 𝒫(O) = 0
How to design a signature scheme from MQ?

Signing process:

1 Derive a target . Goal: find such that .t = H(𝗆𝗌𝗀) x 𝒫(x) = t

2 Sample a random vector .v

3 Search for such that o ∈ O 𝒫(v + o) = t

MAYO and UOV

Add some structure to : define a secret subspace such that .𝒫 O 𝒫(O) = 0
How to design a signature scheme from MQ?

Signing process:

1 Derive a target . Goal: find such that .t = H(𝗆𝗌𝗀) x 𝒫(x) = t

2 Sample a random vector .v

3 Search for such that o ∈ O 𝒫(v + o) = t
= 𝒫(v) + 𝒫(o)

⏟
=0

+ Δv(o)
⏟
linear

Threshold MAYO and UOV

High-level signing process

Compute target t = H(𝗆𝗌𝗀)
Solve , for

- a randomized function of

the secret

- a function of

A ⋅ x = y
A

y t

Threshold MAYO and UOV

𝖴𝖮𝖵 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Compute

• Sample uniform matrix

• Derive system

• Derive

• Return

t = H(𝗆𝗌𝗀)
V

A = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠(𝗌𝗄, V)
y = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸(t, V)
x = A−1 ⋅ y

Compute target t = H(𝗆𝗌𝗀)
Solve , for

- a randomized function of

the secret

- a function of

A ⋅ x = y
A

y t

High-level signing process

Threshold MAYO and UOV

𝖴𝖮𝖵 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Compute

• Sample uniform matrix

• Derive system

• Derive

• Return

t = H(𝗆𝗌𝗀)
V

A = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠(𝗌𝗄, V)
y = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸(t, V)
x = A−1 ⋅ y

High-level signing process • and are composed of
secret addition and multiplications
𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸

Threshold MAYO and UOV

𝖴𝖮𝖵 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Compute

• Sample uniform matrix

• Derive system

• Derive

• Return

t = H(𝗆𝗌𝗀)
V

A = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠(𝗌𝗄, V)
y = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸(t, V)
x = A−1 ⋅ y

High-level signing process • and are composed of
secret addition and multiplications
𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸

Addition: share all secret values

a = a1 + . . . + aT

Threshold MAYO and UOV

𝖴𝖮𝖵 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Compute

• Sample uniform matrix

• Derive system

• Derive

• Return

t = H(𝗆𝗌𝗀)
V

A = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠(𝗌𝗄, V)
y = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸(t, V)
x = A−1 ⋅ y

High-level signing process • and are composed of
secret addition and multiplications
𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸

Addition: share all secret values

a = a1 + . . . + aT

a + b = (a1 + b1) + . . . + (aT + bT)

Threshold MAYO and UOV

𝖴𝖮𝖵 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Compute

• Sample uniform matrix

• Derive system

• Derive

• Return

t = H(𝗆𝗌𝗀)
V

A = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠(𝗌𝗄, V)
y = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸(t, V)
x = A−1 ⋅ y

High-level signing process • and are composed of
secret addition and multiplications
𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸

Addition: share all secret values

a = a1 + . . . + aT

a + b = (a1 + b1) + . . . + (aT + bT)

Multiplication

Possible with pre-shared triples (a, b, ab)

Threshold MAYO and UOV

High-level signing process • and are composed of
secret addition and multiplications

• Inversion algorithm can be implemented
efficiently by revealing a masked matrix
(multiplied on both sides by random matrices)

𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸

A

𝖴𝖮𝖵 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Compute

• Sample uniform matrix

• Derive system

• Derive

• Return

t = H(𝗆𝗌𝗀)
V

A = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠(𝗌𝗄, V)
y = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸(t, V)
x = A−1 ⋅ y

Threshold MAYO and UOV

High-level signing process • and are composed of
secret addition and multiplications

• Inversion algorithm can be implemented
efficiently by revealing a masked matrix
(multiplied on both sides by random matrices)

𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸

A

𝖴𝖮𝖵 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Compute

• Sample uniform matrix

• Derive system

• Derive

• Return

t = H(𝗆𝗌𝗀)
V

A = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖠(𝗌𝗄, V)
y = 𝖢𝗈𝗆𝗉𝗎𝗍𝖾𝖸(t, V)
x = A−1 ⋅ y

1. Compute and reveal and

2. Compute

3. Compute

R ⋅ A ⋅ T
(R ⋅ A ⋅ T)−1

x = T ⋅ (R ⋅ A ⋅ T)−1 ⋅ R ⋅ y

Lattice-based Threshold Signatures

22

ML-DSA signatures

23

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

ML-DSA signatures

24

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = A ⋅ r1 w

Challenger

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

ML-DSA signatures

25

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = A ⋅ r1 w

Challenger

Sample challenge with high entropycc
2

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

ML-DSA signatures

26

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

Prover

Sample short r
w = A ⋅ r1 w

Challenger

Sample challenge with high entropycc
2

Compute response  
z = c ⋅ 𝗌𝗄 + r3 Verify is short

Verify that is short
w − (A ⋅ z − c ⋅ 𝗏𝗄)

z
z

ML-DSA signatures

27

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = A ⋅ r1

Challenger

Sample challenge with high entropycc
2

Compute response  

If , restart
z = c ⋅ 𝗌𝗄 + r

z ∉ S

3 z

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

w

Verify is short
Verify that is short

w − (A ⋅ z − c ⋅ 𝗏𝗄)
z

ML-DSA signatures

28

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

Sample short r
w = ⌊A ⋅ r⌉1

Challenger

Sample challenge with high entropycc
2

Compute response  

If , restart

If , restart

z = c ⋅ 𝗌𝗄 + r
z ∉ S
A ⋅ r − c ⋅ e ∉ S′￼

3 z

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

Verify is short
Verify that is short

w − (A ⋅ z − c ⋅ 𝗏𝗄)
z

w

ML-DSA signatures

29

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

Prover

1

Challenger

3 z

c = H(w, 𝗆𝗌𝗀)2

To sign: prove knowledge of , without revealing . (Fiat-Shamir type signature)𝗌𝗄, e 𝗌𝗄, e

Sample short r
w = ⌊A ⋅ r⌉

Compute response  

If , restart

If , restart

z = c ⋅ 𝗌𝗄 + r
z ∉ S
A ⋅ r − c ⋅ e ∉ S′￼

Verify is short
Verify that is short

w − (A ⋅ z − c ⋅ 𝗏𝗄)
z

Rejection sampling

30

Sample in a centered hypercube.r

r

Rejection sampling

30

Sample in a centered hypercube.r

r

c ⋅ 𝗌𝗄

z = c ⋅ 𝗌𝗄 + r

Then, the distribution of depends on the secret.z

Rejection sampling

30

Sample in a centered hypercube.r

r

c ⋅ 𝗌𝗄

z = c ⋅ 𝗌𝗄 + r

Then, the distribution of depends on the secret.z

We reject any outside of . 
The resulting distribution is independent of the secret.

z

ML-DSA signatures

31

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample short
•
•
•
• If not in , restart
• If not in , restart
• Output

r
w = ⌊A ⋅ r⌉
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
A ⋅ z − c ⋅ e S′￼

𝗌𝗂𝗀 = (z, w)

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, w))

•
• is short
• Assert is small

c = H(w, 𝗆𝗌𝗀)
w − (A ⋅ z − c ⋅ 𝗏𝗄)

z

ML-DSA signatures

31

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
 assumption: appears uniformly distributed

for wide enough (more inputs than outputs)
𝖬𝖫𝖶𝖤 𝗏𝗄

A

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample short
•
•
•
• If not in , restart
• If not in , restart
• Output

r
w = ⌊A ⋅ r⌉
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
A ⋅ z − c ⋅ e S′￼

𝗌𝗂𝗀 = (z, w)

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, w))

•
• is short
• Assert is small

c = H(w, 𝗆𝗌𝗀)
w − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Short vector sampling and rejection
sampling are hard to thresholdize

Threshold ML-DSA with generic MPC

32

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample short
•
•
•
• If not in , restart
• If not in , restart
• Output

r
w = ⌊A ⋅ r⌉
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
A ⋅ z − c ⋅ e S′￼

