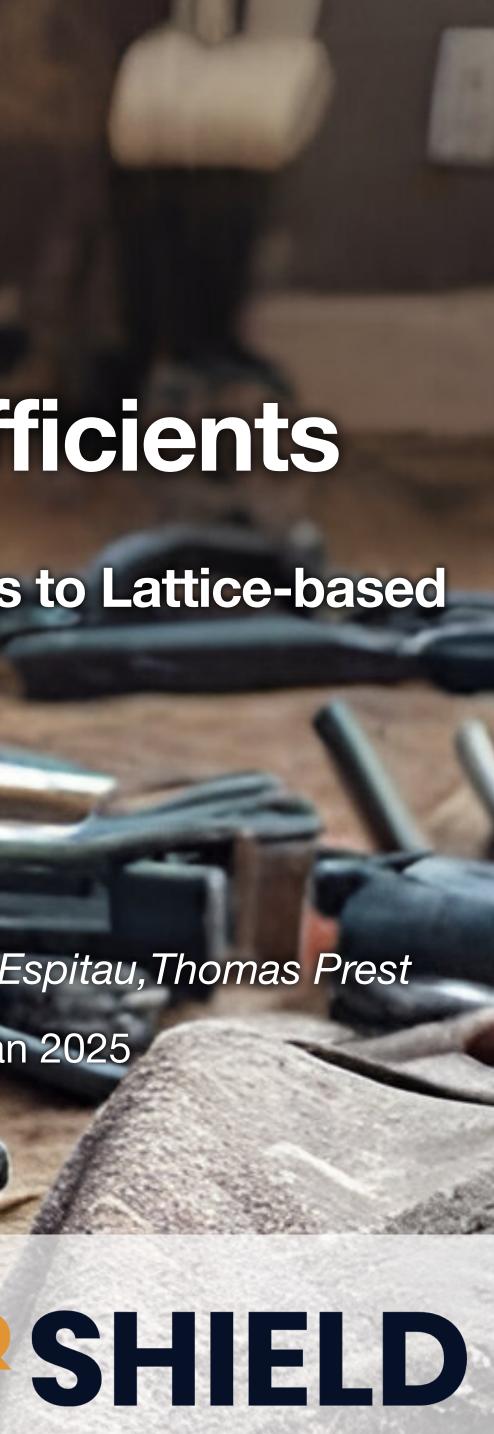
A New Secret Sharing Scheme and its Applications to Lattice-based Threshold Cryptography

Short Shares, Small Coefficients

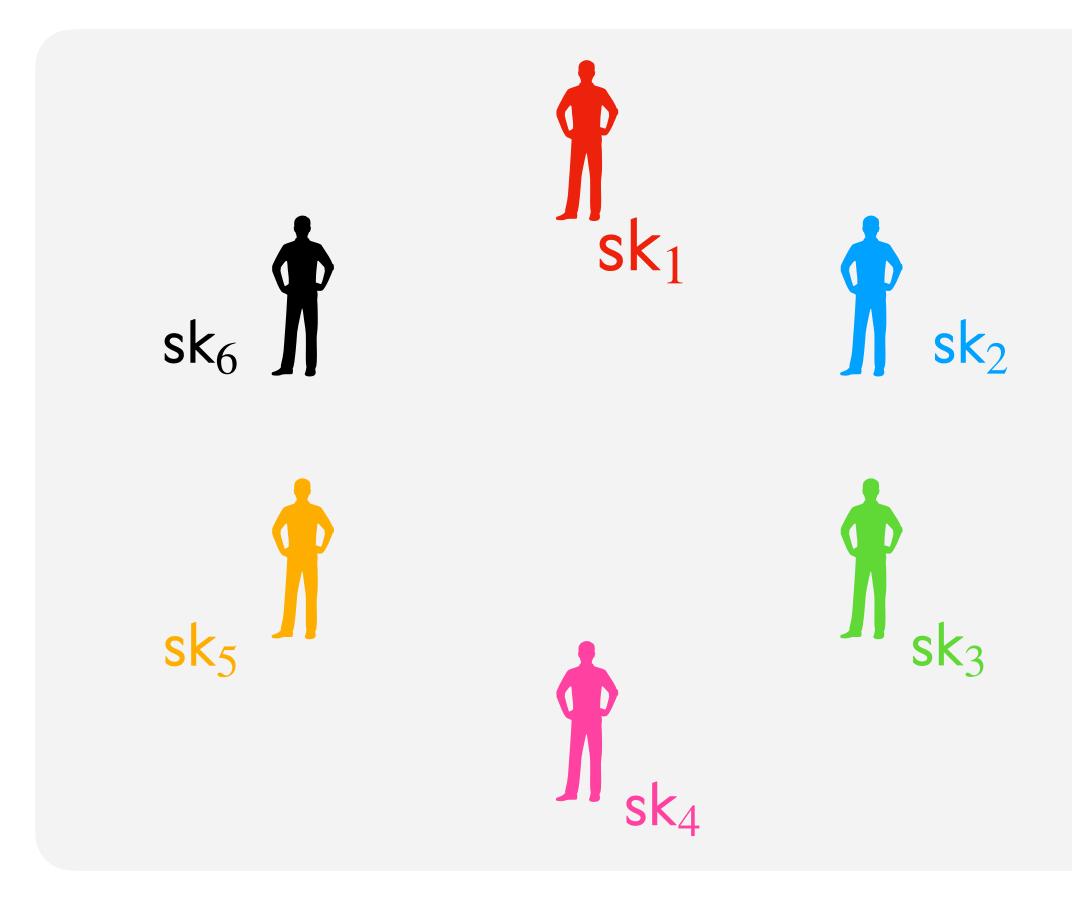
Guilhem Niot, joint works with Rafael del Pino, Thomas Espitau, Thomas Prest JP Morgan 62nd AlgoCRYPT Seminar - 10. Jan 2025



