1
_ é wl o Short Shares Small Coefficients
» 3 * | ’/
— "\%’ . /A New Secret Sharing Scheme anch Appllcatlons to Lattice-based
_ Y -
| ‘. : Threshold Cryptography S—

v

’ e W - -) # Y > ! - ; / ; e . “a - - -
- . - - s » » 2 » < » ;
5 L - o - o - -
‘/ : - - " X . o > -.. ' - : ;| o - - . - -
. - .. ~_, - - .~ _ - - ™ " h .) - - \ 2 Tw ™, - - -

1. Background

(7-out-of-N) threshold signatures

What are they?

An Iinteractive protocol to distribute signature generation.

” * Global verification key vk
sk
ﬁ 1 ” * 1 partial signing key sk; per party
Sk6 Skz
» [-out-of-/V:

o Correctness: Any 1 out of N parties can
collaborate to sign a message under vk.

- Unforgeability: 7 — 1 corrupted parties
cannot sign.

(7-out-of-N) threshold signatures

What are they?

An Iinteractive protocol to distribute signature generation.

O

—_— Signature 6 on msg

SKe (T.N) = (3.6)

An active field of research.

Threshold Raccoon: Practical Threshold Signatures
from Standard Lattice Assumptions

Rafael del Pino!, Shuichi Katsumata'?, Mary Maller!:®, Fabrice Mouhartem®, Thomas
Prest!, Markku-Juhani Saarinen’?

Two-Round Threshold Signature from
Algebraic One-More Learning with Errors

Thomas Espitau!, Shuichi Katsumata'?, Kaoru Takemure* 12

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Cecilia Boschini Darya Kaviani Russell W. F. Lai Giulio Malavolta
ETH Ziirich, Switzerland UC Berkeley, USA Aalto University, Finland Bocconi University, Italy

Akira Takahashi Mehdi Tibouchi
JPMorgan Al Research & AlgoCRYPT CoE, USA NTT Social Informatics Laboratories, Japan

Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature
from Lattices

Thomas Espitau! ®, Guilhem Niot!? @, and Thomas Prest’

Lattice-based Threshold Signatures

Two-round n-out-of-n and Multi-Signatures and
Trapdoor Commitment from Lattices*

Ivan Damgérd?!, Claudio Orlandi', Akira Takahashi!, and Mehdi Tibouchi?

MuSig-L: Lattice-Based Multi-Signature
With Single-Round Online Phase*

Cecilia Boschini! @, Akira Takahashi? @, and Mehdi Tibouchi?

Two-Round Threshold Lattice-Based Signatures
from Threshold Homomorphic Encryption*

Kamil Doruk Gur! ©, Jonathan Katz*** ©, and Tjerand Silde®* **

Designing a threshold scheme

Distributed Key
Generation (DKG)

Communication

properties
choices
icieney

Designing a threshold scheme

: ? ?
Design ' _Underlying ' _ Thresholdization
choices scheme techniques

Candidate schemes

Easier to
thresholdize

Lattice-based Threshold Signatures

-

Gaussian Sampling
Rejection Sampling

Noise Flooding

Hash & Sign Fiat-Shamir

Eagle |] G+G |]
Phoenix |] Dilithium |
Plover |] Raccoon |

~

More
compact

https://eprint.iacr.org/2023/729
https://eprint.iacr.org/2023/446
https://eprint.iacr.org/2024/401
https://eprint.iacr.org/2023/1477
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2024/1291

Candidate schemes

Easier to
thresholdize

Lattice-based Threshold Signatures

-

Gaussian Sampling
Rejection Sampling

Noise Flooding

Hash & Sign Fiat-Shamir

Eagle [G+G []
Phoenix | Dilithium |
Plover | Raccoon |

~

This talk: Raccoon and Dilithium threshold variants.

More
compact

https://eprint.iacr.org/2023/729
https://eprint.iacr.org/2023/446
https://eprint.iacr.org/2024/401
https://eprint.iacr.org/2023/1477
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2024/1291

Lattice-based Threshold Signatures

An active field of research, with different designs.

