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1. Background
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( -out-of- ) threshold signaturesT N
What are they?

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

Global verification key 


1 partial signing key  per party


-out-of- :

Any  out of  parties can collaborate to 
sign a message under .


 parties cannot sign.

𝗏𝗄

𝗌𝗄i

T N
T N

𝗏𝗄
T − 1

An interactive protocol to distribute signature generation.
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( -out-of- ) threshold signaturesT N
What are they?

An interactive protocol to distribute signature generation.

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

(T, N) = (3,6)

Signature  on σ 𝗆𝗌𝗀
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Core security properties
Correctness: Given at least -out-of-  partial signing keys, we can sign.


(Ramp) Unforgeability: The signature scheme remains unforgeable even if up 
to  parties are corrupted, where .

T N

T′ T′ ≤ T − 1

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

T′ = 2
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Lattice-based Threshold Signatures
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An active field of research.



Designing a threshold scheme

Design 
choices

trade-off

Identifiable Aborts

Distributed Key 
Generation (DKG)

Robustness

Size

Speed

Rounds

Communication

advanced

properties

efficiency

Backward compatibility
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Designing a threshold scheme

Design 
choices

Underlying 
scheme

Thresholdization 
techniques

? ?



Candidate schemes

Lattice-based Threshold Signatures

Hash & Sign Fiat-Shamir

Gaussian Sampling

Rejection Sampling

Noise Flooding

Eagle [YJW23]

Phoenix [JRS24]

Plover [EEN+24]

G+G [DPS23]

Dilithium [LDK+22]

Raccoon [dEK+24]

Easier to  
thresholdize

More  
compact
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Candidate schemes

Lattice-based Threshold Signatures

Hash & Sign Fiat-Shamir

Gaussian Sampling

Rejection Sampling

Noise Flooding

Eagle [YJW23]

Phoenix [JRS24]

Plover [EEN+24]

G+G [DPS23]

Dilithium [LDK+22]

Raccoon [dEK+24]

Easier to  
thresholdize

More  
compact

This talk: Raccoon and Dilithium threshold variants.
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Lattice-based Threshold Signatures

Thresholdization 
technique Size Speed Rounds Comm/party

MPC S Slow 15

FHE M As fast as FHE 2

Tailored S-M Fast 2-4

≥ 1MB

20 kB → 56T kB

≥ 1MB

An active field of research, with different designs.
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This talk: Tailored Raccoon Dilithium-like

 advanced properties?→  more compact and -out-of- ?→ T N



Main technique of this talk
Short secret sharing.

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Individual pool of short shares 


 shares: can recover 


Reconstruction vector  with small coefficients


 shares: can’t recover 

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄
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Main technique of this talk
Short secret sharing.

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Example: -out-of-  sharing (one share per party)


•  and 


•

N N
𝗌𝗄1, …, 𝗌𝗄N ← 𝒟N

σ 𝗌𝗄 = ∑i 𝗌𝗄i

LS,i = 1

Extends to -out-of-  by having several shares per party.T N

Individual pool of short shares 


 shares: can recover 


Reconstruction vector  with small coefficients


 shares: can’t recover 

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄
11



Applications: 
Identifiable aborts in Threshold Raccoon

A compact Dilithium-like Threshold Signature

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Main technique of this talk
Short secret sharing.

Individual pool of short shares 


 shares: can recover 


Reconstruction vector  with small coefficients


 shares: can’t recover 

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄
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2. Threshold Raccoon
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Raccoon signature scheme
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short 

• 

• 

• 

• Output 

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

• 

• Assert 

• Assert  short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

14
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Raccoon signature scheme
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short 

• 

• 

• 

• Output 

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

• 

• Assert 

• Assert  short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

Unforgeable assuming 
Hint-MLWE 
SelfTargetMSIS 

Hint-MLWE assumption [KLSS23].

 is pseudorandom even if given 

Q “hints”:


 for 

(A, 𝗏𝗄)

(ci, zi := ci ⋅ 𝗌𝗄 + ri) i ∈ [Q]

As hard as  if





MLWEσ

σr ≥ Q ⋅ ∥c∥ ⋅ σ
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Threshold Raccoon
Shamir sharing on secret 𝗌𝗄 ∈ ℛℓ

q

Sample polynomial  s.t.


