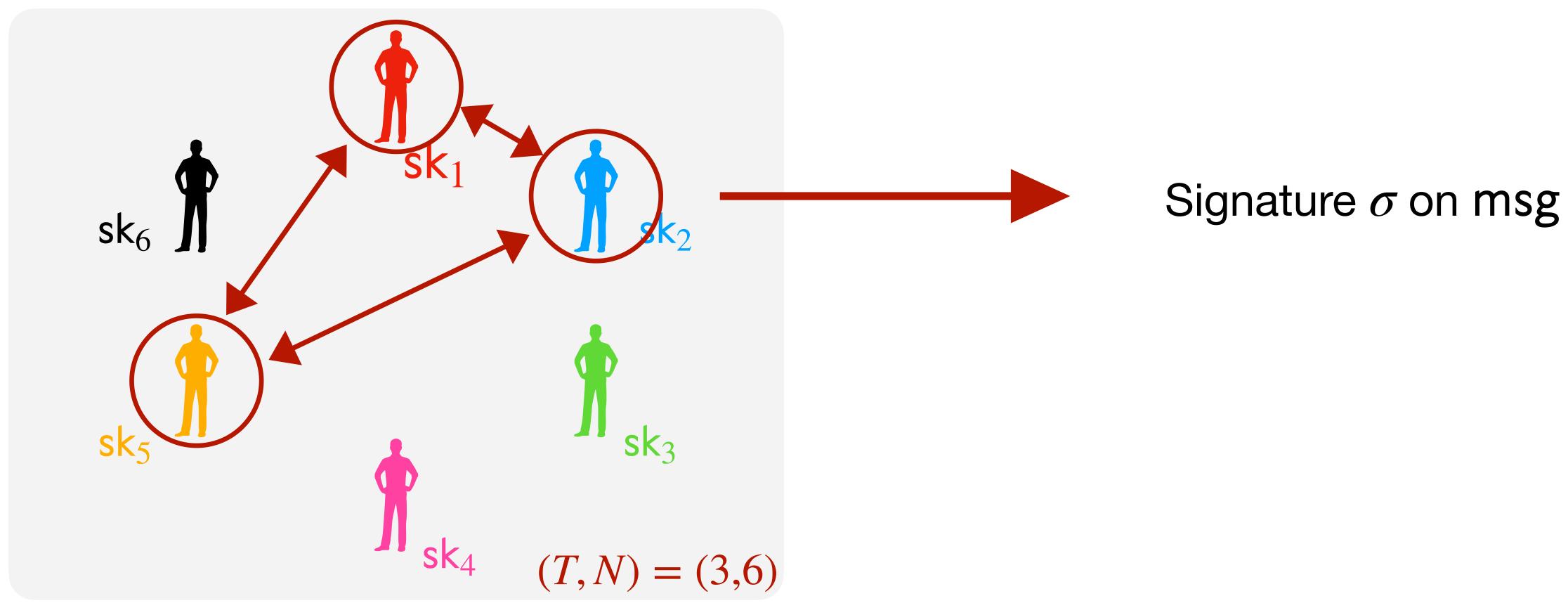
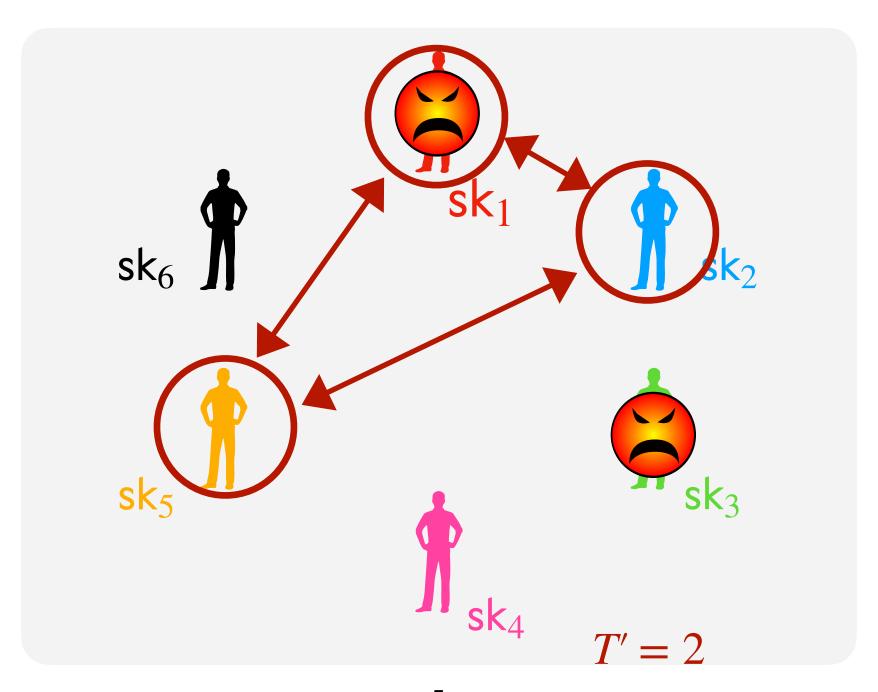


1. Background

(T-out-of-N) threshold signatures What are they?


An interactive protocol to distribute signature generation.

- Global verification key vk
- 1 partial signing key sk_i per party
- T-out-of-N:
 - Any T out of N parties can collaborate to sign a message under vk.
 - \circ T-1 parties cannot sign.


(T-out-of-N) threshold signatures What are they?

An interactive protocol to distribute signature generation.

Core security properties

- \circ Correctness: Given at least T-out-of-N partial signing keys, we can sign.
- o (Ramp) Unforgeability: The signature scheme remains unforgeable even if up to T' parties are corrupted, where $T' \le T 1$.

An active field of research.

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

Two-Round Threshold Signature from Algebraic One-More Learning with Errors

Thomas Espitau¹, Shuichi Katsumata^{1,2}, Kaoru Takemure* ^{1,2}

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Cecilia Boschini Darya Kaviani Russell W. F. Lai Giulio Malavolta

ETH Zürich, Switzerland UC Berkeley, USA Aalto University, Finland Bocconi University, Italy

Akira Takahashi Mehdi Tibouchi

JPMorgan AI Research & AlgoCRYPT CoE, USA NTT Social Informatics Laboratories, Japan

Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature
from Lattices

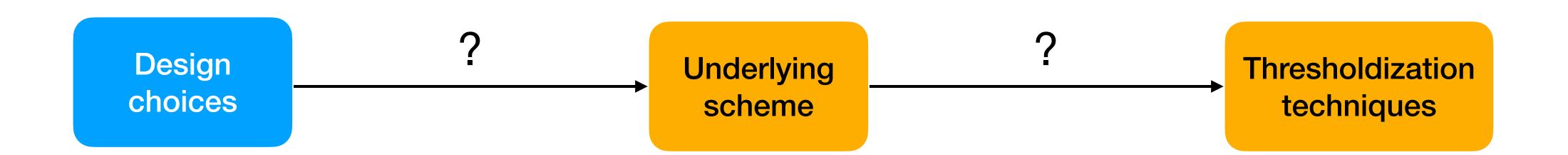
Thomas Espitau¹, Guilhem Niot^{1,2}, and Thomas Prest¹

Two-round n-out-of-n and Multi-Signatures and Trapdoor Commitment from Lattices*

Ivan Damgård¹, Claudio Orlandi¹, Akira Takahashi¹, and Mehdi Tibouchi²

MuSig-L: Lattice-Based Multi-Signature With Single-Round Online Phase*

Cecilia Boschini¹, Akira Takahashi², and Mehdi Tibouchi³


Two-Round Threshold Lattice-Based Signatures from Threshold Homomorphic Encryption*

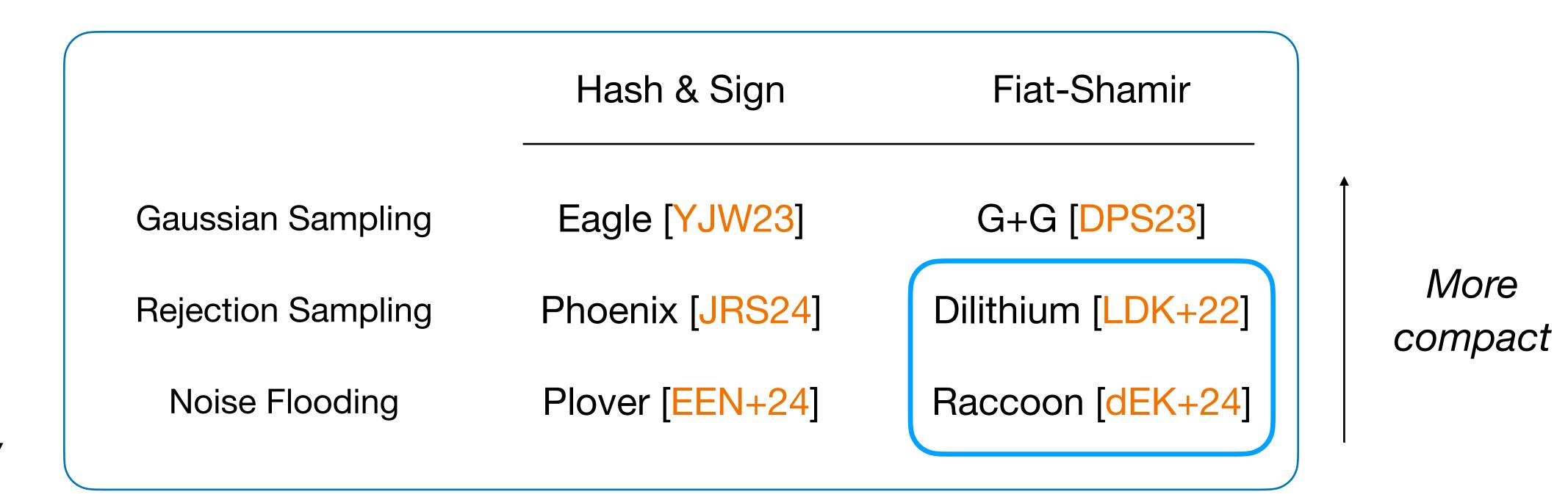
Kamil Doruk Gur¹ , Jonathan Katz²** , and Tjerand Silde³* * * □

Designing a threshold scheme

Distributed Key Generation (DKG) **Identifiable Aborts** advanced properties Robustness trade-off **Backward compatibility** Design choices Size **Speed** efficiency Rounds Communication

Designing a threshold scheme

Candidate schemes


Easier to thresholdize

	Hash & Sign	Fiat-Shamir
Gaussian Sampling	Eagle [YJW23]	G+G [DPS23]
Rejection Sampling	Phoenix [JRS24]	Dilithium [LDK+22]
Noise Flooding	Plover [EEN+24]	Raccoon [dEK+24]

More compact

Candidate schemes

Easier to thresholdize

This talk: Raccoon and Dilithium threshold variants.