1. Background

(T-out-of-N) threshold signatures What are they?

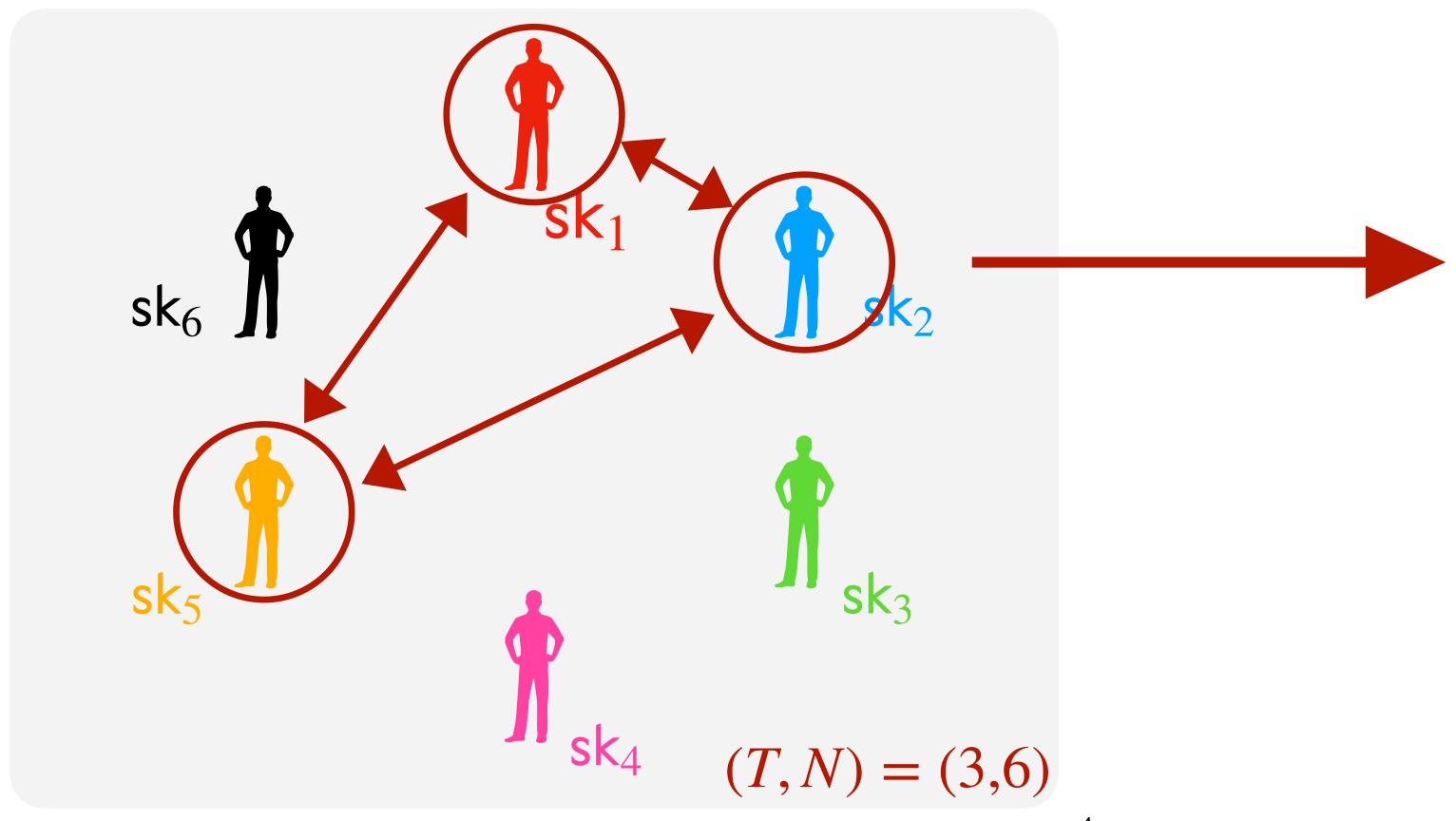
An interactive protocol to distribute signature generation.