Thresholdization

technique Size Speed Rounds Comm/party
MPC S Slow 15 > 1MB
FHE M As fast as FHE 2 > 1MB

Tailored S-M Fast 2-4 20 kB — 56T kB

Lattice-based Threshold Signatures

An active field of research, with different designs.

Thresholc_:lization Size Speed Rounds Comm/party
technique
MPC S Slow 15 > 1MB
FHE M As fast as FHE 2 > 1MB
Tailored S-M Fast 2-4 20 kB — 56T kB

This talk: Tailored

Raccoon

Threshold Raccoon: Practical Threshold STeTiact
from Standard Lattice Assumptions

Rafael del Pino', Shuichi Katsumatal?, Mary Maller!:3, Fabrice Mouhartem*, Thomas

Prest!, Markku-Juhani Saarinen

1,5

— advanced properties?

Two-round n-out-of-n and Multi-S

Dilithium-like

Trapdoor Commitment from Lattices*

Ivan Damgard!, Claudio Orlandi!, Akira Takahashi!, and Mehdi Tibouchi?

— more compact and 7-out-of-N?

Main technique of this talk

Short secret sharing.

o Individual pool of short shares sk; = (sl(.l), ng), co)

o T shares: can recover sk

+ Reconstruction vector L ; with small coefficients

o < T — 1 shares: can’t recover sk

10

Main technique of this talk

Short secret sharing.

o Individual pool of short shares sk; = (s{",s{”,...) Example: N-out-of-N sharing (one share per party)
N _
o T shares: can recover sk + sKy, ..., sky < 5 and sk = ziSki
o Lg; =1

+ Reconstruction vector L ; with small coefficients

o < T — 1 shares: can’t recover sk Extends to 1-out-of-N by having several shares per party.

10

Main technique of this talk

Short secret sharing.

()

o Individual pool of short shares sk; = (sl(.l), ng), co)

Applications:

o T shares: can recover sk o Identifiable aborts in Threshold Raccoon

+ Reconstruction vector Lg; with small coefficients 4 A compact Dilithium-like Threshold Signature

o < T — 1 shares: can’t recover sk

11

2. Threshold Raccoon

Threshold Raccoon: Practical Threshold Signatures
from Standard Lattice Assumptions

Rafael del Pino!, Shuichi Katsumata!?, Mary Maller!®, Fabrice Mouhartem?, Thomas
Prest!, Markku-Juhani Saarinen!»®

12

Raccoon signature scheme

« vk =[A 1] - sk, for sk short

« Sample ashortr

- W=[A I]-r

e ¢ = H(W, msg)

e Z=c-Sk+r

» Output sig = (c, z)

e wW=][A I]-Z—c-Vvk
. Assert ¢ = H(W, msg) * omitting usual rounding techniques

e Assert Z short
13

Raccoon signature scheme

Unforgeable assuming
« vk =[A 1] - sk, for sk short ¢ Hint-MLWE
¢ SelfTargetMSIS

e Sample ashortr

Hint-MLWE assumption [KLSS23].

- w=I[A I]-r
. ¢ = H(w, msg) (A, vk) is pseudorandom even if given
+Zz=c-sk+r Q “hints”:

e Qutput SIg — (C, Z) (Cl’ Zl .= Cl ’ Sk + rl) for l S [Q]

e w=[A I]-Z—c-vk As hard as MLWE,; if

 Assert c = H(w, msg) O, > Q - HC” * O

e Assert Z short
14

Threshold Raccoon

Shamir sharing on secret sk € 9?5

« vk =[A 1] sk, for sk short Sample polynomialfe %g[X] s.t.

