Secret Sharing Schemes for Lattice-**Based Threshold Cryptography**

<u>Guilhem Niot, joint works with PQShield & Friends</u>

Workshop on secret sharing schemes - May 2025

PQSHIELD

1. Background

Cryptographic primitive of interest

Cryptographic primitive of interest

Centralized setting

primitive

Cryptographic primitive of interest

What if the party is corrupted or becomes unresponsive... **Question:** can we split the trust among several parties?

Cryptographic primitive of interest

What if the party is corrupted or becomes unresponsive... **Question:** can we split the trust among several parties?

Interactive protocol to distribute the primitive: T-out-of-N parties can collaborate to compute the function and T-1 parties cannot.

Building block: secret sharings

- Individual shares (sk_1, \ldots, sk_N)
- \circ T shares: can reconstruct sk
- $\leq T 1$ shares: sk is hidden

Building block: Shamir secret sharing

Building block: Shamir secret sharing

\bigwedge curve of degree T-1

Building block: Shamir secret sharing

 \wedge curve of degree T-1

Here, reconstruction of sk is linear

sk

Building block: more secret sharings...

- Additive sharing
- CRT-based sharing

• Error correcting code based sharing

Shamir secret sharing

Which sharing should I choose?

It depends on the function f:

• Some operations are easier with given secret sharings

Which sharing should I choose?

It depends on the function f:

Some operations are easier with given secret sharings

- It depends on the security model and access structure:

Some sharings allow error detection, or more complex access structures

2. Lattice-based cryptography Let's first try to distribute it with Shamir's sharing!

Example: ML-DSA signatures

$\mathsf{ML-DSA}.\mathsf{Keygen}() \rightarrow \mathsf{sk},\mathsf{vk}$

• $vk = A \cdot sk + e$, for sk, e short

$\mathsf{ML}\text{-}\mathsf{DSA}\,.\,\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

- Sample a short \boldsymbol{r}

•
$$\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$$

•
$$\mathbf{w}_{\mathsf{T}} = [\mathbf{w}]_{\nu}$$

•
$$c = H(\mathbf{w}_{\mathsf{T}}, \mathsf{msg})$$

- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- If **z** not in *S*, **restart**

•
$$\mathbf{h} = \mathbf{w}_{\top} - [\mathbf{A}\mathbf{z} - c \cdot \mathbf{v}\mathbf{k}]_{\nu}$$

• Output sig = $(c, \mathbf{z}, \mathbf{h})$

Example: ML-DSA signatures

$\textbf{ML-DSA.Keygen}() \rightarrow \textbf{sk, vk}$

• $vk = A \cdot sk + e$, for sk, e short

•
$$\mathbf{w}_{\mathsf{T}} = \lfloor \mathbf{w} \rceil_{\nu}$$

•
$$c = H(\mathbf{w}_{\mathsf{T}}, \mathsf{msg})$$

- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- If **z** not in *S*, **restart**
- $\mathbf{h} = \mathbf{w}_{\mathsf{T}} [\mathbf{A}\mathbf{z} c \cdot \mathbf{v}\mathbf{k}]_{\nu}$
- Output sig = $(c, \mathbf{z}, \mathbf{h})$

Some operations are especially hard to distribute

- Sampling of short vectors
- Comparison, used for rejection sampling

Raccoon . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short $\boldsymbol{r},\boldsymbol{y}$
- $\mathbf{w} = \mathbf{A} \cdot \mathbf{r} + \mathbf{y}$

•
$$\mathbf{w}_{\mathsf{T}} = [\mathbf{w}]_{\nu}$$

•
$$c = H(\mathbf{w}_{\top}, \mathsf{msg})$$

- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- If z not in S, restart
- $\mathbf{h} = \mathbf{w}_{\mathsf{T}} [\mathbf{A}\mathbf{z} c \cdot \mathbf{v}\mathbf{k}]_{\nu}$
- Output sig = $(c, \mathbf{z}, \mathbf{h})$

Let's remove the rejection sampling!

