Secret Sharing Schemes for Lattice-
Based Threshola Cryptography

Guilhem Niot, joint works with PQShield & Friends

Workshop on secret sharing schemes - May 2025

SHIELD

1. Background

Problem: distributing cryptographic primitives

Cryptographic primitive of interest

Problem: distributing cryptographic primitives

Cryptographic primitive of interest

Centralized setting

J(sk)

keygen orimitive

Problem: distributing cryptographic primitives
Cryptographic primitive of interest

What if the party is corrupted or becomes unresponsive...
Question: can we split the trust among several parties?

Problem: distributing cryptographic primitives
Cryptographic primitive of interest

What if the party is corrupted or becomes unresponsive...
Question: can we split the trust among several parties?

Interactive protocol to distribute the primitive:
T-out-of-N parties can collaborate to compute £(sk)
the function and T — 1 parties cannot.

(T,N) = (3,6)

Building block: secret sharings

o Individual shares (ski, ..., skn)

o T shares: can reconstruct sk

o < T — 1 shares: sk is hidden

Building block: Shamir secret sharing

® secret sk

* sk

Building block: Shamir secret sharing

® secret sk

curve of degree T — 1

sk

Building block: Shamir secret sharing

® secret sk
/_~ curve of degree T'— 1 \
shares = points of /\~ / \
sk

Here, reconstruction of sk is linear) |
Through T points goes only exactly one curve of

degree T — 17

Building block: more secret sharings...

* Additive sharing
 CRT-based sharing
* Error correcting code based sharing

o Shamir secret sharing

Which sharing should | choose?

It depends on the function f-

 Some operations are easier with given secret sharings

Which sharing should | choose?

It depends on the function f-

 Some operations are easier with given secret sharings

It depends on the security model and access structure:

 Some sharings allow error detection, or more complex access structures

10

2. Lattice-based cryptography

Let’s first try to distribute it with Shamir’s sharing!

Example: ML-DSA signatures

« vk = A - sk + e, for sk, e short

e Sample a shortr

e W=A"r

» Wr =W,

e ¢ = H(Wy,msg)

e Z=c-Sk+r

e If Znotin S, restart

« h=w;— |Az — ¢ - VK]
» Output sig = (c,z,h)

1%

12

Example: ML-DSA signatures

« vk = A - sk + e, for sk, e short

Some operations are especially hard to

« Sample a shortr distribute
e W=A"r
.« W = |W], o Sampling of short vectors

. ¢ = H(W-. : L :
¢ = H(wr, msg) o Comparison, used for rejection sampling

e Z=c-sk+r

e IfZnotin S, restart

« h=w:—|Az—-c-vk]|,

» Output sig = (c,z,h)

13

A first step towards a solution: Raccoon

« vk = A - sk + e, for sk, e short

« Sampleashortr,y

c W=A'r+Yy

» Wr = |W],

e ¢ = H(Wy,msg)
eZz=c-sk+r

« h=w;— |Az — ¢ - VK]
» Output sig = (c,z, h)

1%

14

Let's remove the rejection sampling!

A first step towards a solution: Raccoon

« vk = A - sk + e, for sk, e short

« Sampleashortr,y
c W=A:r+y

+ Wr = [W],

e ¢ = H(Wy,msg)

e Z=c-sk+r

« h=w;— |Az — ¢ - VK]
» Output sig = (c,z, h)

1%

Unforgeable under
¢ Hint-MLWE
¢ SelfTargetMSIS 2.3 kB 11.5 kB

15

| vk | | sig |

Hint-MLWE assumption [KLSS23].

(A, vk) is pseudorandom even if given
Q “hints”:

As hard as MLWE, if
6, 24/0 - llcll - o

A first step towards a solution: Raccoon

« vk = A - sk + e, for sk, e short

« Sampleashortr,y
c W=A'r+Yy

» Wr = |W],

e ¢ = H(Wy,msg)

e Zz=c-sk+r

« h=w;— |Az — ¢ - VK]
» Output sig = (c,z, h)

1%

Now, can we distribute short vector sampling?

i.e. sample short r, such that T — 1 parties do not

learn r

16

A first step towards a solution: Raccoon

Now, can we distribute short vector sampling?
« vk = A - sk + e, for sk, e short

i.e. sample short r, such that T — 1 parties do not
learn r

« Sampleashortr,y
c W=A'r+Yy

° WT p— LW_‘I/
e ¢ = H(Ww,, msg)

ldea: sample 1 short vectors, and sum them

» Party 1 samples short r;

e Z=cC-Sk+Tr

« h=w— |Az— - vk], o DeflneI'ZZrl

» Output sig = (c,z, h)

17

Threshold Raccoon

Shamir sharing on secret sk € 9?5

« vk = A - sk + e, for sk, e short Sample polynomial f € %g[X] S.t.