« f(O)=skanddegf<T—-1
» Partial signing keys sk; := [[sk]]; = f(i)

e Sample ashortr
e W=|[A I]'r

Properties:
e ¢ = H(w, msg)

« with < T shares, sk is perfectly hidden
e Z=c-Sk+r

« with a set .S of > T shares, reconstruct sk via Lagrange

* Output sig = (¢, 2) interpolation

sk =) L, - [skI,

€S
e w=J[A I]l-Z—c-vVk

» Assert c = H(w, msg)

e Assert Z short
15

Threshold Raccoon

« vk =[A 1] - sk, for sk short

« Sample ashortr

- W=[A I]-r

e ¢ = H(W, msg)

e Z=c-Sk+r

» Output sig = (c, z)

e wW=|[A I]l-Z—c-Vk
» Assert c = H(w, msg)

e Assert Z short

16

First (insecure) attempt

ThRaccoon . Sign(sk, msg) — sig
Round 1:
« Sample a short r;
e W, =[A 1I]-r1
 Broadcastcmt; = H_ (W)

Round 2:
» Broadcast w;

Round 3:

« W= Ziwi

e ¢ = H(w, msg)
» Broadcast z; = Lg; - ¢ - [sk]|; + r;

l

Combine: the final signature is

(c, ZieS Z;)

Threshold Raccoon

First (insecure) attempt

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:

« Sample a shortr;

° W, = A I]- I,

- Broadcastcmt; = H,_ (W,

Round 2:
« Broadcast w;

Round 3:

« W= Ziwi
e ¢ = H(w, msg)
» Broadcast z; = Lg; - ¢ - [sk]|; + r;

Combine: the final signature is

(c, ZieS Z;)

17

Threshold Raccoon

First (insecure) attempt

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ But, r issmallvs L¢. - c - [[sk], is large . Sample a short r,

— Leaks [[sk]]; W= A L
» Broadcastcmt; = H__(W.)

Round 2:
» Broadcast w;

Round 3:

« W= Ziwi
e ¢ = H(w, msg)
» Broadcastz; = Lg; - ¢ - [sk]|; + r;

Combine: the final signature is

(c, ZieS Z;)

17

Threshold Raccoon

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ But, r;issmallvs L¢. - c - [[sk], is large . Sample a short r,

— Leaks [[sk]|. PwimA
» Broadcastcmt; = H__(W.)

Round 2:

* Solution: add a zero-share A : » Broadcast w;
Round 3:

« ¢ = H(w, msg)
» Broadcastz; = Lg; - ¢ - [[sk]]; + r; +A,

o Derived with a PRF, using pre-shared pairwise
keys

© Any set of < T values A, is uniformly random

© Zieg Ai =0 Combine: the final signature is

(c, ZieS Z;)

18

Threshold Raccoon, a practical threshold signature

. Total
Speed Rounds | vk | | sig | communication
Fast 3 4 kB 13 kB 40 kB

... but does not provide a DKG, or robustness / identifiable aborts.

19

3. Another direction for ThRaccoon

Flood and Submerse: Distributed Key How to Shortly Share a Short Vector

(cGeneration and Robust Threshold Signature DKG with Short Shares and Application to Lattice-Based
Threshold Signatures with Identifiable Aborts

from Lattices

Rafael del Pino! ©, Thomas Espitau’ @, Guilhem Niot"? @, and Thomas

Thomas Espitau! @, Guilhem Niot!*? ©®, and Thomas Prest! Prest!

20

Challenge of detecting malicious behaviour in ThRaccoon

ThRaccoon . Sign(sk, msg) — sig
Round 1:
« Sample a short r; Why is It challenging to tackle malicious behaviour to
- w,=[A I]-r, ThRaccoon?

» Broadcast cmt; = H,(W;) © Main issue: computation of A; using PRF to hide
Round 2: the secret when using Shamir sharing.

» Broadcast w;

Round 3:

« W=D W,

e ¢ = H(w, msg)

« Compute zero-share A,

» Broadcastz; = Ly, - ¢ - [skl;

Combine: the final signature is

(c. ZieS)

21

Challenge of detecting malicious behaviour in ThRaccoon

ThRaccoon . Sign(sk, msg) — sig

Round 1:

e Samp
° Wl p—

e ashort r;

A I]-r;

» Broadcast cmt; = H_ (W)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

e ¢ = H(w, msg)

« Compute zero-share A,

» Broadcastz; = Ly, - ¢ - [skl;

Combine: the final signature is

(c, ZieS Z;)

Let’s take a step back!

The key challenge in ThRaccoon is to hide a secret Lg ; - [[sk]]; with
the randomness r..

Direction 1 (Threshold Raccoon):
* The shares of sk are uniform
» The randomness shares r; are short

A uniform zero-share A, is added to partial signatures to hide Ly ; - [sk]].

