Efficient Threshold ML-DSA up to 6 parties

Post-Quantum Threshold Signatures Compatible with the NIST
Standard

Guilhem Niot, joint works with PQShield & Friends

Seminar JPMorgan - New York, US

SHIELD



Threshold Signatures

Centralized setting

Sig

keygen orimitive



Threshold Signatures

What if the party is corrupted or becomes unresponsive...
Question: can we split the trust among several parties?



Threshold Signatures

What if the party is corrupted or becomes unresponsive...
Question: can we split the trust among several parties?

Interactive protocol to distribute the scheme:
I-out-of-N parties can collaborate to sign and sig

T — 1 parties cannot.



Applications of Threshold Signatures

Cryptocurrency wallets & DeFi

Distributed signing for CDNs

Distributed consensus in Tor




NIST Call for Threshold Schemes

NIST IR 8214C (2nd Public Draft)

NIST First Call for Multi-Party Threshold Schemes

f X in %

Date Published: March 27,2025
Comments Due: April 30, 2025
Email Comments to: nistir-8214C-comments@nist.gov

Author(s)
Luis T. A. N. Brandao (NIST, Strativia), Rene Peralta (NIST)

Announcement

This is a second public draft. Threshold schemes should NOT be submitted until the final version of this report is
published. However, the present draft can be used as a baseline to prepare for future submissions.

The scope of the call is organized into categories related to signing (Sign), public-key encryption (PKE),
symmetric-key cryptography and hashing (Symm), key generation (KeyGen), fully homomorphic encryption

5



Post-Quantum Threshold Signatures?

Two-Round Threshold Lattice-Based Signatures
from Threshold Homomorphic Encryption*

Threshold Raccoon: Practical Threshold Signatures
from Standard Lattice Assumptions

Kamil Doruk Gur! ©®, Jonathan Katz?** ®, and Tjerand Silde3* * *

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Rafael del Pino', Shuichi Katsumata!?, Mary Maller!3, Fabrice Mouhartem*, Thomas
Prest!, Markku-Juhani Saarinen!s®

Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature
from Lattices

Cecilia Boschini Darya Kaviani Russell W. F. Lai Giulio Malavolta
ETH Ziirich, Switzerland UC Berkeley, USA Aalto University, Finland Bocconi University, Italy

Akira Takahashi
JPMorgan Al Research & AlgoCRYPT CoE, USA

Mehdi Tibouchi
NTT Social Informatics Laboratories, Japan

MuSig-L: Lattice-Based Multi-Signature
With Single-Round Online Phase*

Thomas Espitau® ®, Guilhem Niot!? @, and Thomas Prest!

Cecilia Boschini! ©®, Akira Takahashi? @, and Mehdi Tibouchi?



Post-Quantum Threshold Signatures?

Two-Round Threshold Lattice-Based Signatures
from Threshold Homomorphic Encryption*

Threshold Raccoon: Practical Threshold Signatures
from Standard Lattice Assumptions

Kamil Doruk Gur! ©®, Jonathan Katz?** ®, and Tjerand Silde3* * *

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Rafael del Pino', Shuichi Katsumata!?, Mary Maller!3, Fabrice Mouhartem*, Thomas
Prest!, Markku-Juhani Saarinen!s®

Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature
from Lattices

Cecilia Boschini Darya Kaviani Russell W. F. Lai Giulio Malavolta
ETH Ziirich, Switzerland UC Berkeley, USA Aalto University, Finland Bocconi University, Italy

Akira Takahashi
JPMorgan Al Research & AlgoCRYPT CoE, USA

Mehdi Tibouchi
NTT Social Informatics Laboratories, Japan

MuSig-L: Lattice-Based Multi-Signature
With Single-Round Online Phase*

Thomas Espitau® ®, Guilhem Niot!? @, and Thomas Prest!

Cecilia Boschini! ©®, Akira Takahashi? @, and Mehdi Tibouchi?

In 2023, NIST selected 3 signature schemes for standardization.

ML-DSA

SLH-DSA
FN-DSA

Based on lattices Based on hash functions



Thresholdizing ML-DSA



ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
vk = A - sk + e, for sk, e short for A wide enough (more inputs than outputs)



ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r W
Q w=A-r



ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r W
Q w=A-r

C Sample challenge ¢ with high entropy Q

10



ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r W
Q w=A-r

C Sample challenge ¢ with high entropy Q

Compute response // . A .
Q Z=c-sk+r Verify w — (A - Z — ¢ - vk) is short

11



ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r W
Q w=A-r

C Sample challenge ¢ with high entropy Q

Compute response // . A .
Q Z=c-sk+r Verify w — (A - Z — ¢ - vk) is short

12



ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger
Sample short r
Q w=A-r

C Sample challenge ¢ with high entropy Q

Compute response // . A .
Q Z=c-Sk+r Verify |[wW| — (A -z — ¢ - vk) is short

13



ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r
Q w=A-r

Q ¢ = H(|w], msg)

Compute response // . A .
Q Z=c-Sk+r Verify |[wW| — (A -z — ¢ - vk) is short

14



Rejection sampling

Sample r in a centered hypercube.



Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of Z depends on the secret.

15

J\c-sk



Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of Z depends on the secret.

We reject any 7 outside of .
The resulting distribution is independent of the secret.

7= c - Sk-

15




ML-DSA signatures

ML-DSA . Keygen() — sk, vk

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

ML-DSA . Sign(sk, msg) — sig ML-DSA . Verify(vk, msg, sig = (z, |wW|))

Sample short r c = H(|w], msg)
W=A-r |lW| — (A -z —c - vk) is short
c = H(|w|, msg) Assert Z is small

Z=c-sk+r

If Z notin §, restart

If Z— c-enotiny’, restart
Outout sig = (z, |W])

16



Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For 1 <i <N, vk; = A - sk; + e;, where sk, e; short Sample N secrets, and aggregate the knowledge proofs.

vk = Zi Vki

c = H(|w], msg)
|lW| — (A -z — ¢ - vk) is short
Assert Z is small

17



Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

« Forl <i<N,vk;=A":sk;+ e, where sk, e; short
. vk= 2 vk

ML-DSA" . Sign(sk, msg) — sig
e Forl <i<N

o Sample shortr,, € . c¢=H(|w]|,msg)
o W,=A r;+e e |W]—=(A:z—c-vk)isshort
W=D W, . Assert Zis small
¢ = H(|w], msg)
Forl <i <N\,
z,=c-ski+r,y,=c-e +e Sample a w. for each secret, and do not rely on
If any (z;,y;) notin S, restart rounding for security:

sig = (2.2, [W]) reintroduce error in w; for rejection sampling on e
If sig not in S, restart

return sig

18



Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short
vk = Zini

ML-DSA" . Sign(sk, msg) — sig
Forl <i<N

o Sample shortr,, € . c¢=H(|w]|,msg)
o W,=A r;+e e |W]—=(A:z—c-vk)isshort

W=D W, . Assert Z is small

¢ = H( LW] ) msg)

Forl <i <N\,

Z,=c-skj+r,y,=c-e +e

If any (z;,y,) notin S, restart We use more compact distributions
sig = (2.2, |[W]) than ML-DSA to still pass verification
If sig not in S, restart -~ supports up to 6 parties

return sig

19



Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — 44 o _ _
Rejection sampling with hyperballs \
Forl <i <N, vk

vk = Zi Vki

ML-DSA" . Sign(sk, msg

e Forl <i<N
o Sample short
O Wi=A°l’i+

. W=Q.W,

. c¢=H(|w],ms
e Forl <i<N|,
Zl=C°Sk,+I’l, e S L 7

e Ifany(z;,y;) notin S, restart

. sig=(T,z (W)
« Ifsig notin §’, restart
return sig

%

We use more compact distributions
than ML-DSA to still pass verification
- supports up to 6 parties

19



Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk
« Forl <i<N,vk;=A-sk;+ e, where sk, e, short Th-ML-DSA . Sign(sk, msg) — sig

. Vk= Z,-Vki Round 1:
Sample short r;, €’
ML-DSA" . Sign(sk, msg) — sig + Broadcastw; = A - 1,

e Forl <i<N
o Sample shortr,, €; W = Z,-Wi
o W,=A-r;,+e ¢ = H(|w]|, msg)
sziwi Z,=c-sk;+r,y,=c-e +e
¢ = H(|w], msg) If (z;,y;) in S, broadcast Z;, else abort
Forl1 <i <N, Comb_ine:
Z,=c-skj+r,y,=c-e +e . SIg_=(Zizi, [w])

If any (z,y,) notin S, restart » Ifsignotin §’, restart

sig = (Zizi, W) .  return sig

If sig not in S, restart

return sig

20



Threshold ML-DSA for N parties (7T = N)