$Raccoon.\,Keygen() \rightarrow sk, vk$

• $vk = A \cdot sk + e$, for sk, e short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short $\boldsymbol{r},\boldsymbol{y}$
- $\mathbf{w} = \mathbf{A} \cdot \mathbf{r} + \mathbf{y}$

•
$$\mathbf{w}_{\mathsf{T}} = [\mathbf{w}]_{\nu}$$

•
$$c = H(\mathbf{w}_{\top}, \mathsf{msg})$$

- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- If z not in S, restart
- $\mathbf{h} = \mathbf{w}_{\mathsf{T}} [\mathbf{A}\mathbf{z} c \cdot \mathbf{v}\mathbf{k}]_{\nu}$
- Output sig = $(c, \mathbf{z}, \mathbf{h})$

Unforgeable under

- Hint-MLWE
- SelfTargetMSIS

vk	sig
2.3 kB	11.5 kE

Hint-MLWE assumption [KLSS23].

(A, vk) is pseudorandom even if given Q "hints":

$$(c_i, \mathbf{z}_i := c_i \cdot \mathbf{sk} + \mathbf{r}_i)$$
 for $i \in [Q]$

As hard as $MLWE_{\sigma}$ if

$$\sigma_{\mathbf{r}} \ge \sqrt{Q} \cdot \|c\| \cdot \sigma$$

Raccoon . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short **r**, **y**
- $\mathbf{w} = \mathbf{A} \cdot \mathbf{r} + \mathbf{y}$

•
$$\mathbf{w}_{\mathsf{T}} = [\mathbf{w}]_{\nu}$$

•
$$c = H(\mathbf{w}_{\top}, \mathsf{msg})$$

- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- If z not in S, restart
- $\mathbf{h} = \mathbf{w}_{\mathsf{T}} [\mathbf{A}\mathbf{z} c \cdot \mathbf{v}\mathbf{k}]_{\nu}$
- Output sig = $(c, \mathbf{z}, \mathbf{h})$

- Now, can we distribute short vector sampling? i.e. sample short \mathbf{r} , such that T-1 parties do not
- learn **r**

Raccoon . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short **r**, **y**
- $\mathbf{w} = \mathbf{A} \cdot \mathbf{r} + \mathbf{y}$

•
$$\mathbf{w}_{\mathsf{T}} = [\mathbf{w}]_{\nu}$$

•
$$c = H(\mathbf{w}_{\top}, \mathsf{msg})$$

- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- If z not in S, restart
- $\mathbf{h} = \mathbf{w}_{\mathsf{T}} [\mathbf{A}\mathbf{z} c \cdot \mathbf{v}\mathbf{k}]_{\nu}$
- Output sig = $(c, \mathbf{z}, \mathbf{h})$

- Now, can we distribute short vector sampling? i.e. sample short \mathbf{r} , such that T-1 parties do not learn r
- Idea: sample T short vectors, and sum them
- Party *i* samples short \mathbf{r}_i

• Define
$$\mathbf{r} = \sum \mathbf{r}_i$$

Raccoon . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

Raccoon . Sign(sk, msg) \rightarrow sig

• Sample a short \mathbf{r}, \mathbf{y}

•
$$\mathbf{w} = \mathbf{A} \cdot \mathbf{r} + \mathbf{y}$$

•
$$\mathbf{w}_{\mathsf{T}} = [\mathbf{w}]_{\nu}$$

•
$$c = H(\mathbf{w}_{\top}, \mathsf{msg})$$

- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- $\mathbf{h} = \mathbf{w}_{\mathsf{T}} [\mathbf{A}\mathbf{z} c \cdot \mathbf{v}\mathbf{k}]_{\nu}$
- Output sig = $(c, \mathbf{z}, \mathbf{h})$

Shamir sharing on secret sk $\in \mathscr{R}_q^{\ell}$ Sample polynomial $f \in \mathscr{R}_q^{\ell}[X]$ s.t.