Direction 2: Can we make both Ly - [sk]|; and r; uniform?

» Use Shamir-sharing for both sk and r — Flood and submerse |]

Direction 3: Can we make both L - [sk]|; and r; short?

« Use a short secret-sharing for both sk and r

22

https://eprint.iacr.org/2024/959

With Short Secret Sharing

o Another approach relies on sampling a sharing of sk such that we have:

+ Individual pool of short shares sk; = (Sgl), Sz('z)’ o)

¢ T shares: can recover sk + reconstruction vector L ; with small coefficients

(36
(3

OF - (5
©
(%

¢ < T — 1 shares: can’t recover sk

23

With Short Secret Sharing

ShortSS

.Sign(sk, msg) — sig

Round 1:

e Samp
° Wl —

e ashortr;

A I 1,

» Broadcastcmt; = H__ (W)

Round 2:
» Broadcast w;

» Broadcastz; = ¢ - (Lg,, skj) + I,

Combine: the final signature is

(c, ZieS Z;)

24

Security.
e ¢ (Lg;, sk;) is short — r; hides it.

* Prove security with Hint-MLWE

With Short Secret Sharing

ShortSS

.Sign(sk, msg) — sig

Round 1:

e Samp
° Wl —

e ashortr;

A I 1,

» Broadcastcmt; = H__ (W)

Round 2:
» Broadcast w;

» Broadcastz; = ¢ - (Lg,, skj) + I,

Combine: the final signature is

(c, ZieS Z;)

25

Security.
e ¢ (Lg;, sk;) is short — r; hides it.

* Prove security with Hint-MLWE

Identifiable aborts.

. Each vk = [A 1] - s is a valid public key (s\/is
short), for sk; = (Sgl), ng),)
— Each (c, z;) is a valid signature for (L ,, (vkgj))j)

* |dentifiable abort is as easy as verifying partial
signatures!

* Akin to abort identification in Sparkle (Threshold
Schnorr): perform partial verifications.

With Short Secret Sharing

Instantiating this scheme.

N

* In the T-out-of-N setting, the number of shares grows with <T i

>, this scheme thus only supports a small

number of parties.

For N < 16,
Phase # rounds | vk | | sig | TOt?I .
communication
Signing 3 25 kB

4 kB 11 kB
Abort Identification 0

26

Bonus: tighter check bounds using Short SS

Looking in more detail, the correctness of the previous schemes relies on the shortness of Z = Zi Z;.

What can we say about the norm of 7' Gaussians?

Average-case: O(ﬁ) Worst-case: O(T)

 When users are honest: average-case.

* Colliding malicious users can force worst-case.

27

The Death Star Algorithm

fxX « 9D,

» Forany vectory, (x,y) S ||x||[lyll/v/n/A
except with probability 2.

28

The Death Star Algorithm

| X

fxX « 9D,

» Forany vectory, (x,y) S ||x||[lyll/v/n/A
except with probability 2.

o
60,000 | |4 Honest setting (~ ov/T n) = -
—— Malicious, with Death Star =
40.000 #— Malicious, no Death Star (~ 0 T\/n) |m—
) _ N
. B
20,000 a
o
. =
O — A A A A A A A A A A A A A A
200 400 600 800
T

1,000

Norm of x =) X; for o = 1, n = 4096, 128 bits of security, and

T < 1000

28

4. Compact Dilithium-like Threshold Signatures

Fiat-Shamir with Aborts signature

Ideal(y,,M) — z| L

* I <)
e Z=V+Tr * L),

1
e b— R max()(z(z) ,1) -b<—9§(M>
My, (r)

e fb=0thenz = L

e Ifb=0thenz = L
e Return z

e Return z

For proper parameters, Rej(v, ¥, v,, M) ~ Ideal(y,, M).

