
 Short Shares, Small Coefficients
A New Secret Sharing Scheme and its Applications to Lattice-based

Threshold Cryptography

Guilhem Niot, joint works with Rafael del Pino, Thomas Espitau,Thomas Prest

JP Morgan 62nd AlgoCRYPT Seminar - 10. Jan 2025

1

1. Background

2

(-out-of-) threshold signaturesT N
What are they?

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

Global verification key

1 partial signing key per party

-out-of- :

Any out of parties can collaborate to
sign a message under .

 parties cannot sign.

𝗏𝗄

𝗌𝗄i

T N
T N

𝗏𝗄
T − 1

An interactive protocol to distribute signature generation.

3

(-out-of-) threshold signaturesT N
What are they?

An interactive protocol to distribute signature generation.

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

(T, N) = (3,6)

Signature on σ 𝗆𝗌𝗀

4

Core security properties
Correctness: Given at least -out-of- partial signing keys, we can sign.

(Ramp) Unforgeability: The signature scheme remains unforgeable even if up
to parties are corrupted, where .

T N

T′ T′ ≤ T − 1

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

T′ = 2
5

Lattice-based Threshold Signatures

6

An active field of research.

Designing a threshold scheme

Design
choices

trade-off

Identifiable Aborts

Distributed Key
Generation (DKG)

Robustness

Size

Speed

Rounds

Communication

advanced

properties

efficiency

Backward compatibility

7

Designing a threshold scheme

Design
choices

Underlying
scheme

Thresholdization
techniques

? ?

Candidate schemes

Lattice-based Threshold Signatures

Hash & Sign Fiat-Shamir

Gaussian Sampling

Rejection Sampling

Noise Flooding

Eagle [YJW23]

Phoenix [JRS24]

Plover [EEN+24]

G+G [DPS23]

Dilithium [LDK+22]

Raccoon [dEK+24]

Easier to
thresholdize

More
compact

9

https://eprint.iacr.org/2023/729
https://eprint.iacr.org/2023/446
https://eprint.iacr.org/2024/401
https://eprint.iacr.org/2023/1477
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2024/1291

Candidate schemes

Lattice-based Threshold Signatures

Hash & Sign Fiat-Shamir

Gaussian Sampling

Rejection Sampling

Noise Flooding

Eagle [YJW23]

Phoenix [JRS24]

Plover [EEN+24]

G+G [DPS23]

Dilithium [LDK+22]

Raccoon [dEK+24]

Easier to
thresholdize

More
compact

This talk: Raccoon and Dilithium threshold variants.

9

https://eprint.iacr.org/2023/729
https://eprint.iacr.org/2023/446
https://eprint.iacr.org/2024/401
https://eprint.iacr.org/2023/1477
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2024/1291

Lattice-based Threshold Signatures

Thresholdization
technique Size Speed Rounds Comm/party

MPC S Slow 15

FHE M As fast as FHE 2

Tailored S-M Fast 2-4

≥ 1MB

20 kB → 56T kB

≥ 1MB

An active field of research, with different designs.

10

Lattice-based Threshold Signatures

Thresholdization
technique Size Speed Rounds Comm/party

MPC S Slow 15

FHE M As fast as FHE 2

Tailored S-M Fast 2-4

≥ 1MB

20 kB → 56T kB

≥ 1MB

An active field of research, with different designs.

10

This talk: Tailored Raccoon Dilithium-like

 advanced properties?→ more compact and -out-of- ?→ T N

Main technique of this talk
Short secret sharing.

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Individual pool of short shares

 shares: can recover

Reconstruction vector with small coefficients

 shares: can’t recover

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄
11

Main technique of this talk
Short secret sharing.

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Example: -out-of- sharing (one share per party)

• and

•

N N
𝗌𝗄1, …, 𝗌𝗄N ← 𝒟N

σ 𝗌𝗄 = ∑i 𝗌𝗄i

LS,i = 1

Extends to -out-of- by having several shares per party.T N

Individual pool of short shares

 shares: can recover

Reconstruction vector with small coefficients

 shares: can’t recover

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄
11

Applications:
Identifiable aborts in Threshold Raccoon

A compact Dilithium-like Threshold Signature

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Main technique of this talk
Short secret sharing.