•  and 


• Partial signing keys 

f ∈ ℛℓ
q[X]

f(0) = 𝗌𝗄 deg f ≤ T − 1
𝗌𝗄i := [[𝗌k]]i = f(i)

Properties:

• with  shares,  is perfectly hidden

• with a set  of  shares, reconstruct  via Lagrange 

interpolation

< T 𝗌𝗄
S ≥ T 𝗌𝗄

𝗌𝗄 = ∑
i∈S

LS,i ⋅ [[𝗌𝗄]]i

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short 

• 

• 

• 

• Output 

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

• 

• Assert 

• Assert  short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z
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Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

First (insecure) attempt𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for  short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short 

• 

• 

• 

• Output 

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

• 

• Assert 

• Assert  short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z
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Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of 
wi
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)
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But,  is small vs  is large


 Leaks 

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i



Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

Prevent ROS attack with commit-reveal of 


But,  is small vs  is large


 Leaks 


Solution: add a zero-share :   

Derived with a PRF, using pre-shared pairwise 
keys


Any set of   values  is uniformly random


wi

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Δi

< T Δi

∑i∈S Δi = 0
+Δi

19



Threshold Raccoon, a practical threshold signature

Speed Rounds | vk | | sig | Total 
communication

Fast 3 4 kB 13 kB 40 kB

… but does not provide a DKG, or robustness / identifiable aborts.
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3. Another direction for ThRaccoon

21



Challenge of making ThRaccoon robust

Why is it challenging to add robustness to ThRaccoon? 

Incompatibility of the sharings of  and , that 
prevents a simple verification of computations


Additional non-linearity introduced by 

𝗌𝗄 ri

Δi

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Compute zero-share 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)
22



𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Compute zero-share 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)

The key challenge in ThRaccoon is to hide a secret  with 
the randomness .


Direction 1 (Threshold Raccoon): 
• The shares of  are uniform 
• The randomness shares  are short 

A uniform zero-share  is added to partial signatures to hide .


Direction 2: Can we make both  and  uniform? 

• Use Shamir-sharing for both  and   Flood and submerse [ENP24]


Direction 3: Can we make both  and  short? 

• Use a short secret-sharing for both  and 

LS,i ⋅ [[𝗌𝗄]]i
ri

𝗌𝗄
ri

Δi LS,i ⋅ [[𝗌𝗄]]i

LS,i ⋅ [[𝗌𝗄]]i ri

𝗌𝗄 r →

LS,i ⋅ [[𝗌𝗄]]i ri

𝗌𝗄 r

Let’s take a step back!

Challenge of making ThRaccoon robust

23
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Flood and submerse
𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Compute zero-share 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)

[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short , and Shamir sharing 


• 


• Broadcast 


• Privately send  to user 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• 


• Broadcast 


Combine: the final signature is


ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[r]]i = ∑j [[rj]]i

[[z]]i = c ⋅ [[𝗌𝗄]]i + [[r]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)
24



Flood and submerse

Security:  is uniform and hides  

This protocol can be augmented to achieve robustness:

Add a complaints round

Use of a V3S (Verifiable Short Secret Sharing) to 
prove shortness of , and correct Shamir-sharing

Can also be used to implement DKG

[[r]]i [[𝗌𝗄]]i

r

[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short , and Shamir sharing 


• 


• Broadcast 


• Privately send  to user 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• 


• Broadcast 


Combine: the final signature is


ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[r]]i = ∑j [[rj]]i

[[z]]i = c ⋅ [[𝗌𝗄]]i + [[r]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)
25



