
 Identifiable Aborts in ThRaccoon
Let’s introduce short secret sharings!

Guilhem Niot, joint works with Rafael del Pino, Thomas Espitau,Thomas Prest

PEPR PQ TLS meeting - 13. Mar 2025

1

1. Background

2

(-out-of-) threshold signaturesT N
What are they?

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

Global verification key

1 partial signing key per party

-out-of- :

Correctness: Any out of parties can
collaborate to sign a message under .

Unforgeability: corrupted parties
cannot sign.

𝗏𝗄

𝗌𝗄i

T N
T N

𝗏𝗄
T − 1

An interactive protocol to distribute signature generation.

3

Lattice-based Threshold Signatures

4

An active field of research.

Threshold Raccoon, a practical threshold signature

Speed Rounds | vk | | sig | Total
communication

Fast 3 4 kB 13 kB 40 kB

5

More desirable properties

6

More desirable properties

6

Distributed Key Generation: Protocol allowing to distributively sample key
material.

Abort identification (or robustness): In the presence of malicious users, the
signature protocol can identify misbehaving users (or guarantee a valid output).

More desirable properties

6

Distributed Key Generation: Protocol allowing to distributively sample key
material.

Abort identification (or robustness): In the presence of malicious users, the
signature protocol can identify misbehaving users (or guarantee a valid output).

Prior art: Robustness from Verifiable Secret Sharing

rounds
Signers

per
session

| vk | | sig | Total
comm.

4 3T 4 kB 13 kB 56T kB

2. Threshold Raccoon

7

Raccoon signature scheme
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

8

* omitting usual rounding techniques

Raccoon signature scheme
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

Unforgeable assuming
Hint-MLWE
SelfTargetMSIS

Hint-MLWE assumption [KLSS23].

 is pseudorandom even if given

Q “hints”:

 for

(A, 𝗏𝗄)

(ci, zi := ci ⋅ 𝗌𝗄 + ri) i ∈ [Q]

As hard as if

MLWEσ

σr ≥ Q ⋅ ∥c∥ ⋅ σ

9

Threshold Raccoon
Shamir sharing on secret 𝗌𝗄 ∈ ℛℓ

q

Sample polynomial s.t.

• and

• Partial signing keys

f ∈ ℛℓ
q[X]

f(0) = 𝗌𝗄 deg f ≤ T − 1
𝗌𝗄i := [[𝗌k]]i = f(i)

Properties:

• with shares, is perfectly hidden

• with a set of shares, reconstruct via Lagrange

interpolation

< T 𝗌𝗄
S ≥ T 𝗌𝗄

𝗌𝗄 = ∑
i∈S

LS,i ⋅ [[𝗌𝗄]]i

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

10

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

First (insecure) attempt𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

11

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of
wi
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

12

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of
wi
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

12

But, is small vs is large

 Leaks

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

Prevent ROS attack with commit-reveal of

But, is small vs is large

 Leaks

Solution: add a zero-share :

Derived with a PRF, using pre-shared pairwise
keys

Any set of values is uniformly random

wi

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Δi

< T Δi

∑i∈S Δi = 0
+Δi

13

3. Detecting aborts in ThRaccoon

14

Challenge of detecting malicious behaviour in ThRaccoon

Why is it challenging to tackle malicious behaviour to
ThRaccoon?

Main issue: computation of using PRF to hide
the secret when using Shamir sharing.

Δi

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Compute zero-share

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)
15

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Compute zero-share

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)

The key challenge in ThRaccoon is to hide a secret with
the randomness .

Direction 1 (Threshold Raccoon):
• The shares of are uniform
• The randomness shares are short

A uniform zero-share is added to partial signatures to hide .

Direction 2: Can we make both and uniform?

• Use Shamir-sharing for both and Flood and submerse [ENP24]

Direction 3: Can we make both and short?
• Can we have short shares and reconstructions coefficients for

both and ?

LS,i ⋅ [[𝗌𝗄]]i
ri

𝗌𝗄
ri

Δi LS,i ⋅ [[𝗌𝗄]]i

LS,i ⋅ [[𝗌𝗄]]i ri

𝗌𝗄 r →

LS,i ⋅ [[𝗌𝗄]]i ri

𝗌𝗄 r

Let’s take a step back!

16

Challenge of detecting malicious behaviour in ThRaccoon

https://eprint.iacr.org/2024/959

Introducing Short Secret Sharing
Our approach relies on sampling a sharing of such that we have:

Individual pool of short shares

 shares: can recover + reconstruction vector with small coefficients

 shares: can’t recover

𝗌𝗄
𝗌𝗄i = (s(1)

i , s(2)
i , . . .)

T 𝗌𝗄 LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

17

𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

With Short Secret Sharing

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)

Security.

• is short hides it.

• Prove security with Hint-MLWE

c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri

18

Security.

• is short hides it.

• Prove security with Hint-MLWE

Identifiable aborts.

• Each is a valid public key (is
short), for

 Each is a valid signature for

• Identifiable abort is as easy as verifying partial
signatures!

• Akin to abort identification in Sparkle (Threshold
Schnorr): perform partial verifications.

c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri

𝗏𝗄(j)
i = [A I] ⋅ s(j)

i s(j)
i

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

→ (c, zi) ⟨LS,i, (𝗏𝗄(j)
i)j⟩

With Short Secret Sharing
𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)

19

4. How to concretely sample short sharings

20

Short Secret Sharing

Individual pool of short shares

 shares: can recover + reconstruction vector
 with small coefficients

 shares: can’t recover

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

21

Short Secret Sharing

Individual pool of short shares

 shares: can recover + reconstruction vector
 with small coefficients

 shares: can’t recover

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Observation: hard to not leak the secret with these constraints…

But, lattice-based schemes, often just need to look uniform.