An active field of research, with different designs.

Thresholdization technique	Size	Speed	Rounds	Comm/party
MPC	S	Slow	15	≥ 1MB
FHE	M	As fast as FHE	2	≥ 1MB
Tailored	S-M	Fast	2-4	$20 \text{ kB} \rightarrow 56T \text{ kB}$

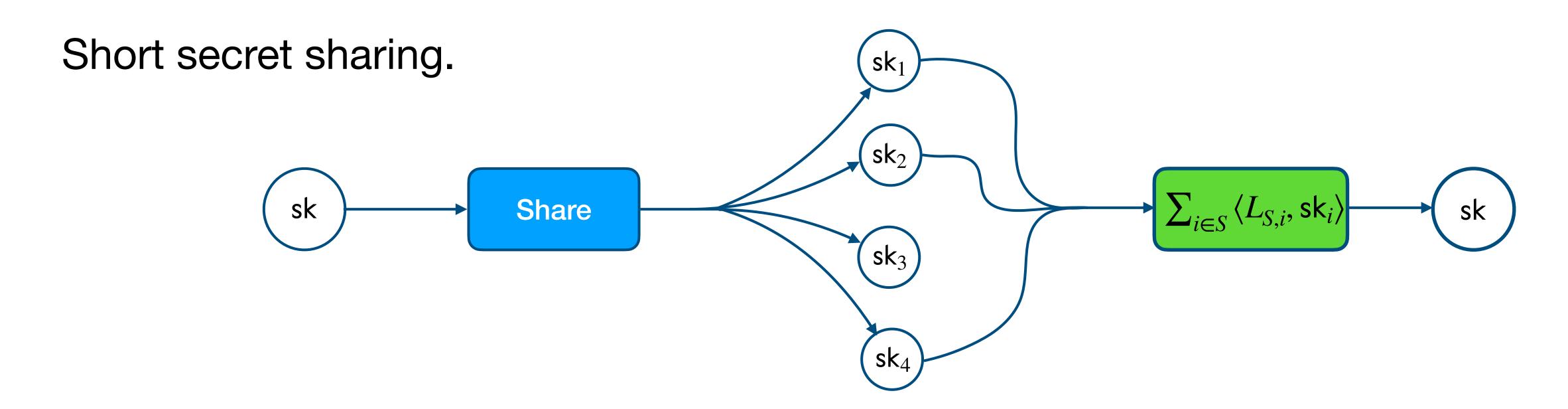
An active field of research, with different designs.

Thresholdization technique	Size	Speed	Rounds	Comm/party
MPC	S	Slow	15	≥ 1MB
FHE	M	As fast as FHE	2	≥ 1MB
Tailored	S-M	Fast	2-4	$20 \text{ kB} \rightarrow 56T \text{ kB}$

This talk: Tailored

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

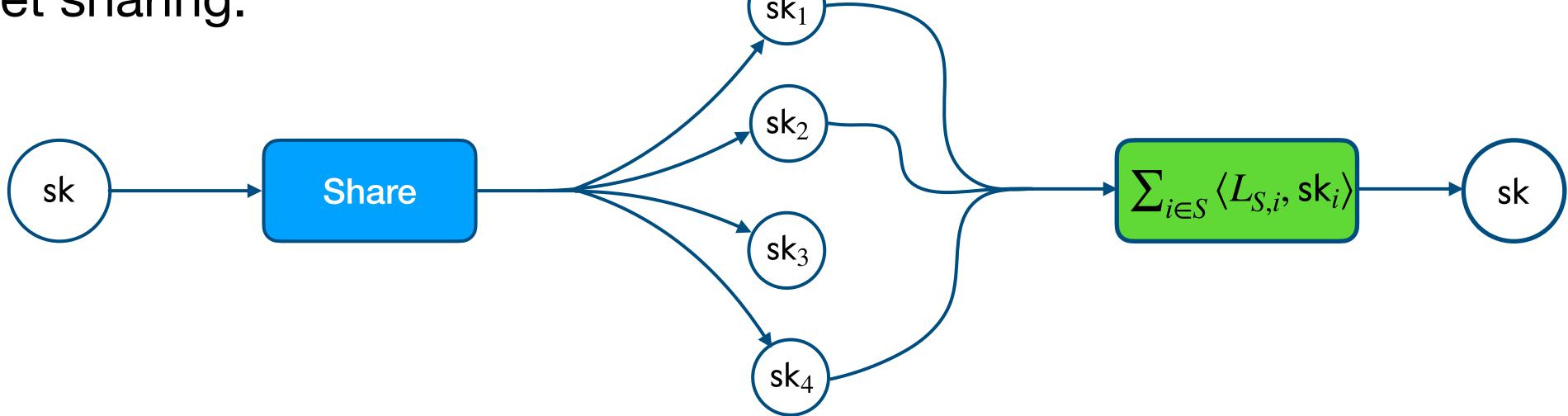
Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}


→ advanced properties?

Two-round n-out-of-n and Multi-Si Dilithium-like Trapdoor Commitment from Lattices*

Ivan Damgård¹, Claudio Orlandi¹, Akira Takahashi¹, and Mehdi Tibouchi²

 \rightarrow more compact and T-out-of-N?


Main technique of this talk

- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- \circ T shares: can recover sk
 - ullet Reconstruction vector $L_{S,i}$ with small coefficients
- $\circ \leq T-1$ shares: can't recover sk

Main technique of this talk

Short secret sharing.

- o Individual pool of short shares $sk_i = (s_i^{(1)}, s_i^{(2)}, \dots)$
- \circ T shares: can recover sk
 - ullet Reconstruction vector $L_{S,i}$ with small coefficients
- $\circ \leq T-1$ shares: can't recover sk

Example: N-out-of-N sharing (one share per party)

- $\mathsf{sk}_1, ..., \mathsf{sk}_N \leftarrow \mathscr{D}^N_\sigma$ and $\mathsf{sk} = \sum_i \mathsf{sk}_i$
- $L_{S,i} = 1$

Extends to T-out-of-N by having several shares per party.

Main technique of this talk

Short secret sharing. $\begin{array}{c} (sk_1) \\ (sk_2) \\ (sk_3) \\ (sk_4) \\ ($

- o Individual pool of short shares $sk_i = (s_i^{(1)}, s_i^{(2)}, \dots)$
- \circ T shares: can recover sk
 - ullet Reconstruction vector $L_{S,i}$ with small coefficients
- $\circ \leq T-1$ shares: can't recover sk

Applications:

- Identifiable aborts in Threshold Raccoon
- A compact Dilithium-like Threshold Signature

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

Raccoon signature scheme

Raccoon. Keygen() → sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) → sig

- Sample a short **r**
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v} \mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

* omitting usual rounding techniques

Raccoon signature scheme

Raccoon. Keygen() → sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) → sig

- Sample a short **r**
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathsf{sk} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v} \mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

Unforgeable assuming

- Hint-MLWE
- SelfTargetMSIS

Hint-MLWE assumption [KLSS23].

(A, vk) is pseudorandom even if given Q "hints":

$$(c_i, \mathbf{z}_i := c_i \cdot \mathsf{sk} + \mathbf{r}_i) \text{ for } i \in [Q]$$

As hard as MLWE_σ if

$$\sigma_{\mathbf{r}} \ge \sqrt{Q} \cdot \|c\| \cdot \sigma$$

Raccoon . Keygen() → sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) → sig

- Sample a short **r**
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathsf{vk}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

Shamir sharing on secret $\mathbf{sk} \in \mathcal{R}_q^\ell$

Sample polynomial $f \in \mathcal{R}_q^{\ell}[X]$ s.t.

- $f(0) = \operatorname{sk} \operatorname{and} \operatorname{deg} f \le T 1$
- Partial signing keys $sk_i := [sk]_i = f(i)$

Properties:

- with < T shares, sk is perfectly hidden
- with a set S of $\geq T$ shares, reconstruct sk via Lagrange interpolation

$$\mathsf{sk} = \sum_{i \in S} L_{S,i} \cdot [\![\mathsf{sk}]\!]_i$$

Raccoon . Keygen() → sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) → sig

- Sample a short r
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v} \mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

First (insecure) attempt

ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast W_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[\mathbf{s}k]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

• Prevent ROS attack with commit-reveal of \mathbf{w}_i

First (insecure) attempt

ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[\mathbf{s}k]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- ullet But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [\![\mathbf{s}k]\!]_i$ is large
 - \rightarrow Leaks $[sk]_i$

First (insecure) attempt

ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [sk]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- ullet But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [\![\mathbf{s}k]\!]_i$ is large
 - \rightarrow Leaks $[sk]_i$

- Solution: add a zero-share Δ_i :
 - Derived with a PRF, using pre-shared pairwise keys
 - $^{\circ}$ Any set of < T values Δ_i is uniformly random
 - $\circ \quad \sum_{i \in S} \Delta_i = 0$

ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Threshold Raccoon, a practical threshold signature

Speed	Rounds	vk	sig	Total communication
Fast	3	4 kB	13 kB	40 kB

... but does not provide a DKG, or robustness / identifiable aborts.

