
 Secret Sharing Schemes for Lattice-
Based Threshold Cryptography

Guilhem Niot, joint works with PQShield & Friends

Workshop on secret sharing schemes - May 2025

1

1. Background

2

Problem: distributing cryptographic primitives

3

f𝗌𝗄 f(𝗌𝗄)f(𝗌𝗄)

Cryptographic primitive of interest

Problem: distributing cryptographic primitives

3

keygen primitive

f(𝗌𝗄)

Centralized setting

f𝗌𝗄 f(𝗌𝗄)f(𝗌𝗄)

Cryptographic primitive of interest

Problem: distributing cryptographic primitives

4

What if the party is corrupted or becomes unresponsive…

Question: can we split the trust among several parties?

f𝗌𝗄 f(𝗌𝗄)f(𝗌𝗄)

Cryptographic primitive of interest

Problem: distributing cryptographic primitives

4

What if the party is corrupted or becomes unresponsive…

Question: can we split the trust among several parties?

(T, N) = (3,6)

Interactive protocol to distribute the primitive:
 -out-of- parties can collaborate to compute

the function and parties cannot.
T N

T − 1
f(𝗌𝗄)

f𝗌𝗄 f(𝗌𝗄)f(𝗌𝗄)

Cryptographic primitive of interest

Share𝗌𝗄 𝗌𝗄Reconstruct

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Building block: secret sharings

Individual shares

 shares: can reconstruct

 shares: is hidden

(𝗌𝗄𝟣, . . . , 𝗌𝗄𝖭)

T 𝗌𝗄
≤ T − 1 𝗌𝗄

5

Building block: Shamir secret sharing

6

𝗌𝗄

𝗌𝗄secret

Building block: Shamir secret sharing

7

𝗌𝗄

𝗌𝗄secret

curve of degree T − 1

Building block: Shamir secret sharing

8

𝗌𝗄secret

curve of degree T − 1

𝗌𝗄

shares = points of

“Through points goes only exactly one curve of
degree ”

T
T − 1

Here, reconstruction of is linear𝗌𝗄

Building block: more secret sharings…

9

• Additive sharing

• CRT-based sharing

• Error correcting code based sharing

Shamir secret sharing

Which sharing should I choose?

10

It depends on the function :

• Some operations are easier with given secret sharings

f

Which sharing should I choose?

10

It depends on the function :

• Some operations are easier with given secret sharings

f

It depends on the security model and access structure:

• Some sharings allow error detection, or more complex access structures

2. Lattice-based cryptography

11

Let’s first try to distribute it with Shamir’s sharing!

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short

•

•

•

•

• If not in , restart

•

• Output

r
w = A ⋅ r
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

12

Example: ML-DSA signatures

𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short

•

•

•

•

• If not in , restart

•

• Output

r
w = A ⋅ r
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

13

Example: ML-DSA signatures

Some operations are especially hard to
distribute

Sampling of short vectors
Comparison, used for rejection sampling

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

14

A first step towards a solution: Raccoon

• Sample a short

•

•

•

•

• If not in , restart

•

• Output

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

Let’s remove the rejection sampling!

15

A first step towards a solution: Raccoon
Unforgeable under

Hint-MLWE
SelfTargetMSIS

Hint-MLWE assumption [KLSS23].

 is pseudorandom even if given

Q “hints”:

 for

(A, 𝗏𝗄)

(ci, zi := ci ⋅ 𝗌𝗄 + ri) i ∈ [Q]

As hard as if

MLWEσ

σr ≥ Q ⋅ ∥c∥ ⋅ σ

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short

•

•

•

•

• If not in , restart

•

• Output

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

| vk | | sig |

2.3 kB 11.5 kB

16

A first step towards a solution: Raccoon
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short

•

•

•

•

• If not in , restart

•

• Output

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

Now, can we distribute short vector sampling?
i.e. sample short , such that parties do not
learn

r T − 1
r

17

A first step towards a solution: Raccoon
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short

•

•

•

•

• If not in , restart

•

• Output

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

Now, can we distribute short vector sampling?
i.e. sample short , such that parties do not
learn

r T − 1
r

Idea: sample short vectors, and sum them

• Party samples short

• Define

T
i ri

r = ∑ ri

Threshold Raccoon
Shamir sharing on secret 𝗌𝗄 ∈ ℛℓ

q

Sample polynomial s.t.