ML-DSA". Keygen() — sk, vk

Th-ML-DSA . Sign(sk, msg) — sig

. For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

. vk= 2 vk

Round 1:
Sample short r;, €’
Broadcast w, = A - r,

But, the scheme is only
ML-DSA" . Sign(sk, msg) — sig = secure if corrupted parties
. Forl<i<N do not bias w

o Sample shortr;, €
o W, = A - r; + elf

. W=Q.W,

+ ¢ =H(|w], msg)

e Forl <i<N\,

Z,=c-skj+r,y,=c-e +e

e Ifany(z;,y;) notin S, restart

. Sig= (Z,-Zia [w])

« Ifsignotin §’, restart

return sig

l
c = H(|w], msg)
Z,=c-sk;+r,y,=c-e +e
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
« Ifsignotin§’, restart
« returnsig

20



Threshold ML-DSA for N parties (7' = N)

ML-DSA . Keygen() = sk, vk Th-ML-DSA . Sign(sk, msg) — sig

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short Round 1:
. vk=Y vk . Sample short r;,
l /
Broadcast commit; = H(w,)

Round 2:
Broadcast w;

Round 3:
W = > W, + abort if inconsistent commit;
c = H( LW] , Msg)
Z.=c-skj+r;,y,=c-e;,+e
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
. Ifsig notin §’, restart
e returnsig

ML-DSA" . Sign(sk, msg) — sig

For] <i<N
o Sample shortr,, €;
o W, = A - r; + elf
W= Ziwi
c = H(|w]|, msg)
Forl <i <N,
Z,=c-skj+r,y,=c-e +e
If any (z;,y,) notin S, restart
sig = (2,25 [W])
If sig not in S, restart
return sig

21 Techniques from [dPN25].



Threshold ML-DSA for N parties (7T = N)

ML-DSA". Keygen() — sk, vk

For1 <1 <N, vk; = A - sk; + e;, where sk, e; short

s it safe to reveal w; in

ML-DSA" . Sign(sk, msg) — sig case of abort?

Forl <i<N
o Sample shortr;, €
o W, = A - r; + elf

. W=Q.W,

+ ¢ =H(|w], msg)

e Forl <i<N\,

Z,=c-skj+r,y,=c-e +e

e Ifany(z;,y;) notin S, restart

. Sig= (Z,-Zia [w])

« Ifsignotin §’, restart

return sig

21

Th-ML-DSA . Sign(sk, msg) — sig

Round 1:
Sample short r;, €
W,=A-r;+e€;
Broadcast commit; = H(w)
Round 2:
Broadcast w;
Round 3:
W = > W, + abort if inconsistent commit;
c = H(|w], msg)
Z,=c-sk;+r,y,=c-e +e
If (z;,y,) in S, broadcast z, else abort
Combine:
. Sig= (Zizi» [w])
. Ifsig notin §’, restart
e returnsig

Techniques from [dPN25].



Threshold ML-DSA for N parties (7' = N)

Recent result from [dPN25]:

Lemma: Rejected W, is indistinguishable from uniform if:

o MLWE is hard over y.

o MLWE is hard over y,

22



Threshold ML-DSA for 7 £ N parties

Th-ML-DSA . Sign(sk, msg) — sig

Use Replicated Secret Sharing [dPN25]

Round 1:
" Sample short r;, €
ML-DSA . Keygen() — sk, vk ,
W, =A-r;+ €
«  Forevery possible set I of N — T+ 1 parties Broadcast commit; = H(W)
O vk; = A - sk; + e, where sk, e; short Round 2:
O Distribute sk, €, to parties in / Broadcast w;
. vk= ) vk Round 3:
W = > W, +abort if inconsistent commit;
1. When at most 7' — 1 parties are corrupted, ¢ = H(|w], msg)
at least one of these secrets remains hidden. zi=c- ) ski+r,y,=c- ) e +e]

lem, lem,
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
« Ifsignotin .y’ restart
e returnsig

23 Techniques from [dPN25].



Threshold ML-DSA for 7 £ N parties

Th-ML-DSA . Sign(sk, msg) — sig

Use Replicated Secret Sharing [dPN25]

Round 1:
! Sample short r;, €
ML-DSA .Keygen() — sk, vk ,
W, =A-r;+ €
«  For every possible set I of N — T + 1 parties Broadcast commit; = H(W))
O vk; = A - sk; + e, where sk;, e; short Round 2:
O Distribute sk, €, to parties in / Broadcast w;
. Vk= Zi‘/kl Round 3:
W = > W, +abort if inconsistent commit;
1. When at most 7' — 1 parties are corrupted, ¢ = H(|w], msg)
at least one of these secrets remains hidden. Z,=C - Z sk;+r,y,=c- Z e; + €;
lem, lem,
2. T parties can collaboratively reconstruct the If (z;, y;) in S, broadcast z;, else abort
full secret. Combine:
Partition Ll;.qgm, = {Is.t. |I|=N—-T+ 1} - sig=(2,% WD

« Ifsignotin .y’ restart

sk = Z Z Skl, € = Z Z C; e returnsig

€SS Iem,; €SS Iem,

23 Techniques from [dPN25].



Optimizing for ML-DSA



Optimizing for ML-DSA

Q We can accept a somewhat low success probability by performing K attempts in parallel.