𝗌𝗂𝗀 = (z, w)

First solution: Implement the signing
algorithm with Generic MPC

Threshold ML-DSA with generic MPC

33

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample short
•
•
•
• If not in , restart
• If not in , restart
• Output

r
w = ⌊A ⋅ r+e⌉
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
A ⋅ z − c ⋅ e S′￼

𝗌𝗂𝗀 = (z, w)

• Small modification in ML-DSA to safely reveal
 and compute in clear, relies on [dPN25]
w c

First solution: Implement the signing
algorithm with Generic MPC

Threshold ML-DSA with generic MPC

33

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample short
•
•
•
• If not in , restart
• If not in , restart
• Output

r
w = ⌊A ⋅ r+e⌉
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
A ⋅ z − c ⋅ e S′￼

𝗌𝗂𝗀 = (z, w)

• Small modification in ML-DSA to safely reveal
 and compute in clear, relies on [dPN25]
w c

First solution: Implement the signing
algorithm with Generic MPC

• Batch comparisons for rejection sampling

Threshold ML-DSA with generic MPC

34

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample short
•
•
•
• If not in , restart
• If not in , restart
• Output

r
w = ⌊A ⋅ r+e⌉
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
A ⋅ z − c ⋅ e S′￼

𝗌𝗂𝗀 = (z, w)

First solution: Implement the signing
algorithm with Generic MPC

Concretely,

• Online:

92 rounds w/ 1.2 MB comm

24 rounds w/ 2.3 MB comm

• Honest-majority for better efficiency (can
only tolerate corruptions for signers)

• Offline: ?
T/2 T

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

Threshold ML-DSA for parties ()N T = N

35

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Second solution: More tailored / using lattice properties
Sample secrets, and aggregate the knowledge proofs.N

Threshold ML-DSA for parties ()N T = N

36

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Sample a for each secret, and do not rely on
rounding for security:

reintroduce error in for rejection sampling on

wi

wi e

Second solution: More tailored / using lattice properties
Sample secrets, and aggregate the knowledge proofs.N

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S

Threshold ML-DSA for parties ()N T = N

37

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Sample a for each secret, and do not rely on
rounding for security:

reintroduce error in for rejection sampling on

wi

wi e

Second solution: More tailored / using lattice properties
Sample secrets, and aggregate the knowledge proofs.N

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Threshold ML-DSA for parties ()N T = N

38

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Sample a for each secret, and do not rely on
rounding for security:

reintroduce error in for rejection sampling on

wi

wi e

Second solution: More tailored / using lattice properties
Sample secrets, and aggregate the knowledge proofs.N

Second solution: More tailored / using lattice properties
Sample secrets, and aggregate the knowledge proofs.N

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Threshold ML-DSA for parties ()N T = N

39

We use more compact distributions
than ML-DSA to still pass verification

 supports up to 6 parties→

Second solution: More tailored / using lattice properties
Sample secrets, and aggregate the knowledge proofs.N

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

𝖬𝖫-𝖣𝖲𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (z, ⌊w⌉))

•
• is short
• Assert is small

c = H(⌊w⌉, 𝗆𝗌𝗀)
⌊w⌉ − (A ⋅ z − c ⋅ 𝗏𝗄)

z

Threshold ML-DSA for parties ()N T = N

39

We use more compact distributions
than ML-DSA to still pass verification

 supports up to 6 parties→

ri

zi = c ⋅ 𝗌𝗄i + ri

Rejection sampling with hyperballs

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Threshold ML-DSA for parties ()N T = N

40

𝖳𝗁-𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample short
• Broadcast
Round 2:

•
•
•
• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ 𝖾i + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Threshold ML-DSA for parties ()N T = N

40

𝖳𝗁-𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample short
• Broadcast
Round 2:

•
•
•
• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ 𝖾i + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

