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1. Background
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Problem: distributing cryptographic primitives
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f𝗌𝗄 f(𝗌𝗄)f(𝗌𝗄)

Cryptographic primitive of interest



Problem: distributing cryptographic primitives
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keygen primitive 

f(𝗌𝗄)

Centralized setting

f𝗌𝗄 f(𝗌𝗄)f(𝗌𝗄)

Cryptographic primitive of interest



Problem: distributing cryptographic primitives
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What if the party is corrupted or becomes unresponsive…

Question: can we split the trust among several parties?

f𝗌𝗄 f(𝗌𝗄)f(𝗌𝗄)

Cryptographic primitive of interest



Problem: distributing cryptographic primitives
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What if the party is corrupted or becomes unresponsive…

Question: can we split the trust among several parties?

(T, N) = (3,6)

Interactive protocol to distribute the primitive: 
 -out-of-   parties can collaborate to compute 

the function and  parties cannot.
T N

T − 1
f(𝗌𝗄)

f𝗌𝗄 f(𝗌𝗄)f(𝗌𝗄)

Cryptographic primitive of interest



Share𝗌𝗄 𝗌𝗄Reconstruct

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Building block: secret sharings

Individual shares 


 shares: can reconstruct 


 shares:  is hidden

(𝗌𝗄𝟣, . . . , 𝗌𝗄𝖭)

T 𝗌𝗄
≤ T − 1 𝗌𝗄
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Building block: Shamir secret sharing
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𝗌𝗄

𝗌𝗄secret



Building block: Shamir secret sharing
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𝗌𝗄

𝗌𝗄secret

curve of degree  T − 1



Building block: Shamir secret sharing
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𝗌𝗄secret

curve of degree  T − 1

𝗌𝗄

shares = points of 

“Through  points goes only exactly one curve of 
degree ” 

T
T − 1

Here, reconstruction of  is linear𝗌𝗄



Building block: more secret sharings…
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• Additive sharing


• CRT-based sharing


• Error correcting code based sharing


Shamir secret sharing



Which sharing should I choose?
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It depends on the function :


• Some operations are easier with given secret sharings

f



Which sharing should I choose?
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It depends on the function :


• Some operations are easier with given secret sharings

f

It depends on the security model and access structure:


• Some sharings allow error detection, or more complex access structures



2. Lattice-based cryptography
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Let’s first try to distribute it with Shamir’s sharing!



𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short 

• 

• 


• 


• 

• If  not in , restart

• 


• Output 

r
w = A ⋅ r
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

12

Example: ML-DSA signatures



𝖬𝖫-𝖣𝖲𝖠 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short 

• 

• 


• 


• 

• If  not in , restart

• 


• Output 

r
w = A ⋅ r
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)
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Example: ML-DSA signatures

Some operations are especially hard to 
distribute 

Sampling of short vectors 
Comparison, used for rejection sampling



𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
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A first step towards a solution: Raccoon

• Sample a short 

• 

• 


• 


• 

• If  not in , restart

• 


• Output 

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

Let’s remove the rejection sampling!
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A first step towards a solution: Raccoon
Unforgeable under 

Hint-MLWE 
SelfTargetMSIS 

Hint-MLWE assumption [KLSS23].

 is pseudorandom even if given 

Q “hints”:


 for 

(A, 𝗏𝗄)

(ci, zi := ci ⋅ 𝗌𝗄 + ri) i ∈ [Q]

As hard as  if





MLWEσ

σr ≥ Q ⋅ ∥c∥ ⋅ σ

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short 

• 

• 


• 


• 

• If  not in , restart

• 


• Output 

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

| vk | | sig |

2.3 kB 11.5 kB
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A first step towards a solution: Raccoon
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short 

• 

• 


• 


• 

• If  not in , restart

• 


• Output 

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

Now, can we distribute short vector sampling? 
i.e. sample short , such that  parties do not 
learn 

r T − 1
r
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A first step towards a solution: Raccoon
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short 

• 

• 


• 


• 

• If  not in , restart

• 


• Output 

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

Now, can we distribute short vector sampling? 
i.e. sample short , such that  parties do not 
learn 

r T − 1
r

Idea: sample  short vectors, and sum them


• Party  samples short 


• Define 

T
i ri

r = ∑ ri



Threshold Raccoon
Shamir sharing on secret 𝗌𝗄 ∈ ℛℓ

q

Sample polynomial  s.t.