- $f(0) = \operatorname{sk} \operatorname{and} \operatorname{deg} f \le T 1$
- Partial signing keys $sk_i := [[sk]]_i = f(i)$

With a set S of $\geq T$ shares, reconstruct sk via Lagrange interpolation

$$\mathsf{sk} = \sum_{i \in S} L_{S,i} \cdot \llbracket \mathsf{sk} \rrbracket_i$$

Raccoon . Keygen() \rightarrow sk, vk

• $vk = A \cdot sk + e$, for sk, e short

Raccoon . Sign(sk, msg) \rightarrow sig

• Sample a short \mathbf{r}, \mathbf{y}

•
$$\mathbf{w} = \mathbf{A} \cdot \mathbf{r} + \mathbf{y}$$

•
$$\mathbf{w}_{\mathsf{T}} = [\mathbf{w}]_{\nu}$$

•
$$c = H(\mathbf{w}_{\top}, \mathsf{msg})$$

- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- $\mathbf{h} = \mathbf{w}_{\top} [\mathbf{A}\mathbf{z} c \cdot \mathbf{v}\mathbf{k}]_{\nu}$
- Output sig = $(c, \mathbf{z}, \mathbf{h})$

First (insecure) attempt

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{y}_i$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{y}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

• Prevent ROS attack with commit-reveal of \mathbf{w}_i

First (insecure) attempt

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short $\mathbf{r}_i, \mathbf{y}_i$

•
$$\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{y}_i$$

• Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast W_i

Round 3:

•
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [[sk]]_i$ is large \rightarrow Leaks $[[sk]]_i$

First (insecure) attempt

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{y}_i$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{y}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [[sk]]_i$ is large \rightarrow Leaks $[[sk]]_i$
- Solution: add a zero-share Δ_i :
 - Derived with a PRF, using pre-shared pairwise keys
 - ^o Any set of < T values Δ_i is uniformly random

$$\circ \quad \sum_{i \in S} \Delta_i = 0$$

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short $\mathbf{r}_i, \mathbf{y}_i$
- $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i + \mathbf{y}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

3. Can we do more?

Can we do more?

Further problems to solve:

- Detecting malicious behaviour in ThRaccoon
 - The use of zero-shares during signing prevents partial verification as in the classical setting.
 - Can't use NIZK either as PRF are inefficient to prove.
- Can we really not distribute rejection sampling?

What we did: perform the complex operation locally, then aggregate the results

Idea: sample T short vectors, and sum them

What we did: perform the complex operation locally, then aggregate the results

Can we

use of zero shares?

• In ThRaccoon, apply this to the entire signature computation to remove the

What we did: perform the complex operation locally, then aggregate the results

Can we

use of zero shares?

Answer: Yes, but only if we possess a short partial secret for party *i*.

In ThRaccoon, apply this to the entire signature computation to remove the

What we did: perform the complex operation locally, then aggregate the results

Can we

use of zero shares?

Answer: Yes, but only if we possess a short partial secret for party *i*.

Apply this to rejection sampling?

• In ThRaccoon, apply this to the entire signature computation to remove the

Answer: Yes, but again only if we possess a short partial secret.

A new class of secret sharings

Short secret sharing.

- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- T shares: can recover sk
 - Reconstruction vector $L_{S,i}$ with small coefficients
- $\leq T 1$ shares: can't recover sk

ThRaccoon with Short Secret Sharing

ShortSS. Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{W}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = c \cdot \langle L_{S,i}, \mathbf{sk}_i \rangle + \mathbf{r}_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Security.

- $c \cdot \langle L_{S,i}, \mathsf{sk}_i \rangle$ is short $\rightarrow \mathbf{r}_i$ hides it.
 - Prove security with Hint-MLWE

How to Shortly Share a Short Vector **DKG** with Short Shares and Application to Lattice-Based Threshold Signatures with Identifiable Aborts

Rafael del Pino¹ ⁽⁶⁾, Thomas Espitau¹ ⁽⁶⁾, Guilhem Niot^{1,2} ⁽⁶⁾, and Thomas $Prest^1$ \odot

ThRaccoon with Short Secret Sharing

ShortSS. Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = c \cdot \langle L_{S,i}, \mathbf{sk}_i \rangle + \mathbf{r}_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Security.

- $c \cdot \langle L_{S,i}, \mathsf{sk}_i \rangle$ is short $\rightarrow \mathbf{r}_i$ hides it.
 - Prove security with Hint-MLWE

Identifiable aborts.

• Each $vk_i^{(j)} = [A \ I] \cdot s_i^{(j)}$ is a valid public key ($s_i^{(j)}$ is short), for $sk_i = (s_i^{(1)}, s_i^{(2)}, ...)$

 \rightarrow Each (c, \mathbf{z}_i) is a valid signature for $\langle L_{S,i}, (vk_i^{(j)})_i \rangle$

- Identifiable abort is as easy as verifying partial signatures!
- Akin to abort identification in Sparkle (Threshold Schnorr): perform partial verifications.

