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Threshold Signatures

What if the party is corrupted or becomes unresponsive...
Question: can we split the trust among several parties?

Interactive protocol to distribute the scheme:
I-out-of-N parties can collaborate to sign and sig

T — 1 parties cannot.



Applications of Threshold Signatures

Cryptocurrency wallets & DeFi

Distributed signing for CDNs

Distributed consensus in Tor
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Announcement

This is a second public draft. Threshold schemes should NOT be submitted until the final version of this report is
published. However, the present draft can be used as a baseline to prepare for future submissions.

The scope of the call is organized into categories related to signing (Sign), public-key encryption (PKE),
symmetric-key cryptography and hashing (Symm), key generation (KeyGen), fully homomorphic encryption
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In 2023, NIST selected 3 signature schemes for standardization.

ML-DSA

SLH-DSA
FN-DSA

Based on lattices Based on hash functions
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ML-DSA signatures

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

To sign: prove knowledge of sk, e, without revealing sk, e. (Fiat-Shamir type signature)

Prover Challenger

Sample short r
Q w=A-r

Q ¢ = H(|w], msg)

Compute response // . A .
Q Z=c-Sk+r Verify |[wW| — (A -z — ¢ - vk) is short
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Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of Z depends on the secret.
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Rejection sampling

Sample r in a centered hypercube.

Then, the distribution of Z depends on the secret.

We reject any 7 outside of .
The resulting distribution is independent of the secret.

7= c - Sk-
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ML-DSA signatures

ML-DSA . Keygen() — sk, vk

MLWE assumption: vk appears uniformly distributed
. vk=A -sk+e, for sk, e short for A wide enough (more inputs than outputs)

ML-DSA . Sign(sk, msg) — sig ML-DSA . Verify(vk, msg, sig = (z, |wW|))

Sample short r c = H(|w], msg)
W=A-r |lW| — (A -z —c - vk) is short
c = H(|w|, msg) Assert Z is small

Z=c-sk+r

If Z notin §, restart

If Z— c-enotiny’, restart
Outout sig = (z, |W])
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For 1 <i <N, vk; = A - sk; + e;, where sk, e; short Sample N secrets, and aggregate the knowledge proofs.

vk = Zi Vki

c = H(|w], msg)
|lW| — (A -z — ¢ - vk) is short
Assert Z is small
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

« Forl <i<N,vk;=A":sk;+ e, where sk, e; short
. vk= 2 vk

ML-DSA" . Sign(sk, msg) — sig
e Forl <i<N

o Sample shortr,, € . c¢=H(|w]|,msg)
o W,=A r;+e e |W]—=(A:z—c-vk)isshort
W=D W, . Assert Zis small
¢ = H(|w], msg)
Forl <i <N\,
z,=c-ski+r,y,=c-e +e Sample a w. for each secret, and do not rely on
If any (z;,y;) notin S, restart rounding for security:

sig = (2.2, [W]) reintroduce error in w; for rejection sampling on e
If sig not in S, restart

return sig
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short
vk = Zini

ML-DSA" . Sign(sk, msg) — sig
Forl <i<N

o Sample shortr,, € . c¢=H(|w]|,msg)
o W,=A r;+e e |W]—=(A:z—c-vk)isshort

W=D W, . Assert Z is small

¢ = H( LW] ) msg)

Forl <i <N\,

Z,=c-skj+r,y,=c-e +e

If any (z;,y,) notin S, restart We use more compact distributions
sig = (2.2, |[W]) than ML-DSA to still pass verification
If sig not in S, restart -~ supports up to 6 parties

return sig
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — 44 o _ _
Rejection sampling with hyperballs \
Forl <i <N, vk

vk = Zi Vki

ML-DSA" . Sign(sk, msg

e Forl <i<N
o Sample short
O Wi=A°l’i+

. W=Q.W,

. c¢=H(|w],ms
e Forl <i<N|,
Zl=C°Sk,+I’l, e S L 7

e Ifany(z;,y;) notin S, restart

. sig=(T,z (W)
« Ifsig notin §’, restart
return sig

%

We use more compact distributions
than ML-DSA to still pass verification
- supports up to 6 parties
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Threshold ML-DSA for N parties (7' = N)

ML-DSA" . Keygen() — sk, vk
« Forl <i<N,vk;=A-sk;+ e, where sk, e, short Th-ML-DSA . Sign(sk, msg) — sig

. Vk= Z,-Vki Round 1:
Sample short r;, €’
ML-DSA" . Sign(sk, msg) — sig + Broadcastw; = A - 1,

e Forl <i<N
o Sample shortr,, €; W = Z,-Wi
o W,=A-r;,+e ¢ = H(|w]|, msg)
sziwi Z,=c-sk;+r,y,=c-e +e
¢ = H(|w], msg) If (z;,y;) in S, broadcast Z;, else abort
Forl1 <i <N, Comb_ine:
Z,=c-skj+r,y,=c-e +e . SIg_=(Zizi, [w])