3. Another direction for ThRaccoon

Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature
from Lattices

Thomas Espitau¹, Guilhem Niot^{1,2}, and Thomas Prest¹

How to Shortly Share a Short Vector

DKG with Short Shares and Application to Lattice-Based Threshold Signatures with Identifiable Aborts

Rafael del Pino¹ , Thomas Espitau¹ , Guilhem Niot^{1,2} , and Thomas Prest¹

Challenge of detecting malicious behaviour in ThRaccoon

ThRaccoon . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Compute zero-share Δ_i
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [\![\mathbf{sk}]\!]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Why is it challenging to tackle malicious behaviour to ThRaccoon?

- O Incompatibility of the sharings of sk and \mathbf{r}_i , that prevents a simple verification of computations
- $^{\circ}$ Additional non-linearity introduced by Δ_i

Challenge of detecting malicious behaviour in ThRaccoon

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{w}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Compute zero-share Δ_i
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [\![\mathbf{sk}]\!]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

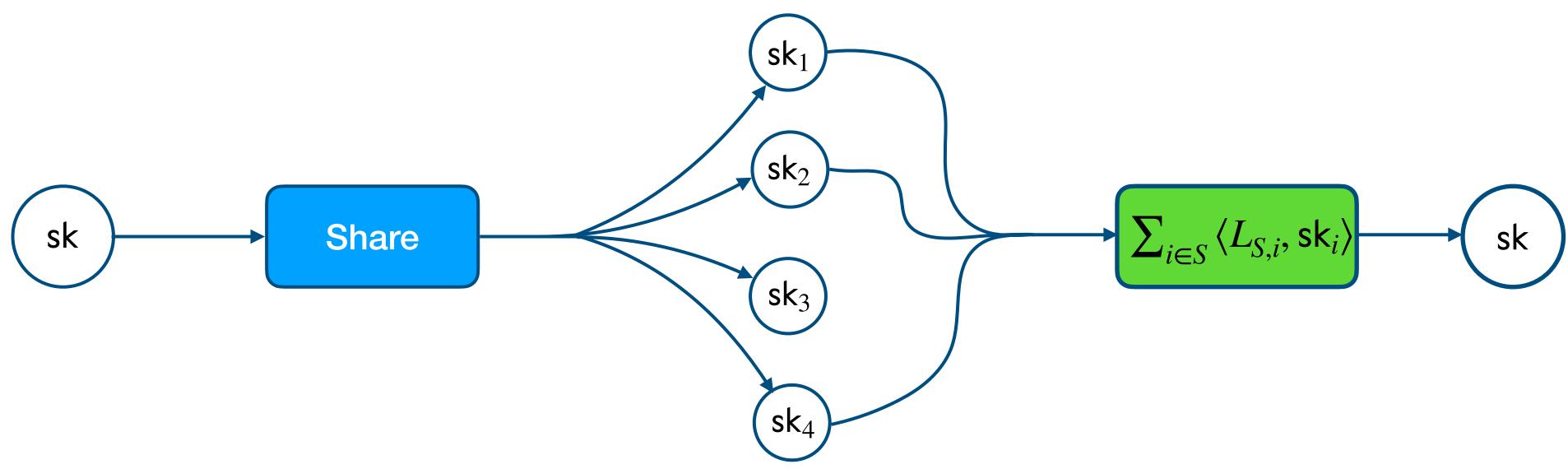
Let's take a step back!

The key challenge in ThRaccoon is to hide a secret $L_{S,i} \cdot [\![sk]\!]_i$ with the randomness \mathbf{r}_i .

Direction 1 (Threshold Raccoon):

- The shares of sk are uniform
- The randomness shares \mathbf{r}_i are **short**

A uniform zero-share Δ_i is added to partial signatures to hide $L_{S,i} \cdot \llbracket \mathtt{sk} \rrbracket_i$.


Direction 2: Can we make both $L_{S,i} \cdot \llbracket \mathsf{sk} \rrbracket_i$ and \mathbf{r}_i uniform?

• Use Shamir-sharing for both sk and $r \rightarrow Flood$ and submerse [ENP24]

Direction 3: Can we make both $L_{S,i} \cdot \llbracket \mathtt{sk} \rrbracket_i$ and \mathbf{r}_i short?

Use a short secret-sharing for both sk and r

- Another approach relies on sampling a sharing of sk such that we have:
 - Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
 - ullet T shares: can recover sk + reconstruction vector $L_{S,i}$ with small coefficients
 - $\leq T 1$ shares: can't recover sk

ShortSS . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{w}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = c \cdot \langle L_{S,i}, \mathsf{sk}_i \rangle + \mathbf{r}_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Security.

- $c \cdot \langle L_{S,i}, \operatorname{sk}_i \rangle$ is short $\to \mathbf{r}_i$ hides it.
 - Prove security with Hint-MLWE

ShortSS . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{w}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = c \cdot \langle L_{S,i}, \mathsf{sk}_i \rangle + \mathbf{r}_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Security.

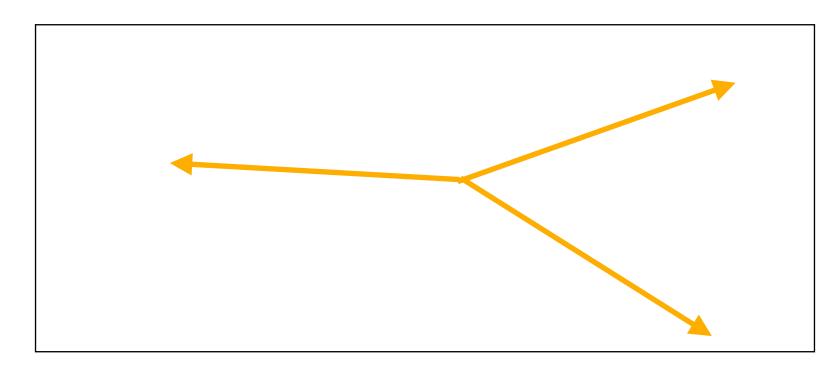
- $c \cdot \langle L_{S,i}, \operatorname{sk}_i \rangle$ is short $\to \mathbf{r}_i$ hides it.
 - Prove security with Hint-MLWE

Identifiable aborts.

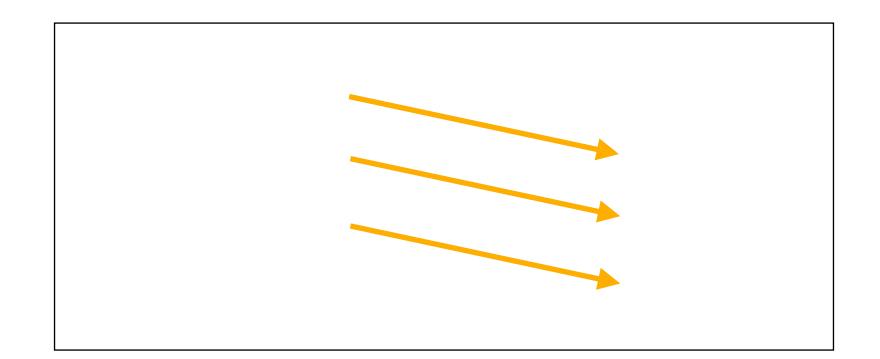
- Each $\mathsf{vk}_i^{(j)} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{s}_i^{(j)}$ is a valid public key $(\mathbf{s}_i^{(j)})$ is short, for $\mathsf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
 - \rightarrow Each (c, \mathbf{z}_i) is a valid signature for $\langle L_{S,i}, (\mathsf{vk}_i^{(j)})_j \rangle$
- Identifiable abort is as easy as verifying partial signatures!
- Akin to abort identification in Sparkle (Threshold Schnorr): perform partial verifications.

Instantiating this scheme.

• In the T-out-of-N setting, the number of shares grows with $\binom{N}{T-1}$, this scheme thus only supports a small number of parties.


For
$$N \leq 16$$
,

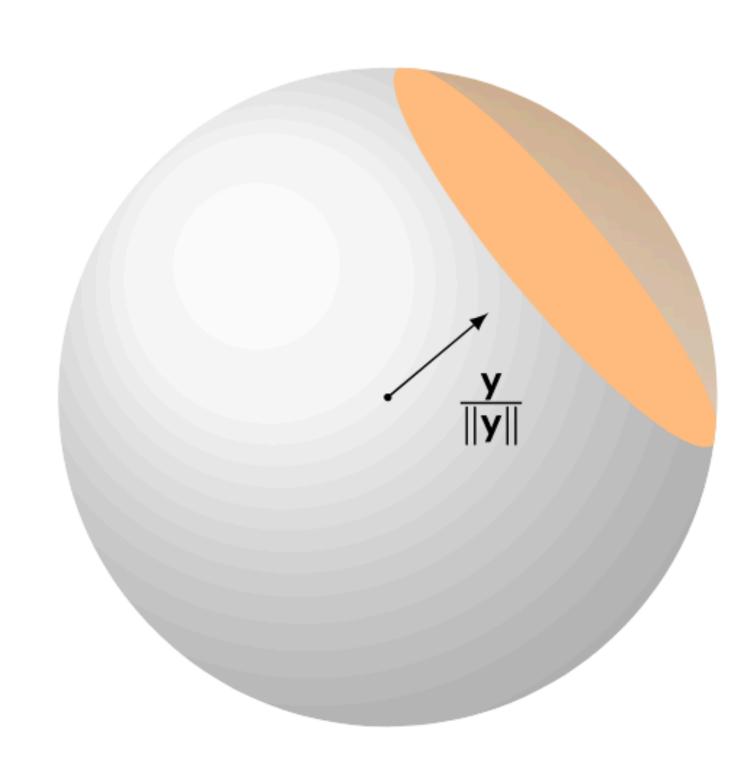
Phase	# rounds	vk	sig	Total communication
Signing	3	4 kB	11 kB	25 kB
Abort Identification	0			


Bonus: tighter check bounds using Short SS

Looking in more detail, the correctness of the previous schemes relies on the shortness of $\mathbf{z} = \sum_i \mathbf{z}_i$.