But, the scheme is only
secure if corrupted parties

do not bias w

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For , , where short

•

1 ≤ i ≤ N 𝗏𝗄i = A ⋅ 𝗌𝗄i + ei 𝗌𝗄, ei

𝗏𝗄 = ∑i 𝗏𝗄i

𝖬𝖫-𝖣𝖲𝖠* . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• For
Sample short

•
•
• For ,

• If any not in , restart

•
• If not in , restart
• return

1 ≤ i ≤ N
ri, e′￼i

wi = A ⋅ ri + e′￼i
w = ∑i wi
c = H(⌊w⌉, 𝗆𝗌𝗀)

1 ≤ i ≤ N
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ ei + e′￼i

(zi, yi) S
𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)

𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Threshold ML-DSA for parties ()N T = N

41

𝖳𝗁-𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample short
•
• Broadcast
Round 2:
• Broadcast
Round 3:

• + abort if inconsistent

•
•
• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗈𝗆𝗆𝗂𝗍i = H(wi)

wi

w = ∑i wi 𝖼𝗈𝗆𝗆𝗂𝗍i

c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ 𝗌𝗄i + ri, yi = c ⋅ 𝖾i + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Threshold ML-DSA for partiesT ≠ N

42

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Use Replicated Secret Sharing [dPN25]

1. When at most parties are corrupted,
at least one of these secrets remains hidden.

T − 1

Threshold ML-DSA for partiesT ≠ N

42

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Use Replicated Secret Sharing [dPN25]

1. When at most parties are corrupted,
at least one of these secrets remains hidden.

T − 1

2. parties can collaboratively reconstruct the
full secret.

T

Partition :

,

⊔i∈𝖲𝖲 mi = {I s.t. | I | = N − T + 1}

𝗌𝗄 = ∑
i∈SS

∑
I∈mi

𝗌𝗄I e = ∑
i∈SS

∑
I∈mi

eI

Techniques from [dPN25].

Round 1:
• Sample short
•
• Broadcast
Round 2:
• Broadcast
Round 3:

• + abort if inconsistent

•

•
• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗈𝗆𝗆𝗂𝗍i = H(wi)

wi

w = ∑i wi 𝖼𝗈𝗆𝗆𝗂𝗍i

c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ ∑

I∈mi

𝗌𝗄I + ri, yi = c ⋅ ∑
I∈mi

𝖾I + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

𝖳𝗁-𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Threshold ML-DSA for partiesT ≠ N

42

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Use Replicated Secret Sharing [dPN25]

1. When at most parties are corrupted,
at least one of these secrets remains hidden.

T − 1

2. parties can collaboratively reconstruct the
full secret.

T

Partition :

,

⊔i∈𝖲𝖲 mi = {I s.t. | I | = N − T + 1}

𝗌𝗄 = ∑
i∈SS

∑
I∈mi

𝗌𝗄I e = ∑
i∈SS

∑
I∈mi

eI

Threshold ML-DSA for partiesT ≠ N

43

𝖬𝖫-𝖣𝖲𝖠* . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• For every possible set of parties
, where short

Distribute to parties in

•

I N − T + 1
𝗏𝗄I = A ⋅ 𝗌𝗄I + eI 𝗌𝗄I, eI

𝗌𝗄I, eI I
𝗏𝗄 = ∑i 𝗏𝗄I

Use Replicated Secret Sharing [dPN25]

1. When at most parties are corrupted,
at least one of these secrets remains hidden.

T − 1

2. parties can collaboratively reconstruct the
full secret.

T

Partition :

,

⊔i∈𝖲𝖲 mi = {I s.t. | I | = N − T + 1}

𝗌𝗄 = ∑
i∈SS

∑
I∈mi

𝗌𝗄I e = ∑
i∈SS

∑
I∈mi

eI

𝖳𝗁-𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample short
•
• Broadcast
Round 2:
• Broadcast
Round 3:

• + abort if inconsistent

•

•
• If in , broadcast , else abort
Combine:
•
• If not in , restart
• return

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗈𝗆𝗆𝗂𝗍i = H(wi)

wi

w = ∑i wi 𝖼𝗈𝗆𝗆𝗂𝗍i

c = H(⌊w⌉, 𝗆𝗌𝗀)
zi = c ⋅ ∑

I∈mi

𝗌𝗄I + ri, yi = c ⋅ ∑
I∈mi

𝖾I + e′￼i

(zi, yi) S zi

𝗌𝗂𝗀 = (∑i zi, ⌊w⌉)
𝗌𝗂𝗀 S′￼

𝗌𝗂𝗀

Techniques from [dPN25].