•  and 


• Partial signing keys 

f ∈ ℛℓ
q[X]

f(0) = 𝗌𝗄 deg f ≤ T − 1
𝗌𝗄i := [[𝗌k]]i = f(i)

With a set  of  shares, reconstruct  via Lagrange 
interpolation

S ≥ T 𝗌𝗄

𝗌𝗄 = ∑
i∈S

LS,i ⋅ [[𝗌𝗄]]i

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e
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𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short 

• 

• 


• 


• 

• 


• Output 

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)



Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri, yi
wi = A ⋅ ri + yi

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

First (insecure) attempt
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𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = A ⋅ 𝗌𝗄 + e 𝗌𝗄, e

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short 

• 

• 


• 


• 

• 


• Output 

r, y
w = A ⋅ r + y
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)



Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of 
wi
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri, yi
wi = A ⋅ ri + yi

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)
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Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of 
wi
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri, yi
wi = A ⋅ ri + yi

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)
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But,  is small vs  is large


 Leaks 

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i



Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri, yi
wi = A ⋅ ri + yi

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

Prevent ROS attack with commit-reveal of 


But,  is small vs  is large


 Leaks 


Solution: add a zero-share :   

Derived with a PRF, using pre-shared pairwise 
keys


Any set of   values  is uniformly random


wi

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Δi

< T Δi

∑i∈S Δi = 0
+Δi
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3. Can we do more?

22



Can we do more?

23

Further problems to solve:


• Detecting malicious behaviour in ThRaccoon


The use of zero-shares during signing prevents partial verification as in 
the classical setting.

Can’t use NIZK either as PRF are inefficient to prove.


• Can we really not distribute rejection sampling?



Let’s generalize our solution for short vector sampling

24

Idea: sample  short vectors, and sum them


• Party  samples short 


• Define 

T
i ri

r = ∑ ri

What we did: perform the complex operation locally, then 
aggregate the results



Let’s generalize our solution for short vector sampling

25

What we did: perform the complex operation locally, then 
aggregate the results

Can we

• In ThRaccoon, apply this to the entire signature computation to remove the 
use of zero shares?



Let’s generalize our solution for short vector sampling
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What we did: perform the complex operation locally, then 
aggregate the results

Can we

• In ThRaccoon, apply this to the entire signature computation to remove the 
use of zero shares?

Answer: Yes, but only if we possess a short partial secret for party .i



Let’s generalize our solution for short vector sampling

25

What we did: perform the complex operation locally, then 
aggregate the results

Can we

• In ThRaccoon, apply this to the entire signature computation to remove the 
use of zero shares?

Answer: Yes, but only if we possess a short partial secret for party .i

• Apply this to rejection sampling?
Answer: Yes, but again only if we possess a short partial secret.



Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

A new class of secret sharings
Short secret sharing.

Individual pool of short shares 


 shares: can recover 


Reconstruction vector  with small coefficients


 shares: can’t recover 

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄
26



𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

ThRaccoon with Short Secret Sharing

Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)

Security. 

•  is short   hides it.


• Prove security with Hint-MLWE


c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri
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Security. 

•  is short   hides it.


• Prove security with Hint-MLWE


Identifiable aborts. 

• Each  is a valid public key (  is 
short), for 


 Each  is a valid signature for 


• Identifiable abort is as easy as verifying partial 
signatures!


• Akin to abort identification in Sparkle (Threshold 
Schnorr): perform partial verifications.

c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri

𝗏𝗄( j)
i = [A I] ⋅ s( j)

i s( j)
i

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

→ (c, zi) ⟨LS,i, (𝗏𝗄( j)
i )j⟩

𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)

28

ThRaccoon with Short Secret Sharing



Threshold ML-DSA-like

29

𝖬𝖫-𝖣𝖲𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• Sample a short 

• 

• 


• 


• 

• If  not in , restart

• 


• Output 

r
w = A ⋅ r
w⊤ = ⌊w⌉ν
c = H(w⊤, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

z S
h = w⊤ − ⌊Az − c ⋅ 𝗏𝗄⌉ν

𝗌𝗂𝗀 = (c, z, h)

Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• 


• If  not in , restart


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

zi S

(c, ∑i∈S zi)

𝖥𝗂𝗇𝖺𝗅𝗅𝗒 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀



Threshold ML-DSA-like
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Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• 


• If  not in , restart


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

zi S

(c, ∑i∈S zi)

𝖥𝗂𝗇𝖺𝗅𝗅𝗒 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Comparable to Dilithium size: 
2.4kB at NIST level II!

| vk | | sig |

2.6 kB 2.6 kB

For ,N ≤ 8



4. How to concretely sample short sharings

31



Short Secret Sharing

Individual pool of short shares 


 shares: can recover  + reconstruction vector 
 with small coefficients


 shares: can’t recover 

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1
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Short Secret Sharing

Individual pool of short shares 


 shares: can recover  + reconstruction vector 
 with small coefficients


 shares: can’t recover 

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Observation: hard to not leak the secret with these constraints…

But, in a lattice-based scheme, it is fine to:

Leak an offset of the secret: 

Leak hints on the secrets , for large enough 

 We just need  to look uniform 

𝗌𝗄 = 𝗌𝗄𝗌𝖺𝖿𝖾 + 𝗌𝗄𝗅𝖾𝖺𝗄
h = c ⋅ 𝗌𝗄 + y y

→ [A I] ⋅ 𝗌𝗄
32



1

Solution 1: Replicated Secret Sharing
Idea: sample a share for any possible set of corrupted parties.