What can we say about the norm of T Gaussians?

Average-case: $O(\sqrt{T})$

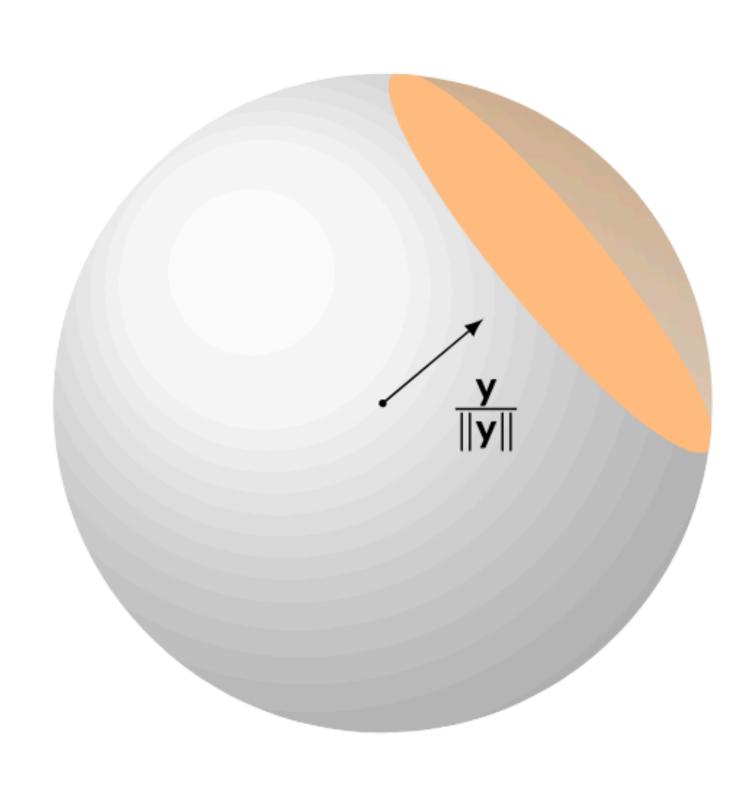


Worst-case: O(T)

- When users are honest: average-case.
- Colliding malicious users can force worst-case.

The Death Star Algorithm

If
$$\mathbf{x} \leftarrow \mathcal{D}_{\sigma}$$
,


- $\|\mathbf{x}\|$ is concentrated around its expected value $\sqrt{n}\sigma$
- For any vector y,

$$\langle \mathbf{x}, \mathbf{y} \rangle < \sigma \sqrt{O(\lambda)} \cdot \|\mathbf{y}\|$$

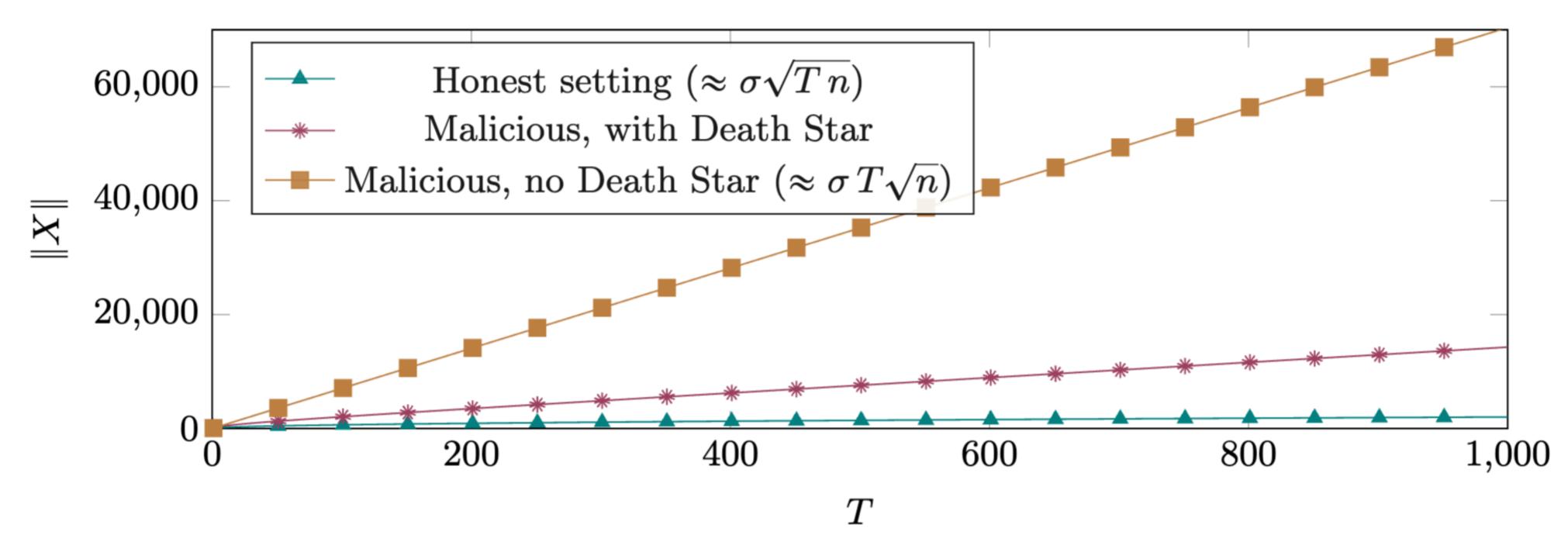
except with probability $2^{-\lambda}$.

The Death Star Algorithm

The Death Star Algorithm

For each signer i,

- If $\|\mathbf{x}_i\| \geq (1 + o(1))\sqrt{n}\sigma$, reject i• If $\langle \mathbf{x}_i, \mathbf{y}_i \rangle \geq \sigma \sqrt{O(\lambda)} \|\mathbf{y}_i\|$, where $\mathbf{y}_i = \sum_{j \neq i} \mathbf{x}_j$, reject i


Detect exactly cheating parties except with proba $2^{-\lambda}$

When no signer is rejected, the sum $\mathbf{x} = \sum_{i} \mathbf{x}_{i}$ verifies

$$\|\mathbf{x}\| \le \sigma \cdot T \cdot \sqrt{2 \log 2 \cdot \lambda} + \sigma \cdot \sqrt{T \cdot n} \cdot (1 + \varepsilon)$$

The Death Star Algorithm

Norm of $\mathbf{x} = \sum_{i} \mathbf{x}_{i}$ for $\sigma = 1$, n = 4096, 128 bits of security, and $T \le 1000$

4. Compact Dilithium-like Threshold Signatures

Finally! A Compact Lattice-Based Threshold Signature

Rafael del Pino¹ o and Guilhem Niot^{1,2} o

Fiat-Shamir with Aborts signature

$\mathsf{Rej}(\mathbf{v},\chi_r,\chi_z,M) \to \mathbf{z} \mid \bot$ • $\mathbf{z} = \mathbf{v} + \mathbf{r}$ • $b \leftarrow \mathcal{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})},1\right)\right)$ • If b = 0 then $\mathbf{z} = \bot$ • Return \mathbf{z}

Ideal
$$(\chi_z, M) \to \mathbf{z} \mid \bot$$

• $\mathbf{z} \leftarrow \chi_{\mathbf{z}}$

• $b \leftarrow \mathcal{B}\left(\frac{1}{M}\right)$

• If $b = 0$ then $\mathbf{z} = \bot$

For proper parameters, $\text{Rej}(\mathbf{v}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M) \sim \text{Ideal}(\chi_{\mathbf{z}}, M)$.

 \rightarrow distribution of z is independent of the secret value v

Fiat-Shamir with Aborts signature

$\mathsf{Rej}(\mathbf{v}, \chi_r, \chi_z, M; \mathbf{r}) \to \mathbf{z} \mid \bot$

•
$$z = v + r$$

•
$$b \leftarrow \mathcal{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})},1\right)\right)$$

- If b=0 then $\mathbf{z}=\bot$
- Return **Z**

FSwA . Sign(sk, msg) → sig

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \text{Rej}(c \cdot \text{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (*c*, **z**)

FSwA . Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v} \mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

In the ROM, the distribution of signatures of the above scheme is independent of the secret sk.

→ allows to prove unforgeability

FSwA . Sign(sk, msg) → sig

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \text{Rej}(c \cdot \text{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{z})
- \circ How to support T-out-of-N?