… plus some other
optimizations to make
parameters as tight as

possible

Evaluation

44

Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.

Threshold ML-DSA

45

* Communication and computation exclude cost of offline correlated randomness generation.

Average # rounds, and communication per party to obtain a valid signature

Scheme # Parties # Rounds Comm (MB) Computation Paradigm Security

Our work 6 6 0.021 to 1.05 Lightweight Game-based Standard

Bienstock et al. Unlimited
96 >1.2*

Online
lightweight* UC Honest Majority

24 >2.3*

Threshold ML-DSA

46

Advanced properties?

DKG ✓

Scheme # Parties # Rounds Comm (MB) Computation Paradigm Security

Our work 6 6 0.021 to 1.05 Lightweight Game-based Standard

Bienstock et al. Unlimited
96 >1.2*

Online
lightweight* UC Honest Majority

24 >2.3*

Threshold ML-DSA

46

Advanced properties?

DKG ✓

Identifiable Aborts ✘
Single online round ✘
Efficient for many parties ✘

Scheme # Parties # Rounds Comm (MB) Computation Paradigm Security

Our work 6 6 0.021 to 1.05 Lightweight Game-based Standard

Bienstock et al. Unlimited
96 >1.2*

Online
lightweight* UC Honest Majority

24 >2.3*

47

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• If not in , restart

• Output

r, e′￼

w = A ⋅ r + e′￼

c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
𝗌𝗂𝗀 = (w, z)

Let’s remove the rejection sampling!

Raccoon: ML-DSA without aborts

48

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

Raccoon: ML-DSA without aborts

Unforgeable under
Hint-MLWE
SelfTargetMSIS

Hint-MLWE assumption [KLSS23].

 is pseudorandom even if given

Q “hints”:

 for

(A, 𝗏𝗄)

(ci, zi := ci ⋅ 𝗌𝗄 + ri) i ∈ [Q]

As hard as if

MLWEσ

σr ≥ Q ⋅ ∥c∥ ⋅ σ

| vk | | sig |

2.3 kB 11.5 kB

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• If not in , restart

• Output

r, e′￼

w = A ⋅ r + e′￼

c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
𝗌𝗂𝗀 = (w, z)

Threshold Raccoon
Shamir sharing on secret 𝗌𝗄 ∈ ℛℓ

q

Sample polynomial s.t.

• and

• Partial signing keys

f ∈ ℛℓ
q[X]

f(0) = 𝗌𝗄 deg f ≤ T − 1
𝗌𝗄i := [[𝗌k]]i = f(i)

Properties:

• with shares, is perfectly hidden

• with a set of shares, reconstruct via Lagrange

interpolation

< T 𝗌𝗄
S ≥ T 𝗌𝗄

𝗌𝗄 = ∑
i∈S

LS,i ⋅ [[𝗌𝗄]]i

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (w, z))

•

•

• Assert short

c = H(w, 𝗆𝗌𝗀)
y = w − A ⋅ z + c ⋅ 𝗏𝗄

(y, z)
49

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

• Sample a short

•

•

•

• Output

r, e′￼

w = A ⋅ r + e′￼

c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (w, z)

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(w, ∑i∈S zi)

First (insecure) attempt𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

50

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

• Sample a short

•

•

•

• Output

r, e′￼

w = A ⋅ r + e′￼

c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (w, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (w, z))

•

•

• Assert short

c = H(w, 𝗆𝗌𝗀)
y = w − A ⋅ z + c ⋅ 𝗏𝗄

(y, z)

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of
wi

51

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(w, ∑i∈S zi)

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of
wi

51

But, is small vs is large

 Leaks

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(w, ∑i∈S zi)

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(w, ∑i∈S zi)

Prevent ROS attack with commit-reveal of

But, is small vs is large

 Leaks

Solution: add a zero-share :