If any (z,y,) notin S, restart » Ifsignotin §’, restart

sig = (Zizi, W) .  return sig

If sig not in S, restart

return sig
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Threshold ML-DSA for N parties (7T = N)

ML-DSA". Keygen() — sk, vk

Th-ML-DSA . Sign(sk, msg) — sig

. For 1 <i <N, vk; = A - sk; + e;, where sk, e, short

. vk= 2 vk

Round 1:
Sample short r;, €’
Broadcast w, = A - r,

But, the scheme is only
ML-DSA" . Sign(sk, msg) — sig = secure if corrupted parties
. Forl<i<N do not bias w

o Sample shortr;, €
o W, = A - r; + elf

. W=Q.W,

+ ¢ =H(|w], msg)

e Forl <i<N\,

Z,=c-skj+r,y,=c-e +e

e Ifany(z;,y;) notin S, restart

. Sig= (Z,-Zia [w])

« Ifsignotin §’, restart

return sig

l
c = H(|w], msg)
Z,=c-sk;+r,y,=c-e +e
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
« Ifsignotin§’, restart
« returnsig
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Threshold ML-DSA for N parties (7' = N)

ML-DSA . Keygen() = sk, vk Th-ML-DSA . Sign(sk, msg) — sig

For 1 <i <N, vk; = A - sk; + e;, where sk, e, short Round 1:
. vk=Y vk . Sample short r;,
l /
Broadcast commit; = H(w,)

Round 2:
Broadcast w;

Round 3:
W = > W, + abort if inconsistent commit;
c = H( LW] , Msg)
Z.=c-skj+r;,y,=c-e;,+e
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
. Ifsig notin §’, restart
e returnsig

ML-DSA" . Sign(sk, msg) — sig

For] <i<N
o Sample shortr,, €;
o W, = A - r; + elf
W= Ziwi
c = H(|w]|, msg)
Forl <i <N,
Z,=c-skj+r,y,=c-e +e
If any (z;,y,) notin S, restart
sig = (2,25 [W])
If sig not in S, restart
return sig

21 Techniques from [dPN25].



Threshold ML-DSA for N parties (7T = N)

ML-DSA". Keygen() — sk, vk

For1 <1 <N, vk; = A - sk; + e;, where sk, e; short

s it safe to reveal w; in

ML-DSA" . Sign(sk, msg) — sig case of abort?

Forl <i<N
o Sample shortr;, €
o W, = A - r; + elf

. W=Q.W,

+ ¢ =H(|w], msg)

e Forl <i<N\,

Z,=c-skj+r,y,=c-e +e

e Ifany(z;,y;) notin S, restart

. Sig= (Z,-Zia [w])

« Ifsignotin §’, restart

return sig
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Th-ML-DSA . Sign(sk, msg) — sig

Round 1:
Sample short r;, €
W,=A-r;+e€;
Broadcast commit; = H(w)
Round 2:
Broadcast w;
Round 3:
W = > W, + abort if inconsistent commit;
c = H(|w], msg)
Z,=c-sk;+r,y,=c-e +e
If (z;,y,) in S, broadcast z, else abort
Combine:
. Sig= (Zizi» [w])
. Ifsig notin §’, restart
e returnsig

Techniques from [dPN25].



Threshold ML-DSA for N parties (7' = N)

Recent result from [dPN25]:

Lemma: Rejected W, is indistinguishable from uniform if:

o MLWE is hard over y.

o MLWE is hard over y,
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Threshold ML-DSA for 7 £ N parties

Th-ML-DSA . Sign(sk, msg) — sig

Use Replicated Secret Sharing [dPN25]

Round 1:
" Sample short r;, €
ML-DSA . Keygen() — sk, vk ,
W, =A-r;+ €
«  Forevery possible set I of N — T+ 1 parties Broadcast commit; = H(W)
O vk; = A - sk; + e, where sk, e; short Round 2:
O Distribute sk, €, to parties in / Broadcast w;
. vk= ) vk Round 3:
W = > W, +abort if inconsistent commit;
1. When at most 7' — 1 parties are corrupted, ¢ = H(|w], msg)
at least one of these secrets remains hidden. zi=c- ) ski+r,y,=c- ) e +e]

lem, lem,
If (z;,y;) in S, broadcast z;, else abort
Combine:
. Sig= (Zizia [w])
« Ifsignotin .y’ restart
e returnsig

23 Techniques from [dPN25].



Threshold ML-DSA for 7 £ N parties

Th-ML-DSA . Sign(sk, msg) — sig

Use Replicated Secret Sharing [dPN25]