Flood and submerse

Security:  is uniform and hides  

This protocol can be augmented to achieve robustness:

Add a complaints round

Use of a V3S (Verifiable Short Secret Sharing) to 
prove shortness of , and correct Shamir-sharing

Can also be used to implement DKG

[[r]]i [[𝗌𝗄]]i

r

[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Speed: Fast

Rounds: 4 
Communication:  kB


DKG + Robustness 😃

T ⋅ 56

Round 1: 
• Sample a short , and Shamir sharing 


• 


• Broadcast 


• Privately send  to user 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• 


• Broadcast 


Combine: the final signature is


ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[r]]i = ∑j [[rj]]i

[[z]]i = c ⋅ [[𝗌𝗄]]i + [[r]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)
25



With Short Secret Sharing
Another approach relies on sampling a sharing of  such that we have:


Individual pool of short shares 


 shares: can recover  + reconstruction vector  with small coefficients


 shares: can’t recover 

𝗌𝗄
𝗌𝗄i = (s(1)

i , s(2)
i , . . . )

T 𝗌𝗄 LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

26



𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

With Short Secret Sharing

Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)

For simplicity, we consider one share per party.

Security. 

•  is short   hides it.


• Prove security with Hint-MLWE


c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri

27



For simplicity, we consider one share per party.

Security. 

•  is short   hides it.


• Prove security with Hint-MLWE


Identifiable aborts. 

• Each  is a valid public key (  is 
short), for 


 Each  is a valid signature for 


• Identifiable abort is as easy as verifying partial 
signatures!


• Akin to abort identification in Sparkle (Threshold 
Schnorr): perform partial verifications.

c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri

𝗏𝗄( j)
i = [A I] ⋅ s( j)

i s( j)
i

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

→ (c, zi) ⟨LS,i, (𝗏𝗄( j)
i )j⟩

With Short Secret Sharing
𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)
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Instantiating this scheme.

• In the -out-of-  setting, the number of shares grows with , this scheme thus only supports a small 

number of parties.


For ,

T N ( N
T − 1)

N ≤ 16

Phase # rounds | vk | | sig | Total 
communication

Signing 3
4 kB 11 kB

25 kB

Abort Identification 0

With Short Secret Sharing

29



Looking in more detail, the correctness of the previous schemes relies on the shortness of .


What can we say about the norm of  Gaussians? 

z = ∑i zi

T

Bonus: tighter check bounds using Short SS

Average-case:  O( T) Worst-case:  O(T)

• When users are honest: average-case.


• Colliding malicious users can force worst-case.
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Looking in more detail, the correctness of the previous schemes relies on the shortness of .


What can we say about the norm of  Gaussians? 

z = ∑i zi

T

Bonus: tighter check bounds using Short SS

Average-case:  O( T) Worst-case:  O(T)

• When users are honest: average-case.


• Colliding malicious users can force worst-case.

In Flood and Submerse,  is masked (uniform-
looking sharings), hard to detect worst-case 


 bound in  that reduces security 😞 

zi

→ O(T)
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Looking in more detail, the correctness of the previous schemes relies on the shortness of .


What can we say about the norm of  Gaussians? 

z = ∑i zi

T

Bonus: tighter check bounds using Short SS

Average-case:  O( T) Worst-case:  O(T)

• When users are honest: average-case.


• Colliding malicious users can force worst-case.

In Flood and Submerse,  is masked (uniform-
looking sharings), hard to detect worst-case 


 bound in  that reduces security 😞 

zi

→ O(T)

With Short SS,  is short and we can detect 
collusions and worst-case behaviour!

zi

30



The Death Star Algorithm

If ,


•  is concentrated around its expected value 


• For any vector ,





except with probability . 