« f(O)=skanddegf<T—-1
» Partial signing keys sk; := [[sk]]; = f(i)

« Sampleashortr,y
c W=A'r+y

* Wt = LW“I/

. ¢ = H(w-, msg) With a set § of > T shares, reconstruct sk via Lagrange

interpolation

e Z=c-Sk+r

« h=w:— |[Az— - Vk], Sk:ZLS,i°[[Sk]]i

» Output sig = (c,z, h)
€S

18

Threshold Raccoon

First (insecure) attempt

. vk = A - sk + e, for sk, e short ThRaccoon . Sign(sk, msg) — sig
Round 1:

« Sample ashortr;,y;

+ W, =A-1;+Y,

e Sample ashortr,y » Broadcast cmt; = H_(W;)
* W=A-T+Yy Round 2:

« W= |W|, » Broadcast w;

» ¢ = H(Wy, msg) Round 3:

eZ=c-sk+r -W=Ziwi

« h=w;—|Az—c-vk]|, . ¢ = H(W, msg)

» Output sig = (¢, z, h) » Broadcastz; = Lg; - ¢ - [sk]l; + r;

Combine: the final signature is

(c. ZieS)

19

Threshold Raccoon

First (insecure) attempt

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
« Sample a shortr;,y;

+ W, =A-1;+Y,

« Broadcastcmt; = H__ (W)

Round 2:
« Broadcast w;

Round 3:

« W= Ziwi
e ¢ = H(w, msg)
» Broadcast z; = Lg; - ¢ - [sk]|; + r;

Combine: the final signature is

(c, ZieS Z;)

20

Threshold Raccoon

First (insecure) attempt

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ But, r issmallvs L¢. - c - [[sk], is large . Sample a short r, y,

° . = A N .
— Leaks [[sk]|. . Y
» Broadcastcmt; = H__(W.)

Round 2:
» Broadcast w;

Round 3:

« W= Ziwi
e ¢ = H(w, msg)
» Broadcastz; = Lg; - ¢ - [sk]|; + r;

Combine: the final signature is

(c, ZieS Z;)

20

Threshold Raccoon

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ BUt, I'l iS Sma” VS LS,Z - C [[Sk]]l iS Iarge o Samp|e a short ri, Yi

° . = A N .
— Leaks [[sk]]. iy Y
» Broadcastcmt; = H__(W.)

Round 2:

* Solution: add a zero-share A : » Broadcast w;
Round 3:

« ¢ = H(w, msg)
» Broadcastz; = Lg; - ¢ - [[sk]]; + r; +A,

o Derived with a PRF, using pre-shared pairwise
keys

© Any set of < T values A, is uniformly random

© Zieg Ai =0 Combine: the final signature is

(c, ZieS Z;)

21

3. Can we do more?

Can we do more?

Further problems to solve:
* Detecting malicious behaviour in ThRaccoon

O The use of zero-shares during signing prevents partial verification as in
the classical setting.

o Can’t use NIZK either as PRF are inefficient to prove.

 Can we really not distribute rejection sampling?

23

Let’s generalize our solution for short vector sampling

ldea: sample 1 short vectors, and sum them

o Party 1 samples short r;

e Definer = Z I,

What we did: perform the complex operation locally, then
aggregate the results

24

Let’s generalize our solution for short vector sampling

What we did: perform the complex operation locally, then
aggregate the results

Can we

* |n ThRaccoon, apply this to the entire signature computation to remove the
use of zero shares?

25

Let’s generalize our solution for short vector sampling

What we did: perform the complex operation locally, then
aggregate the results

Can we

* |n ThRaccoon, apply this to the entire signature computation to remove the
use of zero shares?

Answer: Yes, but only if we possess a short partial secret for party 1.

25

Let’s generalize our solution for short vector sampling

What we did: perform the complex operation locally, then
aggregate the results

Can we

* |n ThRaccoon, apply this to the entire signature computation to remove the
use of zero shares?

Answer: Yes, but only if we possess a short partial secret for party 1.

* Apply this to rejection sampling?
Answer: Yes, but again only if we possess a short partial secret.

25

A new class of secret sharings

Short secret sharing.

o Individual pool of short shares sk; = (sl(.l), ng), co)

o T shares: can recover sk

+ Reconstruction vector L ; with small coefficients

o < T — 1 shares: can’t recover sk

26

ThRaccoon with Short Secret Sharing

ShortSS . Sign(sk, msg) — sig Security.