2

33

3

s{1}

(T, N) = (2,3)

1. For any set  of  parties, 
sample a uniform share .


𝒯 T − 1
s𝒯
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Solution 1: Replicated Secret Sharing

2
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3

s{1}

(T, N) = (2,3)

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .

𝒯 T − 1
s𝒯
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Solution 1: Replicated Secret Sharing

2
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3

s{1}

(T, N) = (2,3)

s{3}

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .

𝒯 T − 1
s𝒯
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Solution 1: Replicated Secret Sharing

2
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3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .


2. Distribute  to the parties in 
.


𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯
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Solution 1: Replicated Secret Sharing

2

1. For any set  of  parties, 
sample a uniform share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯
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3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.



Solution 1: Replicated Secret Sharing

Properties: 

Reconstruction coefficients 0 or 1


When  corrupted parties, at least 
one  remains hidden.


 guarantees that  remains protected

< T
s𝒯

→ 𝗌𝗄
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Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯



Solution 1: Short Replicated Secret Sharing

Properties: 

Reconstruction coefficients 0 or 1


When  corrupted parties, at least 
one  remains hidden.


 guarantees that  looks 
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄

39

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a short share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯



1. For any set  of  parties, 
sample a short share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

Solution 1: Short Replicated Secret Sharing

Properties: 

Reconstruction coefficients 0 or 1


When  corrupted parties, at least 
one  remains hidden.


 guarantees that  looks 
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄

Caveat: This scheme has a number 

of shares that is equal to .( N
T − 1)
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Idea: sample a share for any possible set of corrupted parties.



Solution 2: Coupon collector problem

Full collection
 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1

 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1 2

 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1 2 3

 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1 2 3 4

… How many draws to 
get the full collection?

~ N log N

 cardsN

41



Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Example: 

•  and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si
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Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties: 
• Reconstruction threshold: Minimum number of parties  needed to gather 

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties  such that at least one 

share is not known (with overwhelming probability)


T

T′￼

Example: 

•  and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si
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Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties: 
• Reconstruction threshold: Minimum number of parties  needed to gather 

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties  such that at least one 

share is not known (with overwhelming probability)


T

T′￼

Bounds  are exactly bounds of the coupon collector problem.

Both , with gap 

T, T′￼

T, T′￼ ∼ N log N ≈
N→∞

1 + 128/log N

Example: 

•  and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si
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Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties: 
• Reconstruction threshold: Minimum number of parties  needed to gather 

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties  such that at least one 

share is not known (with overwhelming probability)


T

T′￼

Bounds  are exactly bounds of the coupon collector problem.

Both , with gap 

T, T′￼

T, T′￼ ∼ N log N ≈
N→∞

1 + 128/log N

Example: 

•  and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si
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Caveat: This secret sharing is ramp (gap between 
correctness and privacy thresholds) and only holds in a 

selective security model.



Ratio  achieved by our sharing as a function of . The 
dotted line corresponds to an ideal asymptotic .

T/T′￼ T′￼

T/T′￼ = 1

Solution 2: Coupon collector problem

44

It is possible to amplify the properties for a lower gap.  are 
amplification parameters.

m, p



Solution 3: Vandermonde sharing



Solution 3: Vandermonde sharing



Solution 3: Vandermonde sharing

Contour plots of the number of shares/party, as a function of  and .N T



DKGs

The short secret sharings presented here can be sampled distributively.
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Conclusion
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Conclusion
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Scheme Shares/party

Shamir 1 1

Replicated 1

Coupon collector

Vandermonde 1

2N

m ⋅ p 1 + O ( λ/m + ln λ
ln(np) )

O (( N
log N )

log N

)

Tcorrectness
Tprivacy



Shamir vs tailored secret sharing in lattice-based threshold cryptography

Sharing of secret key

Shamir

Small
TRaccoon with Id Abort 

[dPENP25] 

TRaccoon [PKM+24],[EKT24]
(-) No Identifiable abort 

(-) no DKG, no robustness 
(+) big threshold, small com cost 

(+) Efficient Id abort 
(+) possible DKG 

Finally [dPN25] 
Th-MLDSA [BCdP+25]

(+) Compatible with ML-DSA 

(—) Small threshold only

!

Pelican [ENP24]
(-) 2/3 honest majority 

(-) linear communication in T 
(+) Robustness & DKG



Conclusion
We can use Shamir sharing to distribute the Raccoon signature scheme efficiently 

Take-away: we can tailor secret sharings to lattice-based constructions for more 
properties 

Shortness requirements are natural in this setting

We can weaken privacy to only pseudo-uniformity of the public key

Our instantiations:


Replicated secret sharing (up to 16 parties)

Vandermonde sharing (up to 64 parties)

Coupon collector problem: scales to larger thresholds, but has a gap between privacy and 
correctness thresholds


Applications:

DKG + Identifiable aborts in Threshold Raccoon (using partial verification keys)

A compact threshold ML-DSA-like signature scheme for N ≤ 8

52



Questions?
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