TH-FSwA . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = \text{Rej}(c \cdot \text{sk}_i, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Intuition N-out-of-N setting: take N short secrets sk_i

FSwA . Sign(sk, msg) → sig

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \text{Rej}(c \cdot \text{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{z})
- How to support T-out-of-N?
 - → Use short secret sharing

TH-FSwA . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = \text{Rej}(c \cdot \langle L_{S,i}, \mathsf{sk}_i \rangle, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

FSwA . Sign(sk, msg) → sig

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \text{Rej}(c \cdot \text{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{z})
- \circ How to support T-out-of-N?
 - → Use short secret sharing
- o \mathbf{w}_i is leaked even in case of rejection
 - Need proof strategy to show independence of secret
 - [DOTT22] hides rejected \mathbf{w}_i with a trapdoor commitment scheme
 - [BTT22] simulates rejected \mathbf{w}_i but with regularity lemma (degraded parameters)

TH-FSwA . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = \text{Rej}(c \cdot \langle L_{S,i}, \text{sk}_i \rangle, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

FSwA . Sign(sk, msg) → sig

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \text{Rej}(c \cdot \text{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{z})
- \circ How to support T-out-of-N?
 - → Use short secret sharing
- o \mathbf{w}_i is leaked even in case of rejection
 - Need proof strategy to show independence of secret
 - [DOTT22] hides rejected \mathbf{w}_i with a trapdoor commitment scheme
 - [BTT22] simulates rejected \mathbf{w}_i but with regularity lemma (degraded parameters)

→ Tighter simulation lemma

TH-FSwA . Sign(sk, msg) → sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast cmt_i = $H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = \text{Rej}(c \cdot \langle L_{S,i}, \text{sk}_i \rangle, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Lemma: Rejected \mathbf{w}_i is indistinguishable from uniform if:

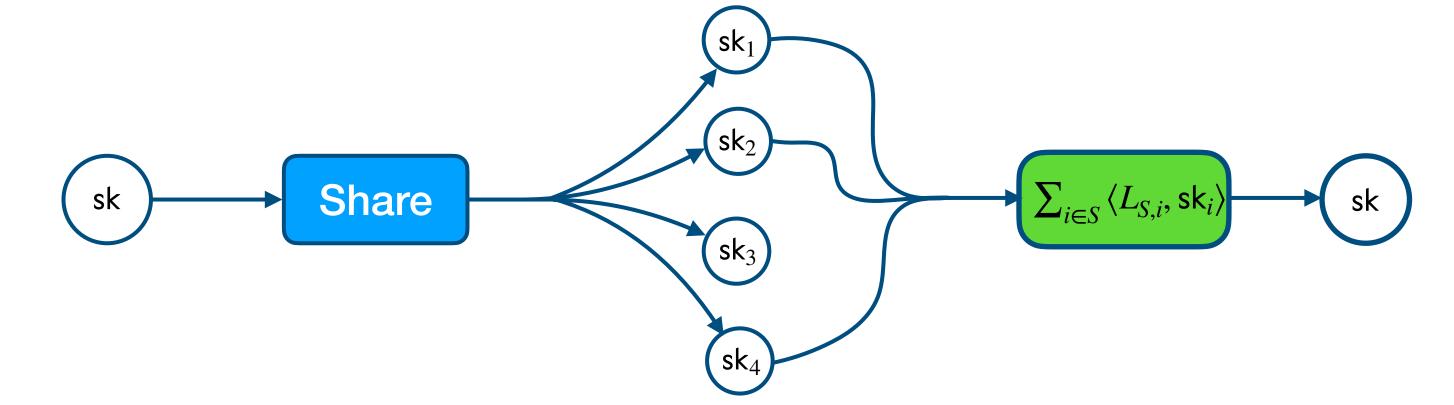
- $\mathbf{w} = [\mathbf{A} \quad \mathbf{I}] \cdot \mathbf{r}$, with $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$ is indistinguishable from uniform
- $\circ [A \ I] \cdot z$, with $z \leftarrow \chi_z$ is indistinguishable from uniform

For $N \leq 8$,

Distributions	Speed	Rounds	vk	sig	Total communication
Gaussians	Fast	3	2.6 kB	2.6 kB	5.6 kB
Uniforms			2.9 kB	6.3 kB	13.5 kB

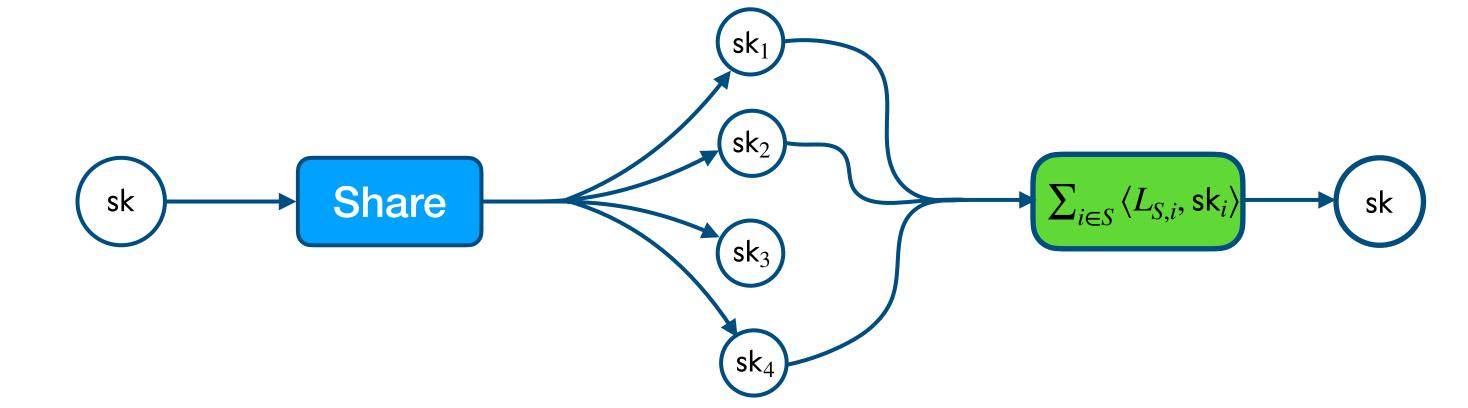
Comparable to Dilithium size: 2.4kB at NIST level II!

4. How to concretely sample short sharings


How to Shortly Share a Short Vector

DKG with Short Shares and Application to Lattice-Based Threshold Signatures with Identifiable Aborts

Rafael del Pino¹ ©, Thomas Espitau¹ ©, Guilhem Niot^{1,2} ©, and Thomas Prest¹ ©


Short Secret Sharing

- o Individual pool of short shares $sk_i = (s_i^{(1)}, s_i^{(2)}, \dots)$
- o T shares: can recover sk + reconstruction vector $L_{S,i}$ with small coefficients
- $\circ \leq T-1$ shares: can't recover sk

Short Secret Sharing

- o Individual pool of short shares $sk_i = (s_i^{(1)}, s_i^{(2)}, \dots)$
- $\quad \text{$\sim$} \ T \text{ shares: can recover sk + reconstruction vector} \\ L_{S,i} \text{ with small coefficients}$
- $\circ \leq T-1$ shares: can't recover sk

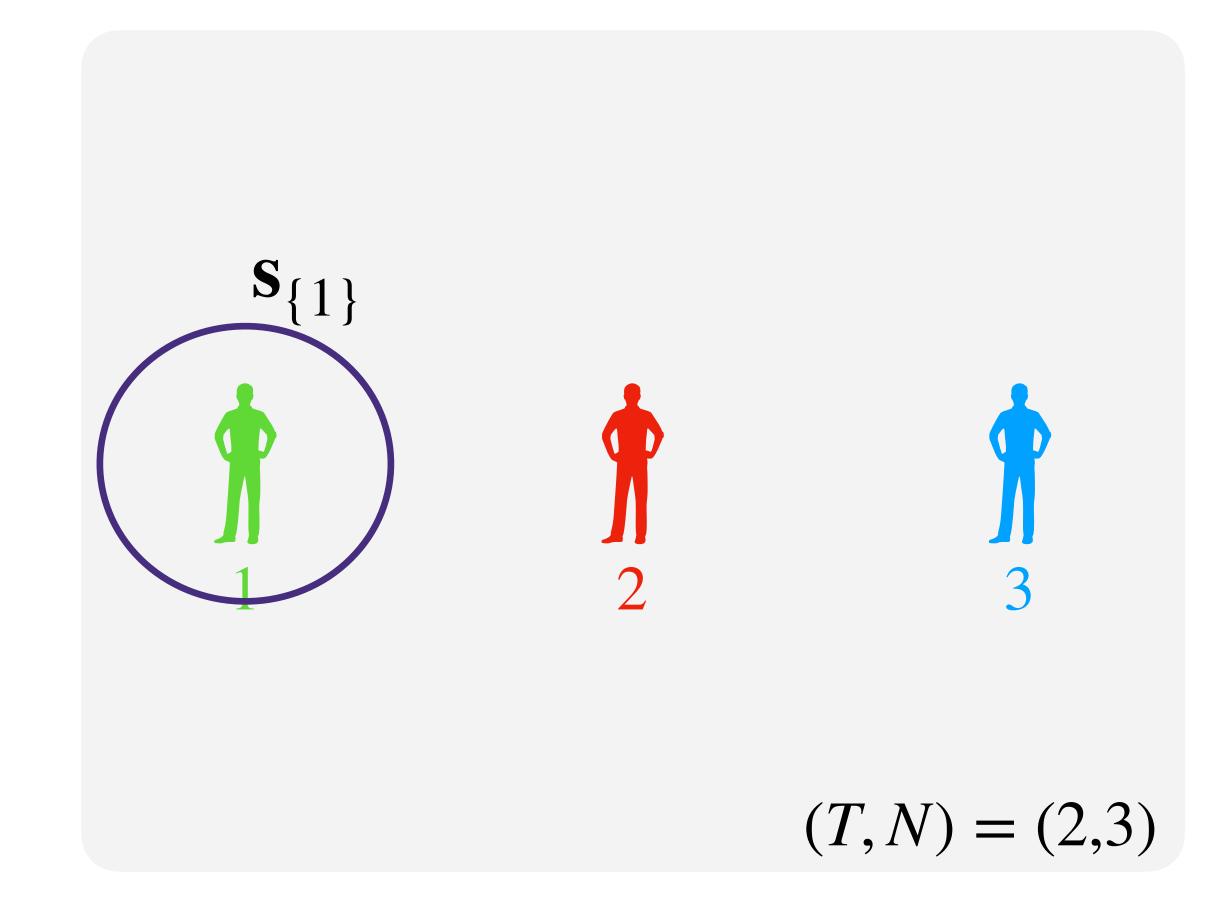
Observation: hard to not leak the secret with these constraints...