Round 1:
! Sample short r;, €
ML-DSA .Keygen() — sk, vk ,
W, =A-r;+ €
«  For every possible set I of N — T + 1 parties Broadcast commit; = H(W))
O vk; = A - sk; + e, where sk;, e; short Round 2:
O Distribute sk, €, to parties in / Broadcast w;
. Vk= Zi‘/kl Round 3:
W = > W, +abort if inconsistent commit;
1. When at most 7' — 1 parties are corrupted, ¢ = H(|w], msg)
at least one of these secrets remains hidden. Z,=C - Z sk;+r,y,=c- Z e; + €;
lem, lem,
2. T parties can collaboratively reconstruct the If (z;, y;) in S, broadcast z;, else abort
full secret. Combine:
Partition Ll;.qgm, = {Is.t. |I|=N—-T+ 1} - sig=(2,% WD

« Ifsignotin .y’ restart

sk = Z Z Skl, € = Z Z C; e returnsig

€SS Iem,; €SS Iem,

23 Techniques from [dPN25].
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Q We can accept a somewhat low success probability by performing K attempts in parallel.
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Optimizing for ML-DSA

Q We can accept a somewhat low success probability by performing K attempts in parallel.

Q Unbalanced constraints: The aggregated signature must be small enough for ML-DSA verification.
o For the first half Z: infinite norm constraint

« For the second half y + rounding: (smaller) infinite norm constraint + deserialization constraint
for the recovery of |w|

— stronger constraint on second half: we want to use smaller y than z

Solution: We perform hyperball rejection sampling on (s, v - ) for v > 1: reduces the second
half contribution.
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Optimizing for ML-DSA

Q We can accept a somewhat low success probability by performing K attempts in parallel.

Q Unbalanced constraints: The aggregated signature must be small enough for ML-DSA verification.
o For the first half Z: infinite norm constraint

« For the second half y + rounding: (smaller) infinite norm constraint + deserialization constraint
for the recovery of |w|

— stronger constraint on second half: we want to use smaller y than z

Q The size of the hyperball used is proportional to the norm of the partial secret to hide: we
minimize the number of secrets used by each party in a session.
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Optimizing for ML-DSA

Q The size of the hyperball used is proportional to the norm of the partial secret to hide: we
minimize the number of secrets used by each party in a session.

N
secrets to partition among 1 parties.
N-T+1

N
Ideally, at most / I'| secrets each.
N-T+1
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Optimizing for ML-DSA

e The size of the hyperball used is proportional to the norm of the partial secret to hide: we

minimize the number of secrets used by each party in a session.

N
( ) secrets to partition among 1 parties.

N-T+1
N
Ideally, at most / I'| secrets each.
N-T+1
U U U
\ v v
. . . . 1 2 3 4
We find an optimal partition with l

a max-flow algorithm. @?
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Evaluation

Parameters aim for a success probability 1/2 for each attempt (vs ~1/4 in original ML-DSA).
Efficient up to 6 parties.

| 20
o N =2 * - N =2
& N =3 \\ @ N =3
= N =4 z 15 N =4
= 400 N — ) N =
= o N = = @ N =6
g é 10 -
E = 5
3
3 g 5
<+~ o0
& 2 |
ol & - i ol & Be
l 1
2 3 4 o 6 2 3 4 D 6
Threshold (T) Threshold (T)

Bandwidth and latency of threshold signing for ML-DSA 44 (on a local network)
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Evaluation

Table 6: WAN signing latency (in ms) for Threshold ML-DSA-44 and T-Raccoon-I across different topolo-

gies. L = London, S = Seoul, T = Taipei, V = Virginia.

Scheme (T,N) Locations Signing (ms)
ML-DSA (2,6) T -8 27.34
ML-DSA (2,6) T -V 620.43
ML-DSA (46) T-V-L-L 750.65
ML-DSA (66) T-V-L-L-S-S 659.55
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Evaluation

Other ML-DSA parameter sets

Communication costs for Threshold ML-DSA-65 Communication costs for Threshold ML-DSA-87
10,000 |
|- N
@ N
n 8,000 N
@ N
= 6,000 | o N
I
£ )
= 4,000
M
=
; 2.000
0 — 0l = -
l l
2 3 4 5 6 2 3 4 5) 6

Threshold (T) Threshold (T)
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Conclusion

Scheme Paradigm # Parties # Rounds Communication Computation Security
(MB)

This work Tailored 6 6 0.021 to 1.05 Lightweight Standard

Bienstock et al. [BACE™25] MPC Unlimited 3461 i ;g* Online lightweight®* Honest majority

Trilithium [DKLS25] MPC 2 60 2347 Heavy Trusted party

Generic MPC [CS19] MPC Unlimited High High Impractical Standard

* Communication and computation exclude cost of offline correlated randomness generation.
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Conclusion

Future questions:
o Support more parties
* Online / offline tradeoff

* More scalable scheme by mixing MPC and tailored techniques?
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Questions?