x ← 𝒟σ

∥x∥ nσ

y
⟨x, y⟩ < σ O(λ) ⋅ ∥y∥

2−λ

31



The Death Star Algorithm

 The Death Star Algorithm

For each signer , 

• If , reject 


• If , where , reject 

i
∥xi∥ ≥ (1 + o(1)) nσ i
⟨xi, yi⟩ ≥ σ O(λ)∥yi∥ yi = ∑j≠i xj i

When no signer is rejected, the sum  verifies
x = ∑i xi

∥x∥ ≤ σ ⋅ T ⋅ 2 log 2 ⋅ λ

+σ ⋅ T ⋅ n ⋅ (1 + ε)

32

Detect exactly cheating parties except with proba 2−λ



The Death Star Algorithm

Norm of  for , , 128 bits of security, and x = ∑i xi σ = 1 n = 4096 T ≤ 1000

33



4. Compact Dilithium-like Threshold Signatures

34



Fiat-Shamir with Aborts signature

𝖱𝖾𝗃(v, χr, χz, M) → z | ⊥

• 


• 


• 


• If  then 

• Return 

r ← χr
z = v + r

b ← ℬ (max ( χz(z)
Mχr(r)

,1))
b = 0 z = ⊥

z

𝖨𝖽𝖾𝖺𝗅(χz, M) → z | ⊥

• 


• 


• If  then 

• Return 

z ← χz

b ← ℬ ( 1
M )

b = 0 z = ⊥
z

For proper parameters, .


 distribution of  is independent of the secret value 

𝖱𝖾𝗃(v, χr, χz, M) ∼ 𝖨𝖽𝖾𝖺𝗅(χz, M)

→ z v

35



Fiat-Shamir with Aborts signature
𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• 


• 

• 

• 

• If then restart

• Return 

r ← χr
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄, χr, χz, M; r)

z = ⊥
(c, z)

𝖥𝖲𝗐𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

• 

• Assert 

• Assert  short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

𝖱𝖾𝗃(v, χr, χz, M; r) → z | ⊥

• 


• 


• If  then 

• Return 

z = v + r

b ← ℬ (max ( χz(z)
Mχr(r)

,1))
b = 0 z = ⊥

z

In the ROM, the distribution of signatures of the above scheme is independent of the secret .


 allows to prove unforgeability

𝗌𝗄
→
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Threshold FSwA signature?
𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• 


• 

• 

• 

• If then restart

• Return 

r ← χr
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄, χr, χz, M; r)

z = ⊥
(c, z)

Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄i, χr, χz, M; ri)

(c, ∑i∈S zi)

𝖳𝖧-𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Intuition -out-of-  setting: take  short secrets N N N 𝗌𝗄i
37
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How to support -out-of- ?
T N

Threshold FSwA signature?
𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• 


• 

• 

• 

• If then restart

• Return 

r ← χr
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄, χr, χz, M; r)

z = ⊥
(c, z)

𝖳𝖧-𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

 Use short secret sharing→

Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = 𝖱𝖾𝗃(c ⋅ ⟨LS,i, 𝗌𝗄i⟩, χr, χz, M; ri)

(c, ∑i∈S zi)
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How to support -out-of- ?


 is leaked even in case of rejection

Need proof strategy to show independence of secret

[DOTT22] hides rejected  with a trapdoor 
commitment scheme

[BTT22] simulates rejected  but with regularity 
lemma (degraded parameters)

T N

wi

wi

wi

Threshold FSwA signature?
𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• 


• 

• 

• 

• If then restart

• Return 

r ← χr
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄, χr, χz, M; r)

z = ⊥
(c, z)

Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = 𝖱𝖾𝗃(c ⋅ ⟨LS,i, 𝗌𝗄i⟩, χr, χz, M; ri)

(c, ∑i∈S zi)

 Use short secret sharing→

𝖳𝖧-𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
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 Tighter simulation lemma→

How to support -out-of- ?


 is leaked even in case of rejection

Need proof strategy to show independence of secret

[DOTT22] hides rejected  with a trapdoor 
commitment scheme

[BTT22] simulates rejected  but with regularity 
lemma (degraded parameters)