— distribution of z is independent of the secret value v

30

Fiat-Shamir with Aborts signature

I <).
Rej(v, . x,, Mst) —> 2| 1 *w=[A I]-r
« ¢ = H(w, msg)
.Z=V+l' oZ:ReJ(C.Sk,)(r,)(Z,M;r)
e b — Z (| max X2(2) 1 Ifz = 1 then restart
My (r) e Return (c, z)

e Ifb=0thenz = L1
e Return z

e W=[A I]-Z—c-vVk
« Assert c = H(w, msg)
e Assert z short

In the ROM, the distribution of signatures of the above scheme is independent of the secret sk.

— allows to prove unforgeabillity

31

Threshold FSwA signature?

FSwWA . Sign(sk, msg) — sig TH-FSwA . Sign(sk, msg) — sig

e I < Y, Round 1:

w=[A I]-r « Sample a shortr;
¢ = H(w, msg) e W, =[A I]- 1

z = Rej(c - sk, x., x,, M; 1) » Broadcast cmt; = H_ (W)

Round 2:
» Broadcast w;

Round 3:

° W:Ziwi

e ¢ = H(w, msg)

If Z = 1 then restart
Return (¢, z)

» Broadcast z; = Rej(c - sk;, ¥, ¥, M 1)

Combine: the final signature is

(c, zieS ;)

Intuition NV-out-of-/V setting: sk = Z sk;

32 i

Threshold FSwA signature?

TH-FSwA . Sign(sk, msg) — sig

FSwA . Sign(sk, msg) — sig

e I < Y, Round 1:

w=I[A I]-r « Sample a short r;
¢ = H(w, msg) W, =[A I]-r,
z = Rej(c - sk, ., x,, M; T) » Broadcast cmt; = H_ (W)
If z = L then restart Round 2:
Return (¢, z) » Broadcast w;

o W, is revealed even in case of rejection Round 3:

+ Need proof strategy to show independence from secret . W= Z,-Wi

¢ [DOTT22] hides rejected w; with a trapdoor

| e ¢ = H(w, msg)
commitment scheme

» Broadcast z; = Rej(c - sk;, ¥, ¥, M 1)

* [BTT22] simulates rejected w; but with regularity lemma _ - |
(degraded parameters) Combine: the final signature is

(c, zieS ;)

Intuition NV-out-of-/V setting: sk = Z sk;

33 ;

https://eprint.iacr.org/2020/1110
https://eprint.iacr.org/2022/1036

Threshold FSwA signature?

TH-FSwA . Sign(sk, msg) — sig

e I < Y, Round 1:
e w=[A I]-r « Sample a shortr;
« ¢ = H(w, msg) W, =[A I] T
- Z=Rej(c sk, y..x,, M;r) Broadcastcmt; = H,_ (W)
e Ifz = 1 then restart Round 2:
» Return (c, z) » Broadcast w;

o W. s revealed even in case of rejection Round 3:

+ Need proof strategy to show independence from secret « W=D W,

¢ [DOTT22] hides rejected wW; with a trapdoor

| e ¢ = H(w, msg)
commitment scheme

» Broadcast z; = Rej(c - sk;, ¥, ¥, M 1)

* [BTT22] simulates rejected w; but with regularity lemma _ - |
(degraded parameters) Combine: the final signature is

— Tighter simulation lemma (c, Zieg Z;)

Intuition NV-out-of-/V setting: sk = Z sk;

33 ;

https://eprint.iacr.org/2020/1110
https://eprint.iacr.org/2022/1036

Threshold FSwA signature?

Lemma: Rejected W, is indistinguishable from uniform if:

o w=|[A I]-r, withr « y.is indistinguishable from uniform

o |[A 1]:z, withz « y, is indistinguishable from uniform

34

Threshold FSwA signature?

TH-FSwA . Sign(sk, msg) — sig

e I < Y, Round 1:
- W=I[A I]'r « Sample a short r;
. c:H(w,msg) * W, = A I].ri
. z = Rej(c - sk, y,, x,, M; 1) » Broadcastcmt; = H__.(W,)
« Ifz = L then restart Round 2:
* Return (¢,) » Broadcast W,
o W;Is revealed even in case of rejection Round 3:
¢ Need proof strategy to show independence from secret - W= W,
{ l

¢ [DOTT22] hides rejected wW; with a trapdoor

_ e ¢ = H(w,msg)
commitment scheme

» Broadcast z; = Rej(c - sk;, ¥, ¥, M; 1)

* [BTT22] simulates rejected w; but with regularity lemma _ o |
(degraded parameters) Combine: the final signature is

— Tighter simulation lemma (c, Z,ES Z;)

o How to support T-out-of-N?

