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1. Background
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( -out-of- ) threshold signaturesT N
What are they?

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

Global verification key 


1 partial signing key  per party


-out-of- :

Correctness: Any  out of  parties can 
collaborate to sign a message under .

Unforgeability:  corrupted parties 
cannot sign.

𝗏𝗄

𝗌𝗄i

T N
T N

𝗏𝗄
T − 1

An interactive protocol to distribute signature generation.
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Lattice-based Threshold Signatures
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An active field of research.



Threshold Raccoon, a practical threshold signature

Speed Rounds | vk | | sig | Total 
communication

Fast 3 4 kB 13 kB 40 kB
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More desirable properties
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More desirable properties
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Distributed Key Generation: Protocol allowing to distributively sample key 
material. 

Abort identification (or robustness): In the presence of malicious users, the 
signature protocol can identify misbehaving users (or guarantee a valid output).




More desirable properties
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Distributed Key Generation: Protocol allowing to distributively sample key 
material. 

Abort identification (or robustness): In the presence of malicious users, the 
signature protocol can identify misbehaving users (or guarantee a valid output).


Prior art: Robustness from Verifiable Secret Sharing

# rounds
Signers 

per 
session

| vk | | sig | Total 
comm.

4 3T 4 kB 13 kB 56T kB



2. Threshold Raccoon
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Raccoon signature scheme
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short 

• 

• 

• 

• Output 

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

• 

• Assert 

• Assert  short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z
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Raccoon signature scheme
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
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r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r
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𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))
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• Assert 

• Assert  short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

Unforgeable assuming 
Hint-MLWE 
SelfTargetMSIS 

Hint-MLWE assumption [KLSS23].

 is pseudorandom even if given 

Q “hints”:


 for 

(A, 𝗏𝗄)

(ci, zi := ci ⋅ 𝗌𝗄 + ri) i ∈ [Q]

As hard as  if





MLWEσ

σr ≥ Q ⋅ ∥c∥ ⋅ σ
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Threshold Raccoon
Shamir sharing on secret 𝗌𝗄 ∈ ℛℓ

q

Sample polynomial  s.t.


•  and 


• Partial signing keys 

f ∈ ℛℓ
q[X]

f(0) = 𝗌𝗄 deg f ≤ T − 1
𝗌𝗄i := [[𝗌k]]i = f(i)

Properties:

• with  shares,  is perfectly hidden

• with a set  of  shares, reconstruct  via Lagrange 

interpolation

< T 𝗌𝗄
S ≥ T 𝗌𝗄

𝗌𝗄 = ∑
i∈S

LS,i ⋅ [[𝗌𝗄]]i

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
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• 
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c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))
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• Assert 

• Assert  short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z
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Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

First (insecure) attempt𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
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• 
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c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

• 

• Assert 

• Assert  short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z
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Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of 
wi
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)
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Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of 
wi
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)
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But,  is small vs  is large


 Leaks 

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i



Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

Prevent ROS attack with commit-reveal of 


But,  is small vs  is large


 Leaks 


Solution: add a zero-share :   

Derived with a PRF, using pre-shared pairwise 
keys


Any set of   values  is uniformly random


wi

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Δi

< T Δi

∑i∈S Δi = 0
+Δi
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3. Detecting aborts in ThRaccoon
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Challenge of detecting malicious behaviour in ThRaccoon

Why is it challenging to tackle malicious behaviour to 
ThRaccoon? 

Main issue: computation of  using PRF to hide 
the secret when using Shamir sharing.

Δi

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Compute zero-share 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)
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𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Compute zero-share 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)

The key challenge in ThRaccoon is to hide a secret  with 
the randomness .


Direction 1 (Threshold Raccoon): 
• The shares of  are uniform 
• The randomness shares  are short 

A uniform zero-share  is added to partial signatures to hide .


Direction 2: Can we make both  and  uniform? 

• Use Shamir-sharing for both  and   Flood and submerse [ENP24]


Direction 3: Can we make both  and  short? 
• Can we have short shares and reconstructions coefficients for 

both  and ?

LS,i ⋅ [[𝗌𝗄]]i
ri

𝗌𝗄
ri

Δi LS,i ⋅ [[𝗌𝗄]]i

LS,i ⋅ [[𝗌𝗄]]i ri

𝗌𝗄 r →

LS,i ⋅ [[𝗌𝗄]]i ri

𝗌𝗄 r

Let’s take a step back!
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Challenge of detecting malicious behaviour in ThRaccoon

https://eprint.iacr.org/2024/959


Introducing Short Secret Sharing
Our approach relies on sampling a sharing of  such that we have:


Individual pool of short shares 


 shares: can recover  + reconstruction vector  with small coefficients


 shares: can’t recover 

𝗌𝗄
𝗌𝗄i = (s(1)

i , s(2)
i , . . . )

T 𝗌𝗄 LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

17



𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

With Short Secret Sharing

Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)

Security. 

•  is short   hides it.


• Prove security with Hint-MLWE


c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri
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Security. 

•  is short   hides it.


• Prove security with Hint-MLWE


Identifiable aborts. 

• Each  is a valid public key (  is 
short), for 


 Each  is a valid signature for 


• Identifiable abort is as easy as verifying partial 
signatures!


• Akin to abort identification in Sparkle (Threshold 
Schnorr): perform partial verifications.

c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri

𝗏𝗄( j)
i = [A I] ⋅ s( j)

i s( j)
i

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

→ (c, zi) ⟨LS,i, (𝗏𝗄( j)
i )j⟩

With Short Secret Sharing
𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)
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4. How to concretely sample short sharings
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Short Secret Sharing

Individual pool of short shares 


 shares: can recover  + reconstruction vector 
 with small coefficients


 shares: can’t recover 

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1
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Short Secret Sharing

Individual pool of short shares 


 shares: can recover  + reconstruction vector 
 with small coefficients


 shares: can’t recover 

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Observation: hard to not leak the secret with these constraints…

But, lattice-based schemes, often just need  to look uniform.