T N

wi

wi

wi

Threshold FSwA signature?
𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
• 


• 

• 

• 

• If then restart

• Return 

r ← χr
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄, χr, χz, M; r)

z = ⊥
(c, z)

Round 1: 
• Sample a short 


• 


• Broadcast 


Round 2: 
• Broadcast 


Round 3: 

• 


• 


• Broadcast 


Combine: the final signature is


ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = 𝖱𝖾𝗃(c ⋅ ⟨LS,i, 𝗌𝗄i⟩, χr, χz, M; ri)

(c, ∑i∈S zi)

 Use short secret sharing→

𝖳𝖧-𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

39

https://eprint.iacr.org/2020/1110
https://eprint.iacr.org/2022/1036


Threshold FSwA signature?

Lemma: Rejected  is indistinguishable from uniform if:


, with  is indistinguishable from uniform


, with  is indistinguishable from uniform


wi

w = [A I] ⋅ r r ← χr

[A I] ⋅ z z ← χz

40



Threshold FSwA signature

Distributions Speed Rounds | vk | | sig | Total 
communication

Gaussians

Fast 3

2.6 kB 2.6 kB 5.6 kB

Uniforms 2.9 kB 6.3 kB 13.5 kB

For ,N ≤ 8

Comparable to Dilithium size: 2.4kB at NIST level II!
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4. How to concretely sample short sharings

42



Short Secret Sharing

Individual pool of short shares 


 shares: can recover  + reconstruction vector 
 with small coefficients


 shares: can’t recover 

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1
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Short Secret Sharing

Individual pool of short shares 


 shares: can recover  + reconstruction vector 
 with small coefficients


 shares: can’t recover 

𝗌𝗄i = (s(1)
i , s(2)

i , . . . )

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Observation: hard to not leak the secret with these constraints…

But, in a lattice-based scheme, it is fine to:

Leak an offset of the secret: 

Leak hints on the secrets , for large enough 

 We just need  to look uniform 

𝗌𝗄 = 𝗌𝗄𝗌𝖺𝖿𝖾 + 𝗌𝗄𝗅𝖾𝖺𝗄
h = c ⋅ 𝗌𝗄 + y y

→ [A I] ⋅ 𝗌𝗄
43



Short Secret Sharing

Weaken zero-knowledge  Functional simulatability→

We are interested in protocols generating sharings such that:


When  parties are corrupted, 


Their views can be simulated replacing  with a uniform sample


It is possible to simulate a function on honest shares (i.e. obtain a hint on 
honest shares )


Inspired by the fractional knowledge notion in [ENP24], introduced for VSS.

< T

[A I] ⋅ 𝗌𝗄

h = c ⋅ ⟨LS,i, 𝗌𝗄𝗂⟩ + y

44
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1

Solution 1: Replicated Secret Sharing
Idea: sample a share for any possible set of corrupted parties.

2

45

3

s{1}

(T, N) = (2,3)

1. For any set  of  parties, 
sample a uniform share .


𝒯 T − 1
s𝒯



1

Solution 1: Replicated Secret Sharing

2

46

3

s{1}

(T, N) = (2,3)

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .

𝒯 T − 1
s𝒯



1

Solution 1: Replicated Secret Sharing

2
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3

s{1}

(T, N) = (2,3)

s{3}

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .

𝒯 T − 1
s𝒯



1

Solution 1: Replicated Secret Sharing

2

48

3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .


2. Distribute  to the parties in 
.


𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯



1

Solution 1: Replicated Secret Sharing

2

1. For any set  of  parties, 
sample a uniform share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

49

3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.



Solution 1: Replicated Secret Sharing

Properties: 

Reconstruction coefficients 0 or 1


When  corrupted parties, at least 
one  remains hidden.


 guarantees that  remains protected

< T
s𝒯

→ 𝗌𝗄

50

Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a uniform share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯



Solution 1: Short Replicated Secret Sharing

Properties: 

Reconstruction coefficients 0 or 1


When  corrupted parties, at least 
one  remains hidden.


 guarantees that  looks 
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄
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Idea: sample a share for any possible set of corrupted parties.