35

https://eprint.iacr.org/2020/1110
https://eprint.iacr.org/2022/1036

Threshold FSwA signature?

TH-FSwA . Sign(sk, msg) — sig

e I < Y, Round 1:
e w=/[A I -r « Sample a short r;
« ¢ = H(w, msg) - w;=[A I|-T
- Z=Rej(c sk, y..x,, M;r) Broadcastcmt; = H_ (W)
e If Z= 1 then restart Round 2:
» Return (c, z) « Broadcast w;

o W. s revealed even in case of rejection Round 3:

¢ Need proof strategy to show independence from secret . W= Ziwi

¢ [DOTT22] hides rejected wW; with a trapdoor

| e ¢ = H(w, msg)
commitment scheme

« Broadcast z; = Rej(c - (LS,Z-, sk;), Xos Xpp M5 T;)

* [BTT22] simulates rejected w; but with regularity lemma _ R |
(degraded parameters) Combine: the final signature is

— Tighter simulation lemma (c, Z,ES z;)

o How to support 1T-out-of-N?
— Use short secret sharing 36

https://eprint.iacr.org/2020/1110
https://eprint.iacr.org/2022/1036

Threshold FSwWA signature

For N < 8,
Distributions Speed Rounds | vk | | sig | TOt?I .
communication
(Gaussians 2.0 kB 2.7 kB 5.6 kB
Fast 3
Uniforms 3.1 kB 4.8 kB 13.5 kB

Comparable to Dilithium size: 2.4kB at NIST level II!

37

4. How to concretely sample short sharings

How to Shortly Share a Short Vector

DKG with Short Shares and Application to Lattice-Based
Threshold Signatures with Identifiable Aborts

Rafael del Pino' ©, Thomas Espitau' @, Guilhem Niot"? @, and Thomas
Prest

38

Short Secret Sharing

o Individual pool of short shares sk; = (Sl(.l), ng), Co)

o 7T shares: can recover sk + reconstruction vector @
L . with small coefficients

o < T — 1 shares: can’t recover sk

39

Short Secret Sharing

o Individual pool of short shares sk; = (sl(.l), Sl(.z), Co)

o 7T shares: can recover sk + reconstruction vector @
L . with small coefficients

o < T — 1 shares: can’t recover sk

Observation: hard to not leak the secret with these constraints...

But, lattice-based schemes, often just need [A 1] - sk to look uniform.
We can:

o Leak an offset of the secret: sk = sk_.¢. + ski..,

° Leak hints on the secrets i = ¢ - sk + y, for large enough y

39

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties,
sample a uniform share So-. Si1)

(I,N) = (2,3)

40

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties,
sample a uniform share So-. S0}

S(1)

(I,N) = (2,3)

41

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties,
sample a uniform share So-. S(3)

S(1) S(2) ”

(I,N) = (2,3)

42

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties,
sample a uniform share S.

/5{3}

2. Distribute s to the parties in ”
IN\T .

2

(I,N) = (2,3)

43

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties,
sample a uniform share S.

//S{S}

2. Distribute s to the parties in ”
IN\T .

2
3. Definesk =) _sg-

(I,N) = (2,3)

44

Solution 1: Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties, Properties:

sample a uniform share S--. . .
P J o Reconstruction coefficients 0 or 1

2. Distribute Sg-to the parties In O When < T corrupted parties, at least

[N]\P/”_ one Sg- remains hidden.

3. Define sk =) 7 Sg- — guarantees that sk remains protected

45

Solution 1: Short Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. Forany set & of T — 1 parties, Properties:

sample a short share S-. . .
P T o Reconstruction coefficients 0 or 1

2. Distribute Sg-to the parties In O When < T corrupted parties, at least

[N]\agf- one Sg- remains hidden.

3. Define sk = Zg ST — guarantees that [A I - sk looks
uniform (MLWE assumption)

46

Solution 1: Short Replicated Secret Sharing

Idea: sample a share for any possible set of corrupted parties.