Threshold ML-DSA-like

$\mathsf{ML}\text{-}\mathsf{DSA}\,.\,\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

- Sample a short **r**
- $\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$
- $\mathbf{w}_{\mathsf{T}} = [\mathbf{w}]_{\nu}$
- $c = H(\mathbf{w}_{\mathsf{T}}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- If **z** not in *S*, **restart**
- $\mathbf{h} = \mathbf{w}_{\mathsf{T}} [\mathbf{A}\mathbf{z} c \cdot \mathbf{v}\mathbf{k}]_{\nu}$
- Output sig = $(c, \mathbf{z}, \mathbf{h})$

Finally! A Compact Lattice-Based Threshold Signature

Rafael del Pino¹ \odot and Guilhem Niot^{1,2} \odot

Finally . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z}_i = c \cdot \langle L_{S,i}, \mathbf{sk}_i \rangle + \mathbf{r}_i$
- If \mathbf{z}_i not in S, restart

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Threshold ML-DSA-like

For $N \leq 8$,

vk	sig
2.6 kB	2.6 kB

Comparable to Dilithium size: 2.4kB at NIST level II!

Finally! A Compact Lattice-Based Threshold Signature

Rafael del Pino¹ \odot and Guilhem Niot^{1,2} \odot

Finally . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z}_i = c \cdot \langle L_{S,i}, \mathbf{sk}_i \rangle + \mathbf{r}_i$
- If \mathbf{z}_i not in S, restart

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

4. How to concretely sample short sharings

How to Shortly Share a Short Vector DKG with Short Shares and Application to Lattice-Based Threshold Signatures with Identifiable Aborts

Rafael del Pino¹ ⁽⁶⁾, Thomas Espitau¹ ⁽⁶⁾, Guilhem Niot^{1,2} ⁽⁶⁾, and Thomas \mathbf{Prest}^1 \odot

Short Secret Sharing

- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- *T* shares: can recover sk + reconstruction vector $L_{S,i}$ with small coefficients
- $\leq T 1$ shares: can't recover sk

Short Secret Sharing

- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- T shares: can recover sk + reconstruction vector $L_{S,i}$ with small coefficients
- $\circ \leq T 1$ shares: can't recover sk

- But, in a lattice-based scheme, it is fine to:
- Leak an offset of the secret: $sk = sk_{safe} + sk_{leak}$
- \rightarrow We just need $\begin{bmatrix} A & I \end{bmatrix} \cdot sk$ to look uniform

Observation: hard to not leak the secret with these constraints...

° Leak hints on the secrets $h = c \cdot sk + y$, for large enough y

Idea: sample a share for any possible set of corrupted parties.

1. For any set \mathcal{T} of T-1 parties, sample a uniform share $S_{\mathcal{T}}$.

Idea: sample a share for any possible set of corrupted parties.

1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{S}_{\mathcal{T}}$.

 ${f S}_{\{1\}}$

Idea: sample a share for any possible set of corrupted parties.

1. For any set \mathcal{T} of T - 1 parties, sample a uniform share $\mathbf{s}_{\mathcal{T}}$.

 $s_{\{1\}} s_{\{2\}}$

Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T 1 parties, sample a uniform share $\mathbf{s}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{s}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}$.

Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $S_{\mathcal{T}}$.
- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}.$
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.

Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{S}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}.$
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.

Properties:

- Reconstruction coefficients 0 or 1
- ^o When < T corrupted parties, at least one $\mathbf{S}_{\mathcal{T}}$ remains hidden.
 - \rightarrow guarantees that sk remains protected

Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T 1 parties, sample a short share $\mathbf{s}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{s}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}$.
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.

Properties:

- Reconstruction coefficients 0 or 1
- ° When < T corrupted parties, at least one $s_{\mathcal{T}}$ remains hidden.

 \rightarrow guarantees that $[A I] \cdot sk$ looks uniform (MLWE assumption)

Idea: sample a share for any possible set of corrupted parties.

1. For any set \mathcal{T} sample a short

- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to $[N] \setminus \mathcal{T}.$
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.