Individual pool of short shares

 shares: can recover

Reconstruction vector with small coefficients

 shares: can’t recover

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄
12

2. Threshold Raccoon

13

Raccoon signature scheme
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

14

* omitting usual rounding techniques

Raccoon signature scheme
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

Unforgeable assuming
Hint-MLWE
SelfTargetMSIS

Hint-MLWE assumption [KLSS23].

 is pseudorandom even if given

Q “hints”:

 for

(A, 𝗏𝗄)

(ci, zi := ci ⋅ 𝗌𝗄 + ri) i ∈ [Q]

As hard as if

MLWEσ

σr ≥ Q ⋅ ∥c∥ ⋅ σ

15

Threshold Raccoon
Shamir sharing on secret 𝗌𝗄 ∈ ℛℓ

q

Sample polynomial s.t.

• and

• Partial signing keys

f ∈ ℛℓ
q[X]

f(0) = 𝗌𝗄 deg f ≤ T − 1
𝗌𝗄i := [[𝗌k]]i = f(i)

Properties:

• with shares, is perfectly hidden

• with a set of shares, reconstruct via Lagrange

interpolation

< T 𝗌𝗄
S ≥ T 𝗌𝗄

𝗌𝗄 = ∑
i∈S

LS,i ⋅ [[𝗌𝗄]]i

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

16

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

First (insecure) attempt𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

17

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of
wi
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

18

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of
wi
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

18

But, is small vs is large

 Leaks

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

Prevent ROS attack with commit-reveal of

But, is small vs is large

 Leaks

Solution: add a zero-share :

Derived with a PRF, using pre-shared pairwise
keys

Any set of values is uniformly random

wi

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Δi

< T Δi

∑i∈S Δi = 0
+Δi

19

Threshold Raccoon, a practical threshold signature

Speed Rounds | vk | | sig | Total
communication

Fast 3 4 kB 13 kB 40 kB

… but does not provide a DKG, or robustness / identifiable aborts.

20

3. Another direction for ThRaccoon

21

Challenge of making ThRaccoon robust

Why is it challenging to add robustness to ThRaccoon?

Incompatibility of the sharings of and , that
prevents a simple verification of computations

Additional non-linearity introduced by

𝗌𝗄 ri

Δi

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Compute zero-share

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)
22

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Compute zero-share

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)

The key challenge in ThRaccoon is to hide a secret with
the randomness .

Direction 1 (Threshold Raccoon):
• The shares of are uniform
• The randomness shares are short

A uniform zero-share is added to partial signatures to hide .

Direction 2: Can we make both and uniform?

• Use Shamir-sharing for both and Flood and submerse [ENP24]

Direction 3: Can we make both and short?

• Use a short secret-sharing for both and

LS,i ⋅ [[𝗌𝗄]]i
ri

𝗌𝗄
ri

Δi LS,i ⋅ [[𝗌𝗄]]i

LS,i ⋅ [[𝗌𝗄]]i ri

𝗌𝗄 r →

LS,i ⋅ [[𝗌𝗄]]i ri

𝗌𝗄 r

Let’s take a step back!

Challenge of making ThRaccoon robust

23

https://eprint.iacr.org/2024/959

Flood and submerse
𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Compute zero-share

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)

[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[r]]i = ∑j [[rj]]i

[[z]]i = c ⋅ [[𝗌𝗄]]i + [[r]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)
24

Flood and submerse

Security: is uniform and hides

This protocol can be augmented to achieve robustness:

Add a complaints round

Use of a V3S (Verifiable Short Secret Sharing) to
prove shortness of , and correct Shamir-sharing

Can also be used to implement DKG

[[r]]i [[𝗌𝗄]]i

r

[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[r]]i = ∑j [[rj]]i

[[z]]i = c ⋅ [[𝗌𝗄]]i + [[r]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)
25