Derived with a PRF, using pre-shared pairwise
keys

Any set of values is uniformly random

wi

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Δi

< T Δi

∑i∈S Δi = 0
+Δi

52

Threshold Raccoon

max N Speed Rounds | vk | | sig | Total
communication

1024 Fast 3 4 kB 13 kB 40 kB

53

Two-round ThRaccoon [EKT24]

54

𝟤𝖱𝗇𝖽-𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:

• Sample short for

• for

• Broadcast

Round 2:

• Derive coefficients

•

•

• Broadcast

Combine: the final signature is

ri,j, e′￼i,j j ∈ [𝗋𝖾𝗉]
wi,j = A ⋅ ri,j + e′￼i,j j ∈ [𝗋𝖾𝗉]

(wi,j)j

(βi,j)i,j = H((wi,j)i,j)
w = ∑i,j βi,jwi,j

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ∑

j

βi,jri,j + Δi

(w, ∑i∈S zi)

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

+Δi

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(w, ∑i∈S zi)

https://eprint.iacr.org/2024/496.pdf

Two-round ThRaccoon [EKT24]

55

Unforgeable under
AOMLWE
SelfTargetMSIS

~270 kB communication (offline + online): 5x TRaccoon

AOMLWE assumption.
 is pseudorandom even if given many

, and adaptively choosing coefficients
to obtain:

 for

(A, 𝗏𝗄)
(wj) βj

(ci, zi := ci ⋅ 𝗌𝗄 + ∑
j

βj ⋅ rj) i ∈ [Q]

| vk | | sig |

5.5 kB 10.8 kB

𝟤𝖱𝗇𝖽-𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:

• Sample short for

• for

• Broadcast

Round 2:

• Derive coefficients

•

•

• Broadcast

Combine: the final signature is

ri,j, e′￼i,j j ∈ [𝗋𝖾𝗉]
wi,j = A ⋅ ri,j + e′￼i,j j ∈ [𝗋𝖾𝗉]

(wi,j)j

(βi,j)i,j = H((wi,j)i,j)
w = ∑i,j βi,jwi,j

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ∑

j

βi,jri,j + Δi

(w, ∑i∈S zi)

https://eprint.iacr.org/2024/496.pdf

56

Detecting signing failures origins
Identify aborts in ThRaccoon with NIZK

We can identify aborts using NIZK.

Hard to prove to prove correct computation of , but
we can prove all other computations with the NIZK

At a high-level, where is the output of

a PRF known by and .

We can simply check that all agree on , if not
one cheated and we can reveal the corresponding
PRF key to check computations.

Δi

Δi = ∑
j

mi,j mi,j

i j

i, j mi,j

𝖭𝖨𝖹𝖪-𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

+Δi

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(w, ∑i∈S zi)

57

DKG + Detecting signing failures origins
Identify aborts in ThRaccoon with sDKG

We can also leverage a new class of secret sharings:
“short secret sharing”

Secret sharing with shares of small norms: partial
leak, but ok for lattices

In this case, we can remove the zero-share !Δi

𝗌𝖣𝖪𝖦-𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i ⋅ 𝗌𝗄i⟩ + ri

(w, ∑i∈S zi)

58

DKG + Detecting signing failures origins
Identify aborts in ThRaccoon with sDKG

We can also leverage a new class of secret sharings:
“short secret sharing”

Secret sharing with shares of small norms: partial
leak, but ok for lattices

In this case, we can remove the zero-share !

Identifiable abort for free, but larger private key

Scales up to 64 parties

Δi

𝗌𝖣𝖪𝖦-𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, e′￼i
wi = A ⋅ ri + e′￼i

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i ⋅ 𝗌𝗄i⟩ + ri

(w, ∑i∈S zi)

Conclusion

59

Conclusion

60

• Diverse proposal for Threshold Signatures: lattices, multivariate, hash-based, isogenies

• Practical schemes compatible with ML-DSA, UOV and MAYO

• Possible fallback to Threshold Raccoon for large thresholds / advanced properties

Questions?

61

Evaluation

62

Other ML-DSA parameter sets