25



Optimizing for ML-DSA

Q We can accept a somewhat low success probability by performing K attempts in parallel.

Q Unbalanced constraints: The aggregated signature must be small enough for ML-DSA verification.
o For the first half Z: infinite norm constraint

« For the second half y + rounding: (smaller) infinite norm constraint + deserialization constraint
for the recovery of |w|

— stronger constraint on second half: we want to use smaller y than z

26



Optimizing for ML-DSA

Q We can accept a somewhat low success probability by performing K attempts in parallel.

Q Unbalanced constraints: The aggregated signature must be small enough for ML-DSA verification.
o For the first half Z: infinite norm constraint

« For the second half y + rounding: (smaller) infinite norm constraint + deserialization constraint
for the recovery of |w|

— stronger constraint on second half: we want to use smaller y than z

Solution: We perform hyperball rejection sampling on (s, v - ) for v > 1: reduces the second
half contribution.

26



Optimizing for ML-DSA

Q We can accept a somewhat low success probability by performing K attempts in parallel.

Q Unbalanced constraints: The aggregated signature must be small enough for ML-DSA verification.
o For the first half Z: infinite norm constraint

« For the second half y + rounding: (smaller) infinite norm constraint + deserialization constraint
for the recovery of |w|

— stronger constraint on second half: we want to use smaller y than z

Q The size of the hyperball used is proportional to the norm of the partial secret to hide: we
minimize the number of secrets used by each party in a session.

27



Optimizing for ML-DSA

Q The size of the hyperball used is proportional to the norm of the partial secret to hide: we
minimize the number of secrets used by each party in a session.

N
secrets to partition among 1 parties.
N-T+1

N
Ideally, at most / I'| secrets each.
N-T+1

28



Optimizing for ML-DSA

e The size of the hyperball used is proportional to the norm of the partial secret to hide: we

minimize the number of secrets used by each party in a session.

N
( ) secrets to partition among 1 parties.

N-T+1
N
Ideally, at most / I'| secrets each.
N-T+1
U U U
\ v v
. . . . 1 2 3 4
We find an optimal partition with l

a max-flow algorithm. @?

28




Evaluation



Evaluation

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.

| 20
o N =2 * - N =2
& N =3 \\ @ N =3
= N =4 z 15 N =4
= 400 N — ) N =
= o N = = @ N =6
g é 10 -
E = 5
3
3 g 5
<+~ o0
& 2 |
ol & - i ol & Be
l 1
2 3 4 o 6 2 3 4 D 6
Threshold (T) Threshold (T)

Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)

30



Evaluation

Table 6: WAN signing latency (in ms) for Threshold ML-DSA-44 and T-Raccoon-I across different topolo-

gies. L = London, S = Seoul, T = Taipei, V = Virginia.

Scheme (T,N) Locations Signing (ms)
ML-DSA (2,6) T -8 27.34
ML-DSA (2,6) T -V 620.43
ML-DSA (46) T-V-L-L 750.65
ML-DSA (66) T-V-L-L-S-S 659.55

31



Evaluation

Other ML-DSA parameter sets

Communication costs for Threshold ML-DSA-65 Communication costs for Threshold ML-DSA-87
10,000 |
|- N
@ N
n 8,000 N
@ N
= 6,000 | o N
I
£ )
= 4,000
M
=
; 2.000
0 — 0l = -
l l
2 3 4 5 6 2 3 4 5) 6

Threshold (T) Threshold (T)

32



Conclusion



Conclusion

Scheme Paradigm # Parties # Rounds Communication Computation Security
(MB)

This work Tailored 6 6 0.021 to 1.05 Lightweight Standard

Bienstock et al. [BACE™25] MPC Unlimited 3461 i ;g* Online lightweight®* Honest majority

Trilithium [DKLS25] MPC 2 60 2347 Heavy Trusted party

Generic MPC [CS19] MPC Unlimited High High Impractical Standard

* Communication and computation exclude cost of offline correlated randomness generation.

34



Conclusion

Future questions:
o Support more parties
* Online / offline tradeoff

* More scalable scheme by mixing MPC and tailored techniques?

35



Questions?