• and

• Partial signing keys

f ∈ ℛℓ
q[X]

f(0) = 𝗌𝗄 deg f ≤ T − 1
𝗌𝗄i := [[𝗌k]]i = f(i)

With a set of shares, reconstruct via Lagrange
interpolation

S ≥ T 𝗌𝗄

𝗌𝗄 = ∑
i∈S

LS,i ⋅ [[𝗌𝗄]]i

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

18

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

•

•

• Output

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, yi
wi = A ⋅ ri + yi

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

First (insecure) attempt

19

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

•

•

• Output

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of
wi
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, yi
wi = A ⋅ ri + yi

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

20

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of
wi
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, yi
wi = A ⋅ ri + yi

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

20

But, is small vs is large

 Leaks

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri, yi
wi = A ⋅ ri + yi

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

Prevent ROS attack with commit-reveal of

But, is small vs is large

 Leaks

Solution: add a zero-share :

Derived with a PRF, using pre-shared pairwise
keys

Any set of values is uniformly random

wi

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Δi

< T Δi

∑i∈S Δi = 0
+Δi

21

3. Can we do more?

22

Can we do more?

23

Further problems to solve:

• Detecting malicious behaviour in ThRaccoon

The use of zero-shares during signing prevents partial verification as in
the classical setting.

Can’t use NIZK either as PRF are inefficient to prove.

• Can we really not distribute rejection sampling?

Let’s generalize our solution for short vector sampling

24

Idea: sample short vectors, and sum them

• Party samples short

• Define

T
i ri

r = ∑ ri

What we did: perform the complex operation locally, then
aggregate the results

Let’s generalize our solution for short vector sampling

25

What we did: perform the complex operation locally, then
aggregate the results

Can we

• In ThRaccoon, apply this to the entire signature computation to remove the
use of zero shares?

Let’s generalize our solution for short vector sampling

25

What we did: perform the complex operation locally, then
aggregate the results

Can we

• In ThRaccoon, apply this to the entire signature computation to remove the
use of zero shares?

Answer: Yes, but only if we possess a short partial secret for party .i

Let’s generalize our solution for short vector sampling

25

What we did: perform the complex operation locally, then
aggregate the results

Can we

• In ThRaccoon, apply this to the entire signature computation to remove the
use of zero shares?

Answer: Yes, but only if we possess a short partial secret for party .i

• Apply this to rejection sampling?
Answer: Yes, but again only if we possess a short partial secret.

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

A new class of secret sharings
Short secret sharing.

Individual pool of short shares

 shares: can recover

Reconstruction vector with small coefficients

 shares: can’t recover

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄
26

𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

ThRaccoon with Short Secret Sharing

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)

Security.

• is short hides it.

• Prove security with Hint-MLWE

c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri

27

Security.

• is short hides it.

• Prove security with Hint-MLWE

Identifiable aborts.

• Each is a valid public key (is
short), for

 Each is a valid signature for

• Identifiable abort is as easy as verifying partial
signatures!

• Akin to abort identification in Sparkle (Threshold
Schnorr): perform partial verifications.

c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri

𝗏𝗄(j)
i = [A I] ⋅ s(j)

i s(j)
i

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

→ (c, zi) ⟨LS,i, (𝗏𝗄(j)
i)j⟩

𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)

28

ThRaccoon with Short Secret Sharing

Threshold ML-DSA-like

29

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short

•

•

•

•

• If not in , restart

•

• Output

r
w = A ⋅ r
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• If not in , restart

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

zi S

(c, ∑i∈S zi)

𝖥𝗂𝗇𝖺𝗅𝗅𝗒 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Threshold ML-DSA-like

30

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• If not in , restart

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

zi S

(c, ∑i∈S zi)

𝖥𝗂𝗇𝖺𝗅𝗅𝗒 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Comparable to Dilithium size:
2.4kB at NIST level II!

| vk | | sig |

2.6 kB 2.6 kB

For ,N ≤ 8

4. How to concretely sample short sharings

31

Short Secret Sharing

Individual pool of short shares

 shares: can recover + reconstruction vector
 with small coefficients

 shares: can’t recover

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

32

Short Secret Sharing

Individual pool of short shares

 shares: can recover + reconstruction vector
 with small coefficients

 shares: can’t recover

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Observation: hard to not leak the secret with these constraints…

But, in a lattice-based scheme, it is fine to:

Leak an offset of the secret:

Leak hints on the secrets , for large enough

 We just need to look uniform

𝗌𝗄 = 𝗌𝗄𝗌𝖺𝖿𝖾 + 𝗌𝗄𝗅𝖾𝖺𝗄
h = c ⋅ 𝗌𝗄 + y y

→ [A I] ⋅ 𝗌𝗄
32

1

Solution 1: Replicated Secret Sharing
Idea: sample a share for any possible set of corrupted parties.