But, in a lattice-based scheme, it is fine to:

- \circ Leak an offset of the secret: $sk = sk_{safe} + sk_{leak}$
- ° Leak hints on the secrets $h = c \cdot sk + y$, for large enough y
- \rightarrow We just need [A I] \cdot sk to look uniform

Short Secret Sharing

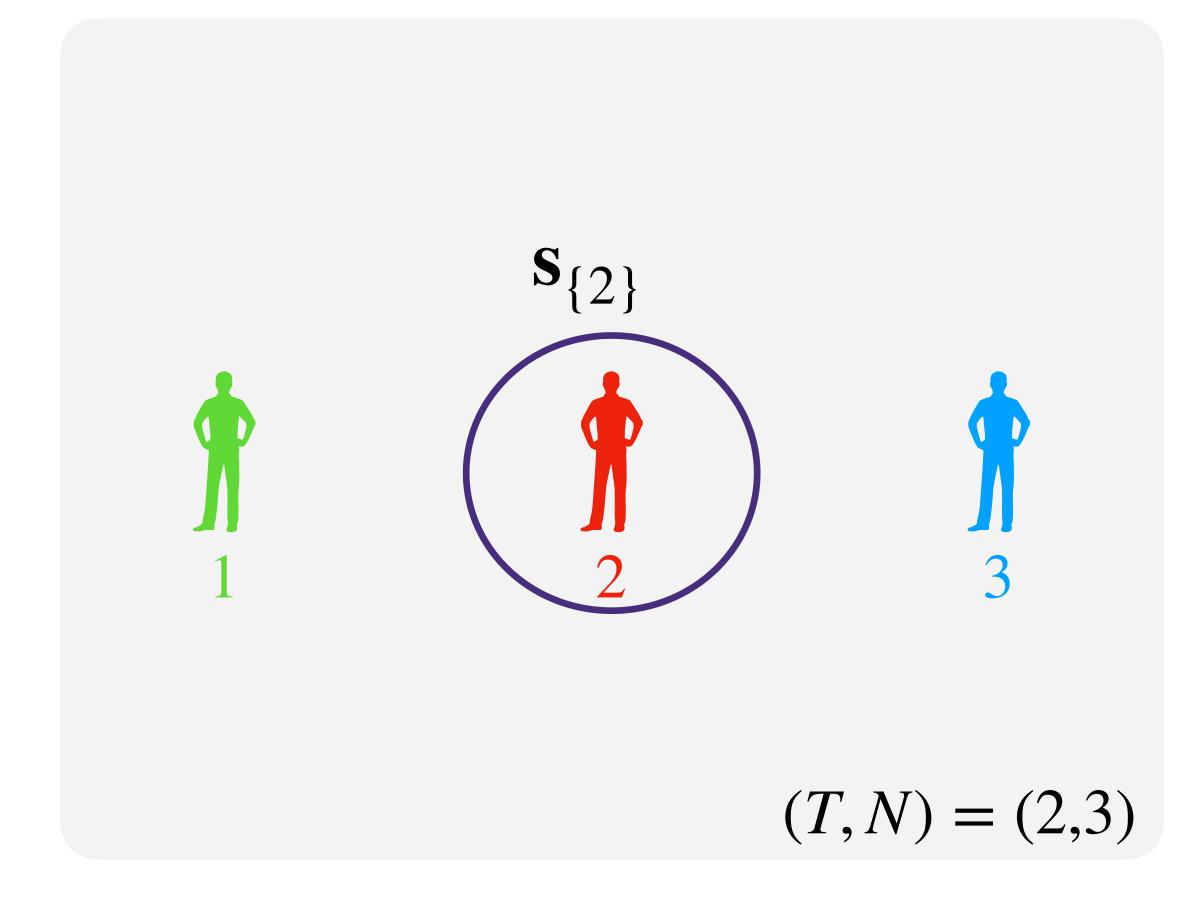
Weaken zero-knowledge → Functional simulatability


We are interested in protocols generating sharings such that:

- $^{\circ}$ When < T parties are corrupted,
 - ullet Their views can be simulated replacing $[A \quad I] \cdot sk$ with a uniform sample
 - It is possible to simulate a function on honest shares (i.e. obtain a hint on honest shares $h = c \cdot \langle L_{S,i}, sk_i \rangle + y$)

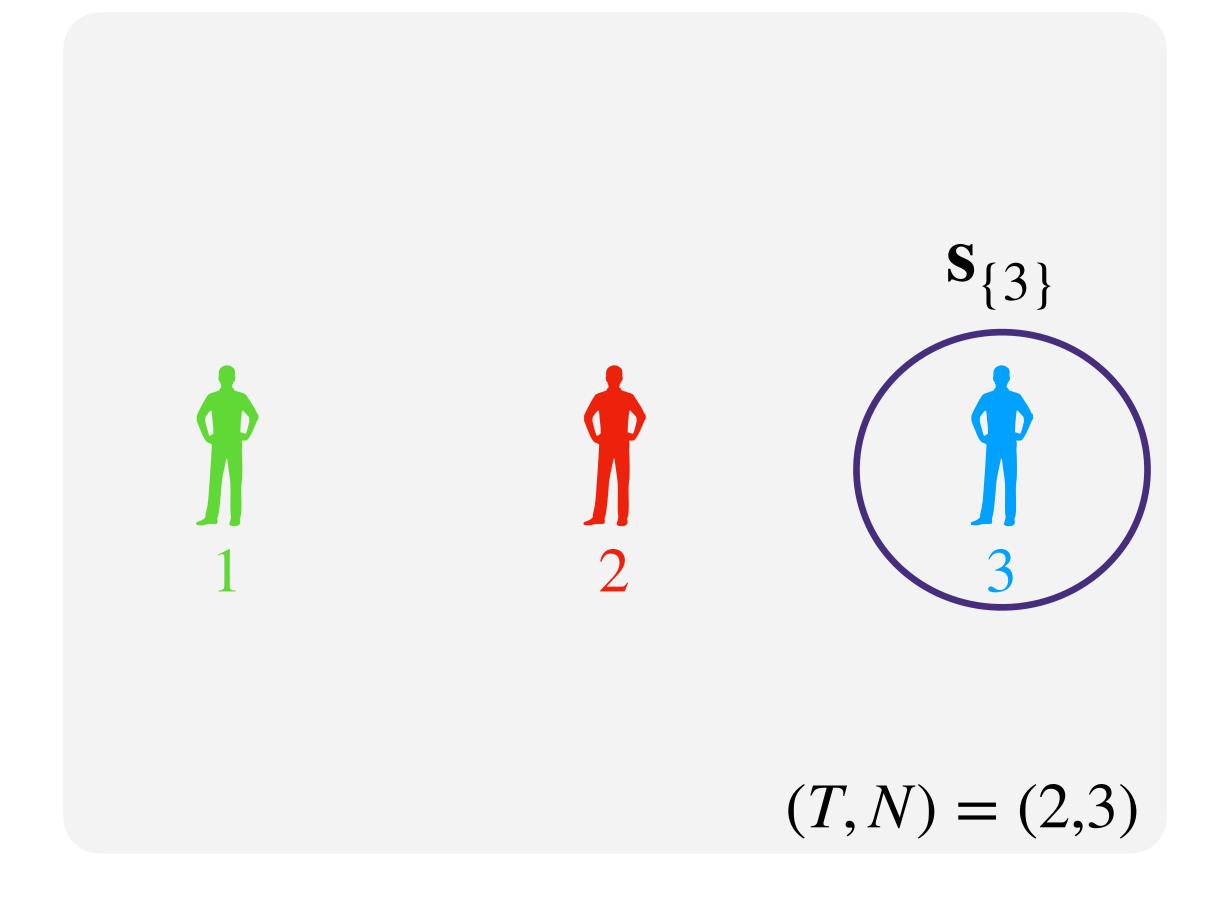
Inspired by the fractional knowledge notion in [ENP24], introduced for VSS.

Idea: sample a share for any possible set of corrupted parties.