Flood and submerse

Security: is uniform and hides

This protocol can be augmented to achieve robustness:

Add a complaints round

Use of a V3S (Verifiable Short Secret Sharing) to
prove shortness of , and correct Shamir-sharing

Can also be used to implement DKG

[[r]]i [[𝗌𝗄]]i

r

[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Speed: Fast

Rounds: 4
Communication: kB

DKG + Robustness 😃

T ⋅ 56

Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[r]]i = ∑j [[rj]]i

[[z]]i = c ⋅ [[𝗌𝗄]]i + [[r]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)
25

With Short Secret Sharing
Another approach relies on sampling a sharing of such that we have:

Individual pool of short shares

 shares: can recover + reconstruction vector with small coefficients

 shares: can’t recover

𝗌𝗄
𝗌𝗄i = (s(1)

i , s(2)
i , . . .)

T 𝗌𝗄 LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

26

𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

With Short Secret Sharing

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)

For simplicity, we consider one share per party.

Security.

• is short hides it.

• Prove security with Hint-MLWE

c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri

27

For simplicity, we consider one share per party.

Security.

• is short hides it.

• Prove security with Hint-MLWE

Identifiable aborts.

• Each is a valid public key (is
short), for

 Each is a valid signature for

• Identifiable abort is as easy as verifying partial
signatures!

• Akin to abort identification in Sparkle (Threshold
Schnorr): perform partial verifications.

c ⋅ ⟨LS,i, 𝗌𝗄i⟩ → ri

𝗏𝗄(j)
i = [A I] ⋅ s(j)

i s(j)
i

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

→ (c, zi) ⟨LS,i, (𝗏𝗄(j)
i)j⟩

With Short Secret Sharing
𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ ⟨LS,i, 𝗌𝗄i⟩ + ri

(c, ∑i∈S zi)

28

Instantiating this scheme.

• In the -out-of- setting, the number of shares grows with , this scheme thus only supports a small

number of parties.

For ,

T N (N
T − 1)

N ≤ 16

Phase # rounds | vk | | sig | Total
communication

Signing 3
4 kB 11 kB

25 kB

Abort Identification 0

With Short Secret Sharing

29

Looking in more detail, the correctness of the previous schemes relies on the shortness of .

What can we say about the norm of Gaussians?

z = ∑i zi

T

Bonus: tighter check bounds using Short SS

Average-case: O(T) Worst-case: O(T)

• When users are honest: average-case.

• Colliding malicious users can force worst-case.

30

Looking in more detail, the correctness of the previous schemes relies on the shortness of .

What can we say about the norm of Gaussians?

z = ∑i zi

T

Bonus: tighter check bounds using Short SS

Average-case: O(T) Worst-case: O(T)

• When users are honest: average-case.

• Colliding malicious users can force worst-case.

In Flood and Submerse, is masked (uniform-
looking sharings), hard to detect worst-case

 bound in that reduces security 😞

zi

→ O(T)
30

Looking in more detail, the correctness of the previous schemes relies on the shortness of .

What can we say about the norm of Gaussians?

z = ∑i zi

T

Bonus: tighter check bounds using Short SS

Average-case: O(T) Worst-case: O(T)

• When users are honest: average-case.

• Colliding malicious users can force worst-case.

In Flood and Submerse, is masked (uniform-
looking sharings), hard to detect worst-case

 bound in that reduces security 😞

zi

→ O(T)

With Short SS, is short and we can detect
collusions and worst-case behaviour!

zi

30

The Death Star Algorithm

If ,

• is concentrated around its expected value

• For any vector ,

except with probability .

x ← 𝒟σ

∥x∥ nσ

y
⟨x, y⟩ < σ O(λ) ⋅ ∥y∥

2−λ

31

The Death Star Algorithm

 The Death Star Algorithm

For each signer ,

• If , reject

• If , where , reject

i
∥xi∥ ≥ (1 + o(1)) nσ i
⟨xi, yi⟩ ≥ σ O(λ)∥yi∥ yi = ∑j≠i xj i

When no signer is rejected, the sum verifies
x = ∑i xi

∥x∥ ≤ σ ⋅ T ⋅ 2 log 2 ⋅ λ

+σ ⋅ T ⋅ n ⋅ (1 + ε)