2

33

3

s{1}

(T, N) = (2,3)

1. For any set of parties,
sample a uniform share .

𝒯 T − 1
s𝒯

1

Solution 1: Replicated Secret Sharing

2

34

3

s{1}

(T, N) = (2,3)

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

𝒯 T − 1
s𝒯

1

Solution 1: Replicated Secret Sharing

2

35

3

s{1}

(T, N) = (2,3)

s{3}

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

𝒯 T − 1
s𝒯

1

Solution 1: Replicated Secret Sharing

2

36

3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

2. Distribute to the parties in
.

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

1

Solution 1: Replicated Secret Sharing

2

1. For any set of parties,
sample a uniform share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

37

3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.

Solution 1: Replicated Secret Sharing

Properties:

Reconstruction coefficients 0 or 1

When corrupted parties, at least
one remains hidden.

 guarantees that remains protected

< T
s𝒯

→ 𝗌𝗄

38

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

Solution 1: Short Replicated Secret Sharing

Properties:

Reconstruction coefficients 0 or 1

When corrupted parties, at least
one remains hidden.

 guarantees that looks
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄

39

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a short share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

1. For any set of parties,
sample a short share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

Solution 1: Short Replicated Secret Sharing

Properties:

Reconstruction coefficients 0 or 1

When corrupted parties, at least
one remains hidden.

 guarantees that looks
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄

Caveat: This scheme has a number

of shares that is equal to .(N
T − 1)

40

Idea: sample a share for any possible set of corrupted parties.

Solution 2: Coupon collector problem

Full collection
 cardsN

41

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1

 cardsN

41

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1 2

 cardsN

41

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1 2 3

 cardsN

41

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1 2 3 4

… How many draws to
get the full collection?

~ N log N

 cardsN

41

Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

42

Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties:
• Reconstruction threshold: Minimum number of parties needed to gather

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties such that at least one

share is not known (with overwhelming probability)

T

T′￼

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

42

Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties:
• Reconstruction threshold: Minimum number of parties needed to gather

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties such that at least one

share is not known (with overwhelming probability)

T

T′￼

Bounds are exactly bounds of the coupon collector problem.

Both , with gap

T, T′￼

T, T′￼ ∼ N log N ≈
N→∞

1 + 128/log N

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

42

Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties:
• Reconstruction threshold: Minimum number of parties needed to gather

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties such that at least one

share is not known (with overwhelming probability)

T

T′￼

Bounds are exactly bounds of the coupon collector problem.

Both , with gap

T, T′￼

T, T′￼ ∼ N log N ≈
N→∞

1 + 128/log N

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

43

Caveat: This secret sharing is ramp (gap between
correctness and privacy thresholds) and only holds in a

selective security model.

Ratio achieved by our sharing as a function of . The
dotted line corresponds to an ideal asymptotic .

T/T′￼ T′￼

T/T′￼ = 1

Solution 2: Coupon collector problem

44

It is possible to amplify the properties for a lower gap. are
amplification parameters.

m, p

Solution 3: Vandermonde sharing

Solution 3: Vandermonde sharing

Solution 3: Vandermonde sharing

Contour plots of the number of shares/party, as a function of and .N T

DKGs

The short secret sharings presented here can be sampled distributively.

48

Conclusion

49

Conclusion

50

Scheme Shares/party

Shamir 1 1

Replicated 1

Coupon collector

Vandermonde 1

2N

m ⋅ p 1 + O (λ/m + ln λ
ln(np))

O ((N
log N)

log N

)

Tcorrectness
Tprivacy

Shamir vs tailored secret sharing in lattice-based threshold cryptography

Sharing of secret key

Shamir

Small
TRaccoon with Id Abort

[dPENP25]

TRaccoon [PKM+24],[EKT24]
(-) No Identifiable abort

(-) no DKG, no robustness
(+) big threshold, small com cost

(+) Efficient Id abort
(+) possible DKG

Finally [dPN25]
Th-MLDSA [BCdP+25]

(+) Compatible with ML-DSA

(—) Small threshold only

!

Pelican [ENP24]
(-) 2/3 honest majority

(-) linear communication in T
(+) Robustness & DKG

Conclusion
We can use Shamir sharing to distribute the Raccoon signature scheme efficiently

Take-away: we can tailor secret sharings to lattice-based constructions for more
properties

Shortness requirements are natural in this setting

We can weaken privacy to only pseudo-uniformity of the public key

Our instantiations:

Replicated secret sharing (up to 16 parties)

Vandermonde sharing (up to 64 parties)

Coupon collector problem: scales to larger thresholds, but has a gap between privacy and
correctness thresholds

Applications:

DKG + Identifiable aborts in Threshold Raccoon (using partial verification keys)

A compact threshold ML-DSA-like signature scheme for N ≤ 8

52

Questions?

53