We can:

Leak an offset of the secret:

Leak hints on the secrets , for large enough

[A I] ⋅ 𝗌𝗄

𝗌𝗄 = 𝗌𝗄𝗌𝖺𝖿𝖾 + 𝗌𝗄𝗅𝖾𝖺𝗄
h = c ⋅ 𝗌𝗄 + y y

21

1

Solution 1: Replicated Secret Sharing
Idea: sample a share for any possible set of corrupted parties.

2

22

3

s{1}

(T, N) = (2,3)

1. For any set of parties,
sample a uniform share .

𝒯 T − 1
s𝒯

1

Solution 1: Replicated Secret Sharing

2

23

3

s{1}

(T, N) = (2,3)

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

𝒯 T − 1
s𝒯

1

Solution 1: Replicated Secret Sharing

2

24

3

s{1}

(T, N) = (2,3)

s{3}

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

𝒯 T − 1
s𝒯

1

Solution 1: Replicated Secret Sharing

2

25

3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

2. Distribute to the parties in
.

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

1

Solution 1: Replicated Secret Sharing

2

1. For any set of parties,
sample a uniform share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

26

3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.

Solution 1: Replicated Secret Sharing

Properties:

Reconstruction coefficients 0 or 1

When corrupted parties, at least
one remains hidden.

 guarantees that remains protected

< T
s𝒯

→ 𝗌𝗄

27

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

Solution 1: Short Replicated Secret Sharing

Properties:

Reconstruction coefficients 0 or 1

When corrupted parties, at least
one remains hidden.

 guarantees that looks
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄

28

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a short share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

1. For any set of parties,
sample a short share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

Solution 1: Short Replicated Secret Sharing

Properties:

Reconstruction coefficients 0 or 1

When corrupted parties, at least
one remains hidden.

 guarantees that looks
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄

Caveat: This scheme has a number

of shares that is equal to .(N
T − 1)

29

Idea: sample a share for any possible set of corrupted parties.

Solution 2: Coupon collector problem

Full collection
 cardsN

30

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1

 cardsN

30

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1 2

 cardsN

30

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1 2 3

 cardsN

30

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1 2 3 4

… How many draws to
get the full collection?

~ N log N

 cardsN

30

Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

31

Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties:
• Reconstruction threshold: Minimum number of parties needed to gather

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties such that at least one

share is not known (with overwhelming probability)

T

T′

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

31

Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties:
• Reconstruction threshold: Minimum number of parties needed to gather

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties such that at least one

share is not known (with overwhelming probability)

T

T′

Bounds are exactly bounds of the coupon collector problem.

Both , with gap

T, T′

T, T′ ∼ N log N ≈
N→∞

1 + 128/log N

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

31

Solution 2: Coupon collector problem

Full collection
 sharesN

𝗌𝗄 = s1 s2+ s3+ s4+

Better parameters by amplifying properties:

• Reconstruction threshold: Share same times, just need at least
one sharing fully known to recover .

• Security threshold: Share multiple secrets

𝗌𝗄 m
𝗌𝗄

𝗌𝗄
𝗌𝗄 = 𝗌𝗄1 + …+ +𝗌𝗄2 𝗌𝗄p

An adversary must know all the secrets to forge.

32

Ratio achieved by our sharing as a function of . The
dotted line corresponds to an ideal asymptotic .

T/T′ T′

T/T′ = 1

Solution 2: Coupon collector problem

Recall: , correspond respectively to amplification for
reconstruction and security thresholds.

m p
33

5. Let’s instantiate it!

34

Instantiating our scheme with short secret sharings.

• Small thresholds with replicated secret sharing

• Or, large thresholds (but with security/reconstruction gap) with ramp secret sharing
based on coupon collector

N ≤ 16
N ≤ 1024

Phase # rounds | vk | | sig | Total
communication

Signing 3
4 kB 11.9 kB

25 kB

Abort Identification 0

ThRaccoon with Identifiable aborts

35

Looking in more detail, the correctness of the previous schemes relies on the shortness of .

What can we say about the norm of Gaussians?

z = ∑i zi

T

Bonus: tighter check bounds using Short SS

Average-case: O(T) Worst-case: O(T)

• When users are honest: average-case.

• Colliding malicious users can force worst-case.

36

The Death Star Algorithm
If ,

• For any vector ,

except with probability .

x ← 𝒟σ

y ⟨x, y⟩ ⪅ ∥x∥∥y∥/ n/λ

2−λ

37

The Death Star Algorithm
If ,

• For any vector ,

except with probability .

x ← 𝒟σ

y ⟨x, y⟩ ⪅ ∥x∥∥y∥/ n/λ

2−λ

37

Norm of for , , 128 bits of security, and x = ∑i xi σ = 1 n = 4096
T ≤ 1000

Conclusion

38

Conclusion

Introduced two short secret sharing methods

Based on replicated secret sharing (exponential number of shares for small number of parties)

Based on coupon collector problem: scales to larger thresholds, but has a gap between and

Application to Threshold Raccoon with identifiable aborts (using partial verification keys)

Tighter norm bound for the sum of potentially malicious contributions with Death Star algorithm

→

T T′

T

39

Conclusion

Introduced two short secret sharing methods

Based on replicated secret sharing (exponential number of shares for small number of parties)

Based on coupon collector problem: scales to larger thresholds, but has a gap between and

Application to Threshold Raccoon with identifiable aborts (using partial verification keys)

Tighter norm bound for the sum of potentially malicious contributions with Death Star algorithm

→

T T′

T

39

Future work?

Better short secret sharings? work in progress

Other applications? Compact threshold signature for less than 8 parties (2.7kB), to appear at
PKC 2025 + talk at JC2 2025

→

→

Questions?

40