32

Detect exactly cheating parties except with proba 2−λ

The Death Star Algorithm

Norm of for , , 128 bits of security, and x = ∑i xi σ = 1 n = 4096 T ≤ 1000

33

4. Compact Dilithium-like Threshold Signatures

34

Fiat-Shamir with Aborts signature

𝖱𝖾𝗃(v, χr, χz, M) → z | ⊥

•

•

•

• If then

• Return

r ← χr
z = v + r

b ← ℬ (max (χz(z)
Mχr(r)

,1))
b = 0 z = ⊥

z

𝖨𝖽𝖾𝖺𝗅(χz, M) → z | ⊥

•

•

• If then

• Return

z ← χz

b ← ℬ (1
M)

b = 0 z = ⊥
z

For proper parameters, .

 distribution of is independent of the secret value

𝖱𝖾𝗃(v, χr, χz, M) ∼ 𝖨𝖽𝖾𝖺𝗅(χz, M)

→ z v

35

Fiat-Shamir with Aborts signature
𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
•

•

•

•

• If then restart

• Return

r ← χr
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄, χr, χz, M; r)

z = ⊥
(c, z)

𝖥𝖲𝗐𝖠 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

𝖱𝖾𝗃(v, χr, χz, M; r) → z | ⊥

•

•

• If then

• Return

z = v + r

b ← ℬ (max (χz(z)
Mχr(r)

,1))
b = 0 z = ⊥

z

In the ROM, the distribution of signatures of the above scheme is independent of the secret .

 allows to prove unforgeability

𝗌𝗄
→

36

Threshold FSwA signature?
𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
•

•

•

•

• If then restart

• Return

r ← χr
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄, χr, χz, M; r)

z = ⊥
(c, z)

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄i, χr, χz, M; ri)

(c, ∑i∈S zi)

𝖳𝖧-𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Intuition -out-of- setting: take short secrets N N N 𝗌𝗄i
37

How to support -out-of- ?
T N

How to support -out-of- ?
T N

Threshold FSwA signature?
𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
•

•

•

•

• If then restart

• Return

r ← χr
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄, χr, χz, M; r)

z = ⊥
(c, z)

𝖳𝖧-𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

 Use short secret sharing→

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = 𝖱𝖾𝗃(c ⋅ ⟨LS,i, 𝗌𝗄i⟩, χr, χz, M; ri)

(c, ∑i∈S zi)

38

How to support -out-of- ?

 is leaked even in case of rejection

Need proof strategy to show independence of secret

[DOTT22] hides rejected with a trapdoor
commitment scheme

[BTT22] simulates rejected but with regularity
lemma (degraded parameters)

T N

wi

wi

wi

Threshold FSwA signature?
𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
•

•

•

•

• If then restart

• Return

r ← χr
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄, χr, χz, M; r)

z = ⊥
(c, z)

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = 𝖱𝖾𝗃(c ⋅ ⟨LS,i, 𝗌𝗄i⟩, χr, χz, M; ri)

(c, ∑i∈S zi)

 Use short secret sharing→

𝖳𝖧-𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

39

https://eprint.iacr.org/2020/1110
https://eprint.iacr.org/2022/1036

 Tighter simulation lemma→

How to support -out-of- ?

 is leaked even in case of rejection

Need proof strategy to show independence of secret

[DOTT22] hides rejected with a trapdoor
commitment scheme

[BTT22] simulates rejected but with regularity
lemma (degraded parameters)

T N

wi

wi

wi

Threshold FSwA signature?
𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
•

•

•

•

• If then restart

• Return

r ← χr
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄, χr, χz, M; r)

z = ⊥
(c, z)

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = 𝖱𝖾𝗃(c ⋅ ⟨LS,i, 𝗌𝗄i⟩, χr, χz, M; ri)

(c, ∑i∈S zi)

 Use short secret sharing→

𝖳𝖧-𝖥𝖲𝗐𝖠 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

39

https://eprint.iacr.org/2020/1110
https://eprint.iacr.org/2022/1036

Threshold FSwA signature?