Round 1:
« Sample a short r;

o Wi — :A I]) ri
» Broadcastcmt; = H__ (W)

Round 2:
» Broadcast w;

e ¢ (Lg;, sk;) is short — r; hides it.

* Prove security with Hint-MLWE

How to Shortly Share a Short Vector

DKG with Short Shares and Application to Lattice-Based
Threshold Signatures with Identifiable Aborts

Rafael del Pino! Thomas Espitau’ Guilhem Niot"? ©, and Thomas
|)
Prest!

» Broadcastz; = ¢ - (Lg,, skj) + I,

Combine: the final signature is

(c, ZieS Z;)

27

ThRaccoon with Short Secret Sharing

ShortSS

.Sign(sk, msg) — sig

Round 1:

e Samp
° Wl —

e ashortr;

A I 1,

» Broadcastcmt; = H__ (W)

Round 2:
» Broadcast w;

» Broadcastz; = ¢ - (Lg,, skj) + I,

Combine: the final signature is

(c, ZieS Z;)

28

Security.
e ¢ (Lg;, sk;) is short — r; hides it.

* Prove security with Hint-MLWE

Identifiable aborts.

. Each vk = [A 1] - s is a valid public key (s\/is
short), for sk; = (Sgl), ng),)
— Each (c, z;) is a valid signature for (L ,, (vkgj))j)

* |dentifiable abort is as easy as verifying partial
signatures!

* Akin to abort identification in Sparkle (Threshold
Schnorr): perform partial verifications.

Threshold ML-DSA-like

Finally . Sign(sk, msg) — sig
« Sample a shortr Round 1:
e W=A"r » Sample a short r;
. wr = |wl, *wi=lA I
» ¢ = H(Wr, msg) Broadcast cmt; = H__.(W;)

rZ=cCosk4T Round 2:
e If Znotin S, restart

« h=w; - |Az —c- k]|,
» Output sig = (c,z, h)

» Broadcast w;

: : - 2; = (Lg; sky) +1;
Finally! A Compact Lattice-Based Threshold ’

Signature

e If z; not in S, restart

Combine: the final signature is

(c, ZieS Z;)

Rafael del Pino' @ and Guilhem Niot!:?

29

Threshold ML-DSA-like

For N < 8, Finally . Sign(sk, msg) — sig
_ Round 1:
| vk | | sig | « Sample a shortr;
2.6 kB 2.6 kB cwi=lA Ik
 Broadcast cmt; = H__.(W;)

Round 2:

ceay s . Broadcast w.
Comparable to Dilithium size: !

2.4kB at NIST level !

: : - 2; = (Lg; sky) +1;
Finally! A Compact Lattice-Based Threshold ’

Signature

e If z; not in S, restart

Combine: the final signature is

(c, ZieS Z;)

Rafael del Pino' @ and Guilhem Niot!:?

30

4. How to concretely sample short sharings

How to Shortly Share a Short Vector

DKG with Short Shares and Application to Lattice-Based
Threshold Signatures with Identifiable Aborts

Rafael del Pino' ©, Thomas Espitau' @, Guilhem Niot"? @, and Thomas
Prest

31

Short Secret Sharing

o Individual pool of short shares sk; = (Sl(.l), ng), Co)

o 7T shares: can recover sk + reconstruction vector @
L . with small coefficients

o < T — 1 shares: can’t recover sk

32

Short Secret Sharing

o Individual pool of short shares sk; = (sl(.l), Sl(.z), Co)

o 7T shares: can recover sk + reconstruction vector @
L . with small coefficients

o < T — 1 shares: can’t recover sk

Observation: hard to not leak the secret with these constraints...

But, in a lattice-based scheme, it Is fine to:

o Leak an offset of the secret: sk = sk ¢, + SKe,1

° Leak hints on the secrets h = ¢ - sk + y, for large enough y
— We just need [A 1] - sk to look uniform

32

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties,
sample a uniform share So-. Si1)

(I,N) = (2,3)

33

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties,
sample a uniform share So-. S0}

S(1)

(I,N) = (2,3)

34

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties,
sample a uniform share So-. S(3)

S(1) S(2) ”

(I,N) = (2,3)

35

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties,
sample a uniform share S.

/5{3}

2. Distribute s to the parties in ”
IN\T .

2

(I,N) = (2,3)

36

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties,
sample a uniform share S.

//S{S}

2. Distribute s to the parties in ”
IN\T .

2
3. Definesk =) _sg-

(I,N) = (2,3)

37

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties, Properties:

sample a uniform share S--. . .
P J o Reconstruction coefficients 0 or 1

2. Distribute Sg-to the parties In O When < T corrupted parties, at least

[N]\P/”_ one Sg- remains hidden.