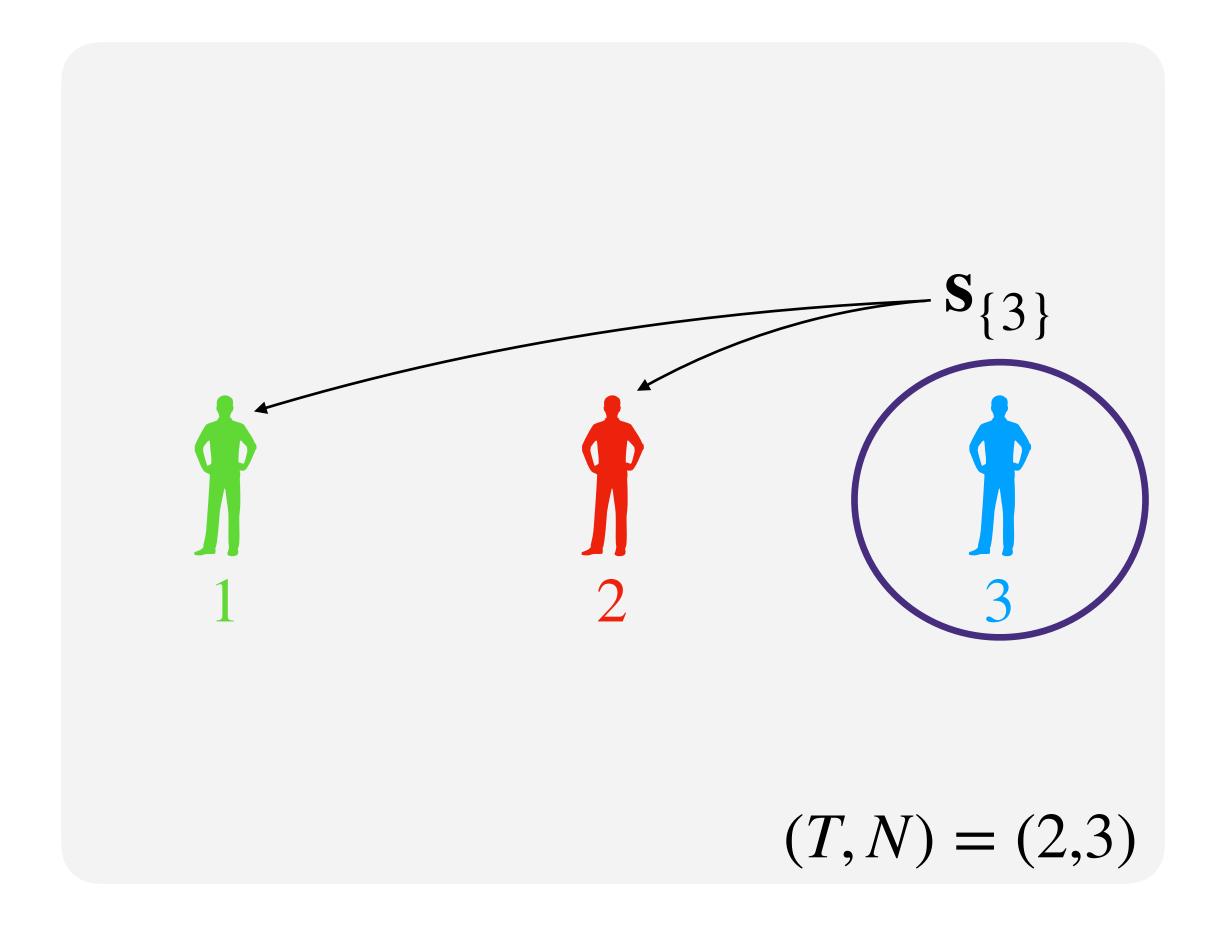

1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{s}_{\mathcal{T}}$.

Idea: sample a share for any possible set of corrupted parties.

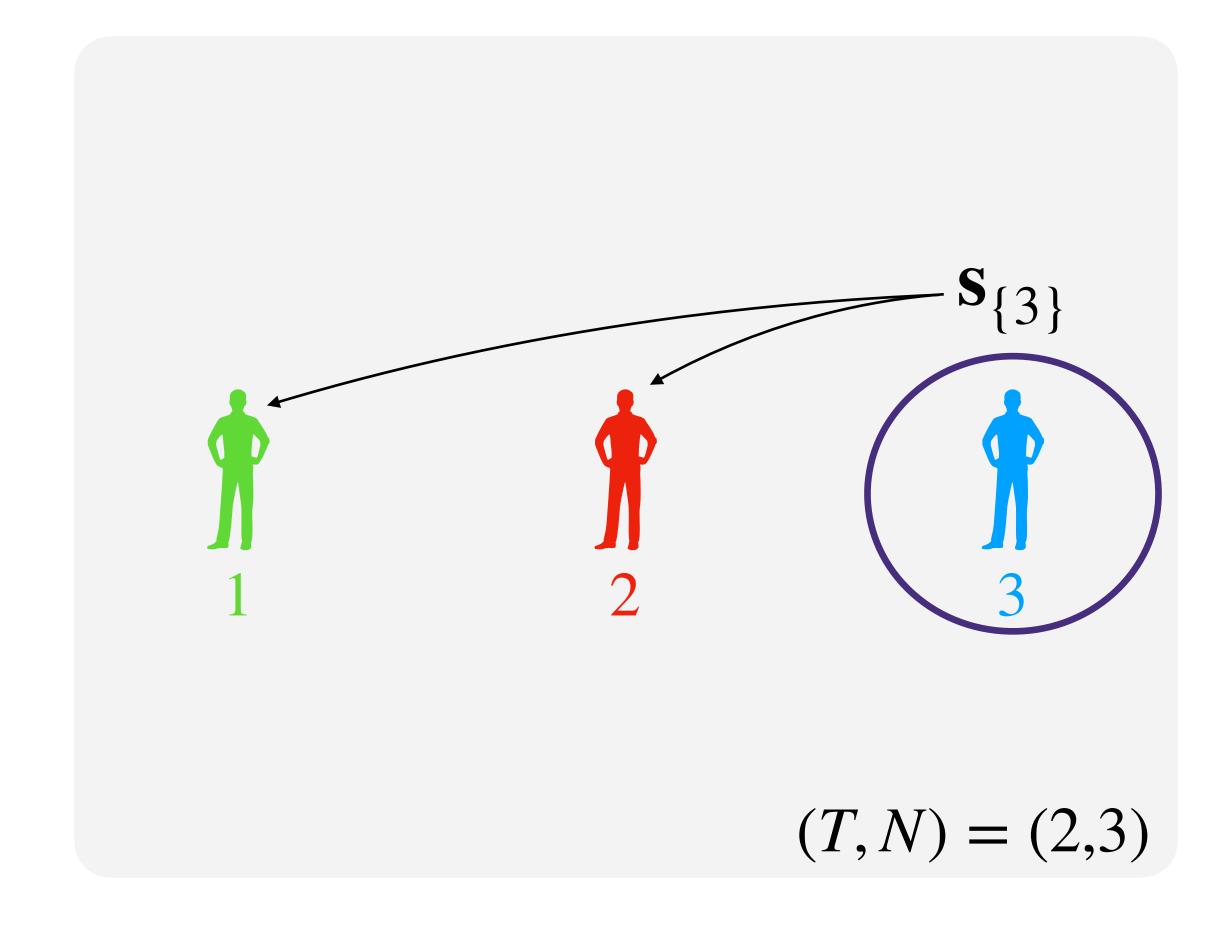
1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{s}_{\mathcal{T}}$.


$$\mathbf{S}_{\{1\}}$$

Idea: sample a share for any possible set of corrupted parties.


1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{s}_{\mathcal{T}}$.

$$S_{\{1\}}$$
 $S_{\{2\}}$


Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{s}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{s}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}$.

Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{s}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{s}_{\mathscr{T}}$ to the parties in $[N] \setminus \mathscr{T}$.
- 3. Define $sk = \sum_{\mathcal{T}} s_{\mathcal{T}}$.

Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{s}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{s}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}$.
- 3. Define $sk = \sum_{\mathcal{T}} s_{\mathcal{T}}$.

Properties:

- Reconstruction coefficients 0 or 1
- $^{\circ}$ When < T corrupted parties, at least one $\mathbf{s}_{\mathcal{T}}$ remains hidden.
 - → guarantees that sk remains protected

Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T-1 parties, sample a short share $\mathbf{s}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{s}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}$.
- 3. Define $sk = \sum_{\mathcal{T}} s_{\mathcal{T}}$.

Properties:

- Reconstruction coefficients 0 or 1
- $^{\circ}$ When < T corrupted parties, at least one $\mathbf{s}_{\mathcal{T}}$ remains hidden.
 - \rightarrow guarantees that $[A \ I] \cdot sk$ looks uniform (MLWE assumption)

Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} sample a short
- 2. Distribute S₇ to $[N] \setminus \mathcal{T}$.

Caveat: This scheme has a number of shares that is equal to $\binom{N}{T-1}$. efficients 0 or 1

ted parties, at least one s


remains hidden.

3. Define $sk = \sum_{\mathcal{T}} s_{\mathcal{T}}$.

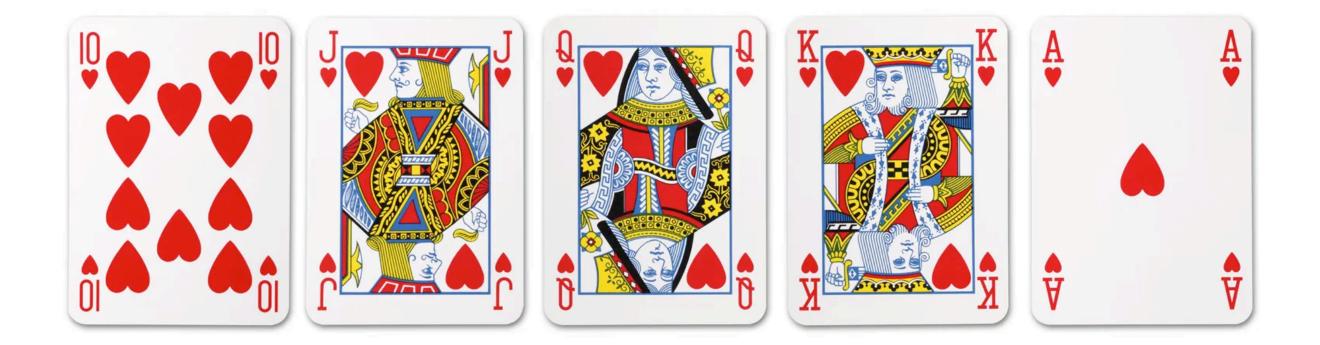
 \rightarrow guarantees that $[A \quad I] \cdot sk$ looks uniform (MLWE assumption)