Caveat: This scheme has a number of shares that is equal to $\begin{pmatrix} N \\ T-1 \end{pmatrix}$. efficients 0 or 1

ted parties, at least

one $\mathbf{S}_{\mathcal{T}}$ remains hidden.

 \rightarrow guarantees that $[A \ I] \cdot sk$ looks uniform (MLWE assumption)

Full collection

 $N \, \mathrm{cards}$

Full collection

 $N \, \mathrm{cards}$

Draw with replacement

Full collection

 $N \, \mathrm{cards}$

Draw with replacement

Full collection

 $N \, \mathrm{cards}$

Draw with replacement

2

Full collection

N cards

4

Draw with replacement

2

How many draws to get the full collection?

 $\sim N \log N$

Full collection sk =

 $N \, {\rm shares}$

Full collection sk

 $N \, {\rm shares}$

Idea: Randomly distribute one share per party.

Desired properties:

- Reconstruction threshold: Minimum number of parties T needed to gather all the shares? (with overwhelming probability)
- Security threshold: Maximum number of parties T' such that at least one share is not known (with overwhelming probability)

 $sk = s_1 + s_2 + s_3 + s_4$ Example: $\cdot s_1, \dots, s_{N-1} \leftarrow \mathcal{D}_{\sigma}^{N-1} \text{ and}$ $s_N = sk - \sum_{i < N} s_i$

Full collection

N shares

Idea: Randomly distribute one share per party.

Desired properties:

- **Reconstruction threshold:** Minimum number of parties T needed to gather all the shares? (with overwhelming probability)
- Security threshold: Maximum number of parties T' such that at least one share is not known (with overwhelming probability) Bounds T, T' are exactly bounds of the coupon collector problem. Both $T, T' \sim N \log N$, with gap \approx $N \rightarrow$

 $\mathbf{sk} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 + \mathbf{s}_3$ \mathbf{S}_{4} **Example:** • $\mathbf{s}_1, \dots, \mathbf{s}_{N-1} \leftarrow \mathscr{D}_{\sigma}^{N-1}$ and $\mathbf{s}_N = \mathbf{sk} - \sum_{i < N} \mathbf{s}_i$

$$\approx 1 + \frac{128}{\log N}$$

Full collection

N shares

Idea: Randomly distribute one share per party

Desired

 Recon selective security model. all the share (

• Security threshold: Maximum number of parties T' such that at least one share is not known (with overwhelming probability) Bounds T, T' are exactly bounds of the coupon collector problem. Both $T, T' \sim N \log N$, with gap \approx N-

o gather

$$\approx 1 + \frac{128}{\log N}$$

It is possible to amplify the properties for a lower gap. *m*, *p* are amplification parameters.

Ratio T/T' achieved by our sharing as a function of T'. The dotted line corresponds to an ideal asymptotic T/T' = 1.

Solution 3: Vandermonde sharing

Vandermonde's identity

For $0 \le c \le N$:

 $\binom{N}{T} = \sum_{i=1}^{N}$

Distribution theory interpretation: The sum of two binomials is a binomial:

B(m,p) +

Set theory interpretation: let us note $S_{S,T}$ the subsets of S of cardinality T. 니다 > Any subset act $\in S_{\{1,...,N\},T}$ can be decomposed uniquely as:

 $act = act_L \sqcup act_L$

Eq. (6) follows from enumerating these decompositions.

Vandermonde secret sharing [DDB95] turns this into a secret sharing: \rightarrow Enumerating all the possible disjunctions of the form in Eq. (8) For each disjunction, share the secret in two \rightarrow Recursively share the first half across members of a c t_L \geq Recursively share the second half across members of a c t₁

$$\sum_{k=0}^{T} \binom{c}{k} \cdot \binom{N-c}{T-k}$$

$$-B(n,p)\sim B(m+n,p)$$

$$_{R}, \quad \text{where} \begin{cases} act_{L} \subseteq \{1, \dots, c\} \\ act_{R} \subseteq \{c+1, \dots, N\} \end{cases}$$
(8)

(6)

(7)