1. For any set  of  parties, 
sample a short share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯



1. For any set  of  parties, 
sample a short share .


2. Distribute  to the parties in 
.


3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

Solution 1: Short Replicated Secret Sharing

Properties: 

Reconstruction coefficients 0 or 1


When  corrupted parties, at least 
one  remains hidden.


 guarantees that  looks 
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄

Caveat: This scheme has a number 

of shares that is equal to .( N
T − 1)

52

Idea: sample a share for any possible set of corrupted parties.



Solution 2: Coupon collector problem

Full collection
 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1

 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1 2

 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1 2 3

 cardsN
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Solution 2: Coupon collector problem

Full collection

Draw with 
replacement

1 2 3 4

… How many draws to 
get the full collection?

~ N log N

 cardsN

53



Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Example: 

•  and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si
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Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties: 
• Reconstruction threshold: Minimum number of parties  needed to gather 

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties  such that at least one 

share is not known (with overwhelming probability)


T

T′ 

Example: 

•  and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si
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Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties: 
• Reconstruction threshold: Minimum number of parties  needed to gather 

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties  such that at least one 

share is not known (with overwhelming probability)


T

T′ 

Bounds  are exactly bounds of the coupon collector problem.

Both , with gap 

T, T′ 

T, T′ ∼ N log N ≈
N→∞

1 + 128/log N

Example: 

•  and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si
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Solution 2: Coupon collector problem

Full collection
 sharesN

𝗌𝗄 = s1 s2+ s3+ s4+

Better parameters by amplifying properties:

• Reconstruction threshold: If for given , proba  of reconstructing T 1/2 𝗌𝗄
𝗌𝗄 = s1

1 s1
2+ s1

3+ s1
4+

= sm
1 sm

2+ sm
3+ sm

4+

= …

Share  multiple times  proba 𝗌𝗄 → 1 − 1/2m
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Solution 2: Coupon collector problem

Full collection
 sharesN

𝗌𝗄 = s1 s2+ s3+ s4+

Better parameters by amplifying properties:

• Reconstruction threshold: Share  multiple times  proba 

• Security threshold: Share multiple secrets 

𝗌𝗄 → 1 − 1/2m

𝗌𝗄

𝗌𝗄 = 𝗌𝗄1 + …+ +𝗌𝗄2 𝗌𝗄p

If for given , proba  of leaking , proba of leaking all the  is T′ 1/2 𝗌𝗄i 𝗌𝗄i 1/2p
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Ratio  achieved by our sharing as a function of . The 
dotted line corresponds to an ideal asymptotic .

T/T′ T′ 

T/T′ = 1

Solution 2: Coupon collector problem

Recall: ,  correspond respectively to amplification for 
reconstruction and security thresholds.

m p
57



Solution 2: Coupon collector problem

Full collection
 sharesN

𝗌𝗄 = s1 s2+ s3+ s4+

Security: 

We can prove that when  parties are corrupted, leaked shares can be seen as 
hints on  ( ).


 Reduce security to Hint-MLWE


Use case: can be used for ThRaccoon with id abort without degrading parameters.

≤ T′ 

𝗌𝗄 sn = 𝗌𝗄 + y
→

Example: 

•  and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si
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Short secret sharing

This presentation assumes a trusted dealer to sample the short secret sharing.


But, in our paper, we show that it is quite easy to design DKGs.
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Conclusion
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Conclusion

Introduced two short secret sharing methods 

Based on replicated secret sharing (exponential number of shares  for 
small number of parties)

Based on coupon collector problem: scales to larger thresholds, but has a 
gap between  and 


Two applications 
Threshold Raccoon with identifiable aborts (using partial verification keys)

A compact threshold FSwA signature scheme for 

→

T T′ 

N ≤ 8
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Questions?
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