Full collection

Ncards

Full collection

N cards

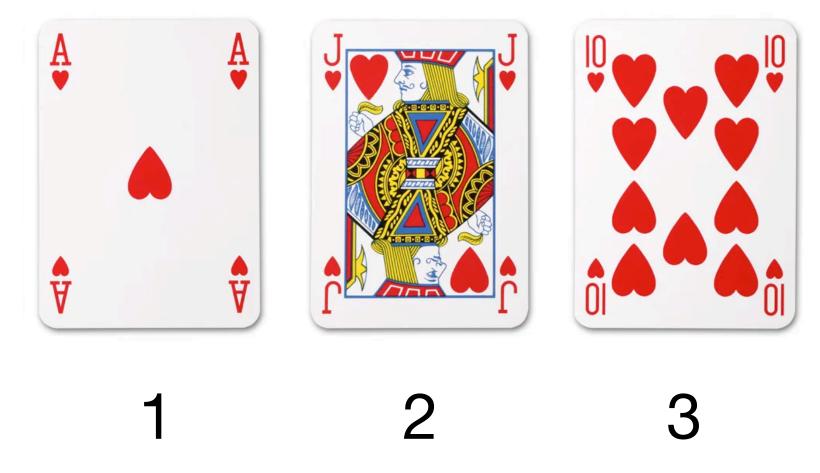

Draw with replacement

1

Full collection

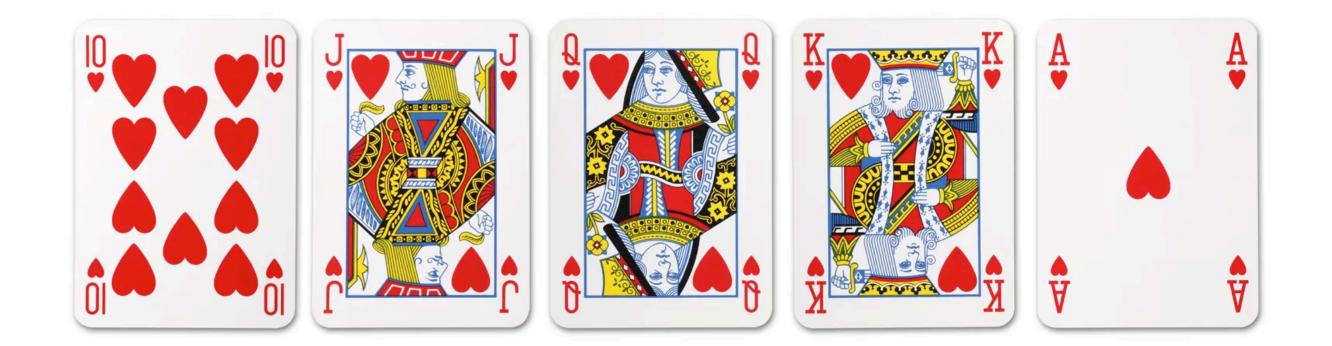
Ncards

Draw with replacement



Full collection

N cards



Draw with replacement

Full collection

N cards

Draw with replacement

How many draws to get the full collection?

 $\sim N \log N$

Full collection

 $\mathbf{sk} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 + \mathbf{s}_4$

N shares

Example:

•
$$\mathbf{s}_1, ..., \mathbf{s}_{N-1} \leftarrow \mathcal{D}_{\sigma}^{N-1}$$
 and $\mathbf{s}_N = \mathbf{sk} - \sum_{j < N} \mathbf{s}_i$

Full collection

 $\mathbf{sk} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 +$

N shares

Idea: Randomly distribute one share per party.

Example:

• $\mathbf{s}_1, ..., \mathbf{s}_{N-1} \leftarrow \mathcal{D}_{\sigma}^{N-1}$ and $\mathbf{s}_N = \mathbf{sk} - \sum_{i < N} \mathbf{s}_i$

Desired properties:

- Reconstruction threshold: Minimum number of parties T needed to gather all the shares? (with overwhelming probability)
- Security threshold: Maximum number of parties T' such that at least one share is not known (with overwhelming probability)

Full collection

$$\mathbf{sk} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 +$$

$$S_3$$

N shares

Idea: Randomly distribute one share per party.

Example:

•
$$\mathbf{s}_1, ..., \mathbf{s}_{N-1} \leftarrow \mathcal{D}_{\sigma}^{N-1}$$
 and $\mathbf{s}_N = \mathbf{sk} - \sum_{i < N} \mathbf{s}_i$

Desired properties:

- Reconstruction threshold: Minimum number of parties T needed to gather all the shares? (with overwhelming probability)
- Security threshold: Maximum number of parties T' such that at least one share is not known (with overwhelming probability)

Bounds T, T' are exactly bounds of the coupon collector problem.

Both
$$T, T' \sim N \log N$$
, with gap $\approx 1 + 128/\log N$
 $N \rightarrow \infty$

Full collection $\mathbf{sk} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 + \mathbf{s}_4$ N shares

Better parameters by amplifying properties:

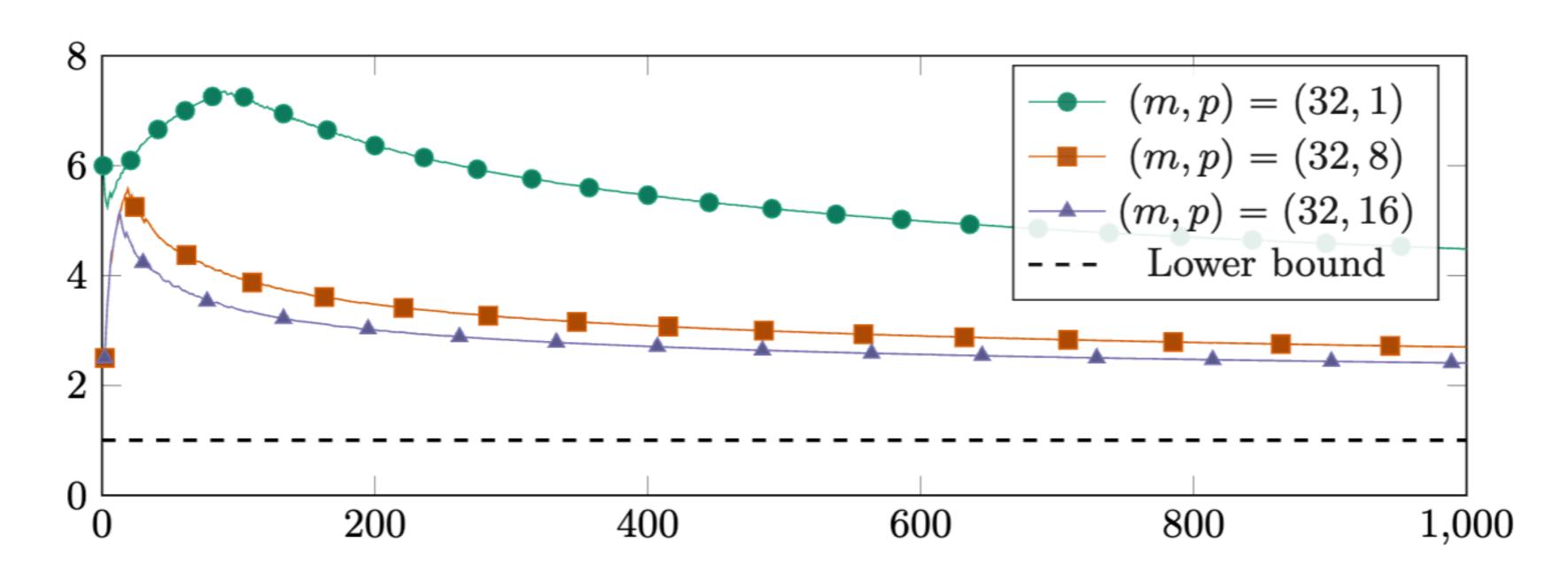
• Reconstruction threshold: If for given T, proba 1/2 of reconstructing sk

$$\mathbf{sk} = \mathbf{S}_{1}^{1} + \mathbf{S}_{2}^{1} + \mathbf{S}_{3}^{1} + \mathbf{S}_{4}^{1}$$

$$= \dots$$

$$= \mathbf{S}_{1}^{m} + \mathbf{S}_{2}^{m} + \mathbf{S}_{3}^{m} + \mathbf{S}_{4}^{m}$$

Share sk multiple times \rightarrow proba $1 - 1/2^m$


Full collection $\mathbf{sk} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 + \mathbf{s}_4$ N shares

Better parameters by amplifying properties:

- Reconstruction threshold: Share sk multiple times \rightarrow proba $1-1/2^m$
- Security threshold: Share multiple secrets sk

$$\mathsf{sk} = \mathsf{sk}_1 + \mathsf{sk}_2 + \ldots + \mathsf{sk}_p$$

If for given T', proba 1/2 of leaking sk_i , proba of leaking all the sk_i is $1/2^p$

Ratio T/T' achieved by our sharing as a function of T'. The dotted line corresponds to an ideal asymptotic T/T'=1.

Recall: m, p correspond respectively to amplification for reconstruction and security thresholds.

Full collection

$$\mathbf{sk} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 +$$

N shares

Example:

•
$$\mathbf{s}_1, ..., \mathbf{s}_{N-1} \leftarrow \mathcal{D}_{\sigma}^{N-1}$$
 and $\mathbf{s}_N = \mathbf{sk} - \sum_{i < N} \mathbf{s}_i$

Security:

We can prove that when $\leq T'$ parties are corrupted, leaked shares can be seen as hints on sk ($\mathbf{s}_n = \mathbf{sk} + \mathbf{y}$).

→ Reduce security to Hint-MLWE

Use case: can be used for ThRaccoon with id abort without degrading parameters.

Short secret sharing

This presentation assumes a trusted dealer to sample the short secret sharing.

But, in our paper, we show that it is quite easy to design DKGs.

Conclusion

Conclusion

Introduced two short secret sharing methods

- Based on replicated secret sharing (exponential number of shares → for small number of parties)
- \circ Based on coupon collector problem: scales to larger thresholds, but has a gap between T and T'

Two applications

- Threshold Raccoon with identifiable aborts (using partial verification keys)
- $^{\circ}$ A compact threshold FSwA signature scheme for $N \leq 8$

Questions?