3. Define sk =) 7 Sg- — guarantees that sk remains protected

38

Solution 1: Short Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties, Properties:

sample a short share S-. . .
P T o Reconstruction coefficients 0 or 1

2. Distribute Sg-to the parties In O When < T corrupted parties, at least

[N]\agf- one Sg- remains hidden.

3. Define sk = Zg ST — guarantees that [A I - sk looks
uniform (MLWE assumption)

39

Solution 1: Short Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. ForanysetJ Caveat: This scheme has a number

sample a shor N) ~ efficients O or 1

of shares that is equal to
T —1

2. Distri(/kiute St ced parties, at least
IN\T . one S remains hidden.

3. Define sk = Zg ST — guarantees that [A I - sk looks
uniform (MLWE assumption)

40

Solution 2: Coupon collector problem

Full collection
N cards

41

Solution 2: Coupon collector problem

0 0
9 ¥

Full collection

N cards 0

A A
v v

Draw with A
replacement)
v v

41

<=

l\<ﬂ)

Solution 2: Coupon collector problem

<=

Full collection
N cards

<i»

<=

<a»

<>
<>

Draw with

B

& 8
v

replacement

1 2

41

Solution 2: Coupon collector problem

Full collection

N cards
§ 4

Draw with A
replacement)
v v

1

.
J

((@"3

Iy S8

/Y AW 5

N\\ /// ~z/

\\\\\\ &/
LRI

™

00"
Q2

> -
’ >
'

S
4
\ LI
RAY,
S

<=

<i»

<=

<®

Solution 2: Coupon collector problem

K| A A
- v v
Full collection B
N cards ¥ ¥
A A
v v
Draw with A How many draws to

get the full collection?
replacement

& 8
v

~Nlog N
1 2 3 4

Solution 2: Coupon collector problem

Full collection sk = $ + S + 85 + S
N shares Example:
e S1,....,8y_ « DV and

Sy = sk — ZJ,<N S,

Solution 2: Coupon collector problem

Full collection sk = $ + S + 85 + S
N shares Example:
. . * Sl’ co e SN—I <« @é\.]_l and
Idea: Randomly distribute one share per party. sy=sk— Y s,
J<N

Desired properties:

* Reconstruction threshold: Minimum number of parties 1 needed to gather
all the shares? (with overwhelming probability)

 Security threshold: Maximum number of parties 7" such that at least one
share is not known (with overwhelming probability)

42

Solution 2: Coupon collector problem

Full collection sk = $ + S + 85 + S
N shares Example:
. . * Sl’ co e SN—I <« @é\.]_l and
Idea: Randomly distribute one share per party. sy=sk— Y s,
J<N

Desired properties:

* Reconstruction threshold: Minimum number of parties 1 needed to gather
all the shares? (with overwhelming probability)

 Security threshold: Maximum number of parties 7" such that at least one
share is not known (with overwhelming probability)

Bounds 7, 7" are exactly bounds of the coupon collector problem.
Both 7, 7" ~ Nlog N, withgap =~ 14 128/logN

N— o0
42

Solution 2: Coupon collector problem

Full collection sk = $ + S + 85 + S
N shares Example:
C L ¢+ S1,...,Sv_; <« PV land
ldea: Randomlv distribiite one share ner nartv ST - BN

Caveat: This secret sharing is ramp (gap between

Desired | correctness and privacy thresholds) and only holds in a
* Recon selective security model. 0 gather
allthesric. -

B S A 4

 Security threshold: Maximum number of parties 7" such that at least one
share is not known (with overwhelming probability)

Bounds 7, 7" are exactly bounds of the coupon collector problem.
Both 7, 7" ~ Nlog N, withgap =~ 14 128/logN

N— o0
43

Solution 2: Coupon collector problem

It is possible to amplify the properties for a lower gap. m, p are
amplification parameters.

‘.’““‘\‘\ — & (map) (327 1)
69~ ’\'\'\.\‘h* = (m,p) = (32,8)
,I o9 o | * (m,p) = (32,16)

4 (LA --- Lower bound [

NN TEEE TEEE TEE TEE TEE TEE TEEE TEE TEEE TEEE TEE TEEE TEEE TEE TEE TEE TEE TEEE TEE TEEE TEE TEE TEE TEE TEEE TEE TEE TEE TEE TEEE TEE TEE EE TEE TEE TEE TEE TEE TEET TEE EE TEET TEET TEET EET EE TaE a aae -.