We can:


Leak an offset of the secret: 

Leak hints on the secrets , for large enough 

[A I] ⋅ 𝗌𝗄

𝗌𝗄 = 𝗌𝗄𝗌𝖺𝖿𝖾 + 𝗌𝗄𝗅𝖾𝖺𝗄
h = c ⋅ 𝗌𝗄 + y y
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1

Solution 1: Replicated Secret Sharing
Idea: sample a share for any possible set of corrupted parties.

2

22

3

s{1}

(T, N) = (2,3)

1. For any set  of  parties, 
sample a uniform share .


𝒯 T − 1
s𝒯



1

Solution 1: Replicated Secret Sharing

2
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3

s{1}

(T, N) = (2,3)

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .

𝒯 T − 1
s𝒯
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Solution 1: Replicated Secret Sharing

2

24

3

s{1}

(T, N) = (2,3)

s{3}

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .

𝒯 T − 1
s𝒯
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Solution 1: Replicated Secret Sharing

2
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3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .


2. Distribute  to the parties in 
.


𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯
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Solution 1: Replicated Secret Sharing

2

1. For any set  of  parties, 
sample a uniform share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯
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3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.



Solution 1: Replicated Secret Sharing

Properties: 

Reconstruction coefficients 0 or 1


When  corrupted parties, at least 
one  remains hidden.


 guarantees that  remains protected

< T
s𝒯

→ 𝗌𝗄
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Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯



Solution 1: Short Replicated Secret Sharing

Properties: 

Reconstruction coefficients 0 or 1


When  corrupted parties, at least 
one  remains hidden.


 guarantees that  looks 
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄
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Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a short share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯



1. For any set  of  parties, 
sample a short share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

Solution 1: Short Replicated Secret Sharing

Properties: 

Reconstruction coefficients 0 or 1


When  corrupted parties, at least 
one  remains hidden.


 guarantees that  looks 
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄

Caveat: This scheme has a number 

of shares that is equal to .( N
T − 1)

29

Idea: sample a share for any possible set of corrupted parties.



Solution 2: Coupon collector problem

Full collection
 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1

 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1 2

 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1 2 3

 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1 2 3 4

… How many draws to 
get the full collection?

~ N log N

 cardsN
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Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Example: 

•  and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si
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Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties: 
• Reconstruction threshold: Minimum number of parties  needed to gather 

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties  such that at least one 

share is not known (with overwhelming probability)


T

T′ 

Example: 

•  and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si
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all the shares? (with overwhelming probability)
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share is not known (with overwhelming probability)


T

T′ 

Bounds  are exactly bounds of the coupon collector problem.

Both , with gap 

T, T′ 

T, T′ ∼ N log N ≈
N→∞

1 + 128/log N

Example: 
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sN = 𝗌𝗄 − ∑j<N si
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Solution 2: Coupon collector problem

Full collection
 sharesN

𝗌𝗄 = s1 s2+ s3+ s4+

Better parameters by amplifying properties:

• Reconstruction threshold: Share same   times, just need at least 
one sharing fully known to recover .


• Security threshold: Share multiple secrets 

𝗌𝗄 m
𝗌𝗄

𝗌𝗄
𝗌𝗄 = 𝗌𝗄1 + …+ +𝗌𝗄2 𝗌𝗄p

An adversary must know all the secrets to forge.
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Ratio  achieved by our sharing as a function of . The 
dotted line corresponds to an ideal asymptotic .

T/T′ T′ 

T/T′ = 1

Solution 2: Coupon collector problem

Recall: ,  correspond respectively to amplification for 
reconstruction and security thresholds.

m p
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5. Let’s instantiate it!
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Instantiating our scheme with short secret sharings.

• Small thresholds  with replicated secret sharing 


• Or, large thresholds  (but with security/reconstruction gap) with ramp secret sharing 
based on coupon collector

N ≤ 16
N ≤ 1024

Phase # rounds | vk | | sig | Total 
communication

Signing 3
4 kB 11.9 kB

25 kB

Abort Identification 0

ThRaccoon with Identifiable aborts
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Looking in more detail, the correctness of the previous schemes relies on the shortness of .


What can we say about the norm of  Gaussians? 

z = ∑i zi

T

Bonus: tighter check bounds using Short SS

Average-case:  O( T) Worst-case:  O(T)

• When users are honest: average-case.


• Colliding malicious users can force worst-case.
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The Death Star Algorithm
If ,


• For any vector , 


except with probability . 

x ← 𝒟σ

y ⟨x, y⟩ ⪅ ∥x∥∥y∥/ n/λ

2−λ

37



The Death Star Algorithm
If ,


• For any vector , 


except with probability . 

x ← 𝒟σ

y ⟨x, y⟩ ⪅ ∥x∥∥y∥/ n/λ
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Norm of  for , , 128 bits of security, and x = ∑i xi σ = 1 n = 4096
T ≤ 1000



Conclusion
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Conclusion

Introduced two short secret sharing methods 

Based on replicated secret sharing (exponential number of shares  for small number of parties)


Based on coupon collector problem: scales to larger thresholds, but has a gap between  and 


Application to Threshold Raccoon with identifiable aborts (using partial verification keys) 

Tighter norm bound for the sum of  potentially malicious contributions with Death Star algorithm

→

T T′ 

T
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Future work? 

Better short secret sharings?  work in progress


Other applications?  Compact threshold signature for less than 8 parties (2.7kB), to appear at 
PKC 2025 + talk at JC2 2025

→

→



Questions?
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