Lemma: Rejected is indistinguishable from uniform if:

, with is indistinguishable from uniform

, with is indistinguishable from uniform

wi

w = [A I] ⋅ r r ← χr

[A I] ⋅ z z ← χz

40

Threshold FSwA signature

Distributions Speed Rounds | vk | | sig | Total
communication

Gaussians

Fast 3

2.6 kB 2.6 kB 5.6 kB

Uniforms 2.9 kB 6.3 kB 13.5 kB

For ,N ≤ 8

Comparable to Dilithium size: 2.4kB at NIST level II!

41

4. How to concretely sample short sharings

42

Short Secret Sharing

Individual pool of short shares

 shares: can recover + reconstruction vector
 with small coefficients

 shares: can’t recover

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

43

Short Secret Sharing

Individual pool of short shares

 shares: can recover + reconstruction vector
 with small coefficients

 shares: can’t recover

𝗌𝗄i = (s(1)
i , s(2)

i , . . .)

T 𝗌𝗄
LS,i

≤ T − 1 𝗌𝗄

Share𝗌𝗄 𝗌𝗄∑i∈S ⟨LS,i, 𝗌𝗄i⟩

𝗌𝗄2

𝗌𝗄4

𝗌𝗄3

𝗌𝗄1

Observation: hard to not leak the secret with these constraints…

But, in a lattice-based scheme, it is fine to:

Leak an offset of the secret:

Leak hints on the secrets , for large enough

 We just need to look uniform

𝗌𝗄 = 𝗌𝗄𝗌𝖺𝖿𝖾 + 𝗌𝗄𝗅𝖾𝖺𝗄
h = c ⋅ 𝗌𝗄 + y y

→ [A I] ⋅ 𝗌𝗄
43

Short Secret Sharing

Weaken zero-knowledge Functional simulatability→

We are interested in protocols generating sharings such that:

When parties are corrupted,

Their views can be simulated replacing with a uniform sample

It is possible to simulate a function on honest shares (i.e. obtain a hint on
honest shares)

Inspired by the fractional knowledge notion in [ENP24], introduced for VSS.

< T

[A I] ⋅ 𝗌𝗄

h = c ⋅ ⟨LS,i, 𝗌𝗄𝗂⟩ + y

44

https://eprint.iacr.org/2024/959

1

Solution 1: Replicated Secret Sharing
Idea: sample a share for any possible set of corrupted parties.

2

45

3

s{1}

(T, N) = (2,3)

1. For any set of parties,
sample a uniform share .

𝒯 T − 1
s𝒯

1

Solution 1: Replicated Secret Sharing

2

46

3

s{1}

(T, N) = (2,3)

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

𝒯 T − 1
s𝒯

1

Solution 1: Replicated Secret Sharing

2

47

3

s{1}

(T, N) = (2,3)

s{3}

s{2}

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

𝒯 T − 1
s𝒯

1

Solution 1: Replicated Secret Sharing

2

48

3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

2. Distribute to the parties in
.

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

1

Solution 1: Replicated Secret Sharing

2

1. For any set of parties,
sample a uniform share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

49

3

(T, N) = (2,3)

s{3}

Idea: sample a share for any possible set of corrupted parties.

Solution 1: Replicated Secret Sharing

Properties:

Reconstruction coefficients 0 or 1

When corrupted parties, at least
one remains hidden.

 guarantees that remains protected

< T
s𝒯

→ 𝗌𝗄

50

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a uniform share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

Solution 1: Short Replicated Secret Sharing

Properties:

Reconstruction coefficients 0 or 1

When corrupted parties, at least
one remains hidden.

 guarantees that looks
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄

51

Idea: sample a share for any possible set of corrupted parties.