Solution 3: Vandermonde sharing

Algorithm 1 Share($x, \mathcal{P}, T, idx = (T)$) \rightarrow **Dict**

- 1: N = |P|
- 2: **if** T = 1 **then**
- **return** $Dict := \{user : \{idx : x\} \mid user \in \mathcal{P}\}$ 3:

4: **else**

- $Dict = \{user : \{:\} \mid user \in \mathcal{P}\}. \ c = \lfloor N/2 \rfloor$ 5:
- Parse $\mathcal{P} = \mathcal{P}_L \sqcup \mathcal{P}_R$, with \mathcal{P}_L the *c* smallest ele-6: ments of \mathcal{P}
- for $k = \max(0, T N + c), \dots, \min(c, T)$ do 7:
- $idx_L \coloneqq (idx, k)$ 8:
- $idx_R \coloneqq (idx, T-k)$ 9:
- if k = 0 then 10:
- **Dict** := **Dict** \cup Share($\mathbf{x}, \mathcal{P}_R, T, id\mathbf{x}_R$) 11:
- else if k = T then 12:
- **Dict** := **Dict** \cup Share($x, \mathcal{P}_L, T, idx_L$) 13:
- else 14:
- 15: $x_0 \leftarrow \chi$ $x_1 \coloneqq (x - x_0) \mod q$ 16:
- $Dict_L \coloneqq Share(x, \mathcal{P}_L, k, idx_L)$ 17:
- $Dict_R \coloneqq Share(x, \mathcal{P}_R, T k, idx_R)$ 18:
- $Dict := Dict \cup Dict_{L} \cup Dict_{R}$ 19:
- return Dict 20:

Algorithm 2 Recover(\mathcal{P} , act, idx = (T)) \rightarrow Dict

```
1: N = |P|, T = |act|
```

- 2: **if** T = 1 **then**
- **return** $Dict := \{user : idx \mid user \in \mathcal{P}\}$ 3:
- 4: **else**

5: $c = \lfloor N/2 \rfloor$. Parse $\mathcal{P} = \mathcal{P}_L \sqcup \mathcal{P}_R$, with \mathcal{P}_L the c smallest elements of \mathcal{P}

6:
$$k = |\mathcal{P}_L|, \mathtt{act}_L = \mathtt{act} \cap \mathcal{P}_L, \mathtt{act}_R = \mathtt{act} \cap \mathcal{P}_R$$

 $idx_L \coloneqq (idx, k)$ 7:

8:
$$\operatorname{idx}_R \coloneqq (\operatorname{idx}, T - k)$$

```
if k = 0 then
9:
```

```
return Recover(\mathcal{P}_R, act<sub>R</sub>, idx<sub>R</sub>)
10:
```

```
else if k = T then
11:
```

```
return Recover(\mathcal{P}_L, act<sub>L</sub>, idx<sub>L</sub>)
12:
```

```
else
13:
```

```
Dict_L := Recover(\mathcal{P}_L, act_L, idx_L)
14:
```

 $Dict_R := Recover(\mathcal{P}_R, act_R, idx_R)$ 15:

```
return Dict := Dict_L \sqcup Dict_R
16:
```

Solution 3: Vandermonde sharing

(a) Vandermonde: $O((N/\log N)^{\log N})$ shares/party

Contour plots of the number of shares/party, as a function of N and T.

rty (b) Replicated: up to $\binom{N-1}{N-T} \approx 2^N$ shares/party

The short secret sharings presented here can be sampled distributively.

Conclusion

Conclusion

Scheme	
Shamir	
Replicated	
Coupon collector	
Vandermonde	0

Shamir vs tailored secret sharing in lattice-based threshold cryptography

Conclusion

- We can use Shamir sharing to distribute the Raccoon signature scheme efficiently
- Take-away: we can tailor secret sharings to lattice-based constructions for more properties
 - Shortness requirements are natural in this setting • We can weaken privacy to only pseudo-uniformity of the public key

 - Our instantiations:
 - Replicated secret sharing (up to 16 parties)
 - Vandermonde sharing (up to 64 parties)
 - Coupon collector problem: scales to larger thresholds, but has a gap between privacy and correctness thresholds
- Applications: Ο
 - DKG + Identifiable aborts in Threshold Raccoon (using partial verification keys) ^o A compact threshold ML-DSA-like signature scheme for $N \leq 8$

Questions?