1. ForanysetJ Caveat: This scheme has a number

sample a shor N) ~ efficients O or 1

of shares that is equal to
T —1

2. Distri(/kiute St ced parties, at least
IN\T . one S remains hidden.

3. Define sk = Zg ST — guarantees that [A I - sk looks
uniform (MLWE assumption)

47

Solution 2: Coupon collector problem

Full collection
N cards

48

Solution 2: Coupon collector problem

0 0
9 ¥

Full collection

N cards 0

A A
v v

Draw with A
replacement)
v v

48

<=

l\<ﬂ)

Solution 2: Coupon collector problem

<=

Full collection
N cards

<i»

<=

<a»

<>
<>

Draw with

B

& 8
v

replacement

1 2

48

Solution 2: Coupon collector problem

Full collection

N cards
§ 4

Draw with A
replacement)
v v

1

.
J

((@"3

Iy S8

/Y AW 5

N\\ /// ~z/

\\\\\\ &/
LRI

™

00"
Q2

> -
’ >
'

S
4
\ LI
RAY,
S

<=

<i»

<=

<®

Solution 2: Coupon collector problem

K| A A
- v v
Full collection B
N cards ¥ ¥
A A
v v
Draw with A How many draws to

get the full collection?
replacement

& 8
v

~Nlog N
1 2 3 4

Solution 2: Coupon collector problem

Full collection sk = $ + S + 85 + S
N shares Example:
e S1,....,8y_ « DV and

Sy = sk — ZJ,<N S,

Solution 2: Coupon collector problem

Full collection sk = $ + S + 85 + S
N shares Example:
. . * Sl’ co e SN—I <« @é\.]_l and
Idea: Randomly distribute one share per party. sy=sk— Y s,
J<N

Desired properties:

* Reconstruction threshold: Minimum number of parties 1 needed to gather
all the shares? (with overwhelming probability)

 Security threshold: Maximum number of parties 7" such that at least one
share is not known (with overwhelming probability)

49

Solution 2: Coupon collector problem

Full collection sk = $ + S + 85 + S
N shares Example:
. . * Sl’ co e SN—I <« @é\.]_l and
Idea: Randomly distribute one share per party. sy=sk— Y s,
J<N

Desired properties:

* Reconstruction threshold: Minimum number of parties 1 needed to gather
all the shares? (with overwhelming probability)

 Security threshold: Maximum number of parties 7" such that at least one
share is not known (with overwhelming probability)

Bounds 7, 7" are exactly bounds of the coupon collector problem.
Both 7, 7" ~ Nlog N, withgap =~ 14 128/logN

N— o0
49

Solution 2: Coupon collector problem

Full collection sk

Sl —+ Sz + S3 ~+ S4
N shares

Better parameters by amplifying properties:

» Reconstruction threshold: Share same sk m times, just need at least
one sharing fully known to recover sk.

 Security threshold: Share multiple secrets sk

sk = sk; + sk + ... 4+ sk,

An adversary must know all the secrets to forge.

50

Solution 2: Coupon collector problem

8
695 = (m,p) = (32,8)
,I —— (m, p) = (32, 16)
N --- Lower bound [
| - ‘*;l;:'“ L g
i B L L /S e re—e— - re
2
0
0 200 400 600 800 1,000

Ratio 7/7" achieved by our sharing as a function of 7". The
dotted line corresponds to an ideal asymptotic 7/7" = 1.

Recall: m, p correspond respectively to amplification for
reconstruction and5§ecurity thresholds.

Short secret sharing

This presentation assumes a trusted dealer to sample the short secret sharing.

But, in our paper, we show that it is quite easy to design DKGs.

52

Conclusion

Conclusion

¢ Introduced two short secret sharing methods

o Based on replicated secret sharing (exponential number of shares — for
small number of parties)

o Based on coupon collector problem: scales to larger thresholds, but has a
gap between 7and 1"

¢+ Two applications
o Threshold Raccoon with identifiable aborts (using partial verification keys)

O A compact threshold FSwA signature scheme for N < 8

54

Questions?