1. For any set of parties,
sample a short share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

1. For any set of parties,
sample a short share .

2. Distribute to the parties in
.

3. Define .

𝒯 T − 1
s𝒯

s𝒯
[N]\𝒯

𝗌𝗄 = ∑𝒯 s𝒯

Solution 1: Short Replicated Secret Sharing

Properties:

Reconstruction coefficients 0 or 1

When corrupted parties, at least
one remains hidden.

 guarantees that looks
uniform (MLWE assumption)

< T
s𝒯

→ [A I] ⋅ 𝗌𝗄

Caveat: This scheme has a number

of shares that is equal to .(N
T − 1)

52

Idea: sample a share for any possible set of corrupted parties.

Solution 2: Coupon collector problem

Full collection
 cardsN

53

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1

 cardsN

53

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1 2

 cardsN

53

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1 2 3

 cardsN

53

Solution 2: Coupon collector problem

Full collection

Draw with
replacement

1 2 3 4

… How many draws to
get the full collection?

~ N log N

 cardsN

53

Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

54

Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties:
• Reconstruction threshold: Minimum number of parties needed to gather

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties such that at least one

share is not known (with overwhelming probability)

T

T′

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

54

Solution 2: Coupon collector problem
Full collection

 sharesN
𝗌𝗄 = s1 s2+ s3+ s4+

Idea: Randomly distribute one share per party.

Desired properties:
• Reconstruction threshold: Minimum number of parties needed to gather

all the shares? (with overwhelming probability)

• Security threshold: Maximum number of parties such that at least one

share is not known (with overwhelming probability)

T

T′

Bounds are exactly bounds of the coupon collector problem.

Both , with gap

T, T′

T, T′ ∼ N log N ≈
N→∞

1 + 128/log N

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

54

Solution 2: Coupon collector problem

Full collection
 sharesN

𝗌𝗄 = s1 s2+ s3+ s4+

Better parameters by amplifying properties:

• Reconstruction threshold: If for given , proba of reconstructing T 1/2 𝗌𝗄
𝗌𝗄 = s1

1 s1
2+ s1

3+ s1
4+

= sm
1 sm

2+ sm
3+ sm

4+

= …

Share multiple times proba 𝗌𝗄 → 1 − 1/2m
55

Solution 2: Coupon collector problem

Full collection
 sharesN

𝗌𝗄 = s1 s2+ s3+ s4+

Better parameters by amplifying properties:

• Reconstruction threshold: Share multiple times proba

• Security threshold: Share multiple secrets

𝗌𝗄 → 1 − 1/2m

𝗌𝗄

𝗌𝗄 = 𝗌𝗄1 + …+ +𝗌𝗄2 𝗌𝗄p

If for given , proba of leaking , proba of leaking all the is T′ 1/2 𝗌𝗄i 𝗌𝗄i 1/2p

56

Ratio achieved by our sharing as a function of . The
dotted line corresponds to an ideal asymptotic .

T/T′ T′

T/T′ = 1

Solution 2: Coupon collector problem

Recall: , correspond respectively to amplification for
reconstruction and security thresholds.

m p
57

Solution 2: Coupon collector problem

Full collection
 sharesN

𝗌𝗄 = s1 s2+ s3+ s4+

Security:

We can prove that when parties are corrupted, leaked shares can be seen as
hints on ().

 Reduce security to Hint-MLWE

Use case: can be used for ThRaccoon with id abort without degrading parameters.

≤ T′

𝗌𝗄 sn = 𝗌𝗄 + y
→

Example:

• and s1, …, sN−1 ← 𝒟N−1
σ

sN = 𝗌𝗄 − ∑j<N si

58

Short secret sharing

This presentation assumes a trusted dealer to sample the short secret sharing.

But, in our paper, we show that it is quite easy to design DKGs.

59

Conclusion

60

Conclusion

Introduced two short secret sharing methods

Based on replicated secret sharing (exponential number of shares for
small number of parties)

Based on coupon collector problem: scales to larger thresholds, but has a
gap between and

Two applications
Threshold Raccoon with identifiable aborts (using partial verification keys)

A compact threshold FSwA signature scheme for

→

T T′

N ≤ 8

61

Questions?

62