0 200 400 600 800 1,000

Ratio 7/71" achieved by our sharing as a function of 7". The
dotted line corresponds to an ideal asymptotic 7/7" = 1.

44

Solution 3: Vandermonde sharing

Vandermonde’s identity
ForO <c¢ <N:

(-£0-(75

r's- Distribution theory interpretation: The sum of two binomials is a binomial:

B(m,p) + B(n,p) ~ B(m + n,p) (7)

“lr Set theory interpretation: let us note Ss 1 the subsets of S of cardinality T.
> Any subset act € Sgq . Ny, can be decomposed uniquely as:

act, € {1,...,c}

actg C {c

> Eq. (6) follows from enumerating these decompositions.

act =act; Uactg, where {

Vandermonde secret sharing [DDB%5] turns this into a secret sharing:

-» Enumerating all the possible disjunctions of the form in Eq. (8)
-» For each disjunction, share the secret in two

> Recursively share the first half across members of act;

> Recursively share the second half across members of act;

Solution 3: Vandermonde sharing

Algorithm 1 Share(x, P, T,1dx = (T)) — Dict Algorithm 2 Recover(P,act,1dx = (T)) — Dict
1: N=|P| 1: N=|P|, T = |act]
2: if T =1 then 2: if T =1 then
3: returnDict := {user: {1dx : x} | user € P} 3: returnDict := {user: 1dx | user € P}
4: else 4: else
5. Dict = {user: {:}|user e P}.c=|N/2] 5. ¢ = |[N/2]. Parse P = P, U Pg, with P the c
6: Parse P = P U Pg, with P, the ¢ smallest ele- smallest elements of P
ments of P 6: k=|P|,acty =actnNP,actg=actnNPg
7. fork=max(0,T—N+c),...,min(c,T) do 7: 1dx; == (1dx,k)
8: 1dx; := (1dx, k) 8: 1dxg:= (1dx,T —k)
9: 1dxg := (1dx, T — k) 9: ifk =0 then
10: if k = O then 10: return Recover(Pg, actg, 1dxR)
11: Dict := Dict U Share(x, Pg, T, 1dXR) 11: elseif k = T then
12: else if k = T then 12: return Recover(P;,act, 1dx,)
13: Dict :=Dict UShare(x, P, T, 1dx,) 13: else
14: else 14: Dict, := Recover(P,,act;, 1dx;)
15: Xo < X 15: Dictg := Recover(Pg,actg, 1dxg)
16: X1 = (X — Xp) mod ¢ 16: return Dict .= Dict, UDictpy
17: Dict, := Share(x, P, k, 1dx;)
18: Dictg := Share(x,Pr, T — k, 1dXR)
19: Dict:=DictuDict, UDictpy

20: returnDict

Solution 3: Vandermonde sharing

60- 60-
40- 40-
— —
20- 20-
20 40 60
N
(a) Vandermonde: O((N/ log N)'°¢N) shares/party (b) Replicated: up to (") ~ 2" shares/party

Contour plots of the number of shares/party, as a function of /NV and 1.

DKGs

The short secret sharings presented here can be sampled distributively.

48

Conclusion

Conclusion

I'correctness

Scheme Shares/party T

privacy
Shamir 1 1
Replicated N 1
Alm+1InA
Coupon collector m-p 1+ 0

In(np)

Vandermonde

50

Shamir vs tailored secret sharing in lattice-based threshold cryptography

(-) No Identifiable abort

TRaccoon [PKM+24],[EKT24] (-) no DKG, no robustness
(+) big threshold, small com cost
N . (-) 2/3 honest maijority
Pelican [ENPZA] (-) linear communication in T
(+) Robustness & DKG

S\(\Qm\(

\

Sharing of secret key

\\Smau

. .

R TRaccoon with Id Abort (+) Efficient Id abort
[dPENP25] (+) possible DKG

Finally [dPN25]

C tible with ML-DSA
Th-MLDSA [BCAP+25] e

. *
..

(—) Small threshold only

Conclusion

¢+ We can use Shamir sharing to distribute the Raccoon signature scheme efficiently

¢+ Take-away: we can tailor secret sharings to lattice-based constructions for more
properties

O Shortness requirements are natural in this setting
o \We can weaken privacy to only pseudo-uniformity of the public key
o Qur instantiations:

Replicated secret sharing (up to 16 parties)

Vandermonde sharing (up to 64 parties)

Coupon collector problem: scales to larger thresholds, but has a gap between privacy and
correctness thresholds

o Applications:
o DKG + ldentifiable aborts in Threshold Raccoon (using partial verification keys)

O A compact threshold ML-DSA-like signature scheme for N < 8

52

Questions?