- Global verification key vk
- I partial signing key sk_i per party
- T-out-of-N:
 - Any T out of N parties can collaborate to sign a message under vk.
 - T-1 parties cannot sign.

(*T*-out-of-*N*) threshold signatures What are they?

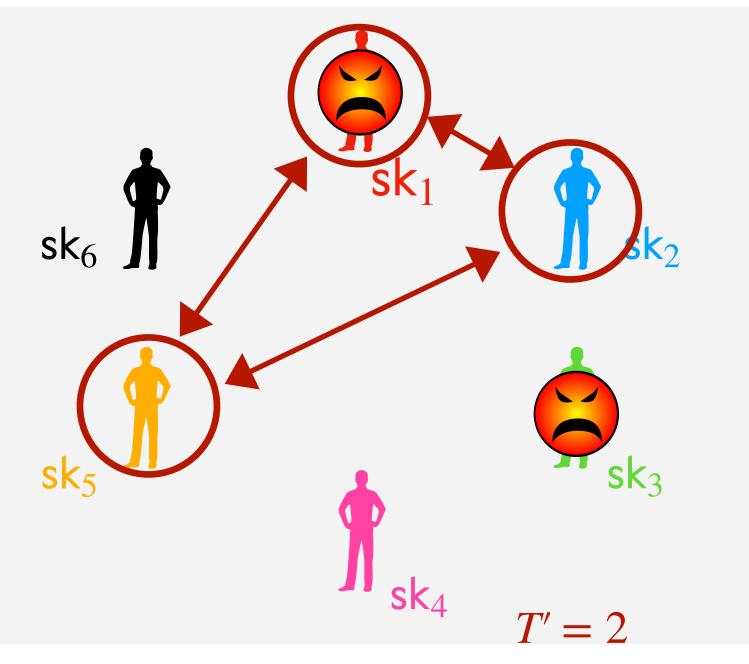
An interactive protocol to distribute signature generation.



Signature σ on msg

Core security properties

- Correctness: Given at least T-out-of-N partial signing keys, we can sign.
- (Ramp) Unforgeability: The signature scheme remains unforgeable even if up to T' parties are corrupted, where $T' \leq T 1$.



Lattice-based Threshold Signatures

An active field of research.

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

Two-Round Threshold Signature from Algebraic One-More Learning with Errors

Thomas Espitau¹, Shuichi Katsumata^{1,2}, Kaoru Takemure^{* 1,2}

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Cecilia Boschini ETH Zürich, Switzerland Darya Kaviani UC Berkeley, USA Russell W. F. Lai Aalto University, Finland

Giulio Malavolta Bocconi University, Italy

Akira Takahashi JPMorgan AI Research & AlgoCRYPT CoE, USA

Mehdi Tibouchi NTT Social Informatics Laboratories, Japan

Flood and Submerse: Distributed Key Generation and Robust Threshold Signature from Lattices

Thomas Espitau¹ , Guilhem Niot^{1,2} , and Thomas Prest¹ \bigcirc

Two-round *n*-out-of-n and Multi-Signatures and Trapdoor Commitment from Lattices^{*}

Ivan Damgård¹, Claudio Orlandi¹, Akira Takahashi¹, and Mehdi Tibouchi²

MuSig-L: Lattice-Based Multi-Signature With Single-Round Online Phase*

Cecilia Boschini¹, Akira Takahashi², and Mehdi Tibouchi³

Two-Round Threshold Lattice-Based Signatures from Threshold Homomorphic Encryption*

Kamil Doruk Gur¹ , Jonathan Katz^{2**} , and Tjerand Silde^{3***}

Designing a threshold scheme

Design choices trade-off

Distributed Key Generation (DKG)

Identifiable Aborts

Robustness

Backward compatibility

advanced properties

Size

Speed

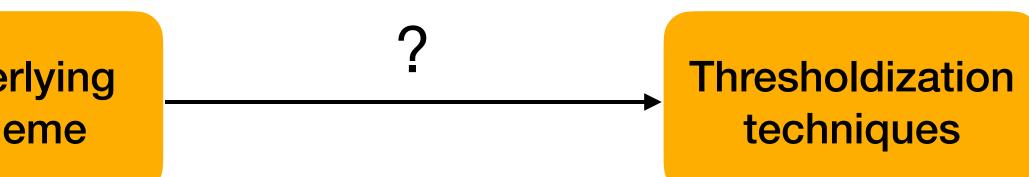
Rounds

Communication

efficiency

Designing a threshold scheme

Design choices ? Underlying scheme



Lattice-based Threshold Signatures Candidate schemes

Easier to thresholdize

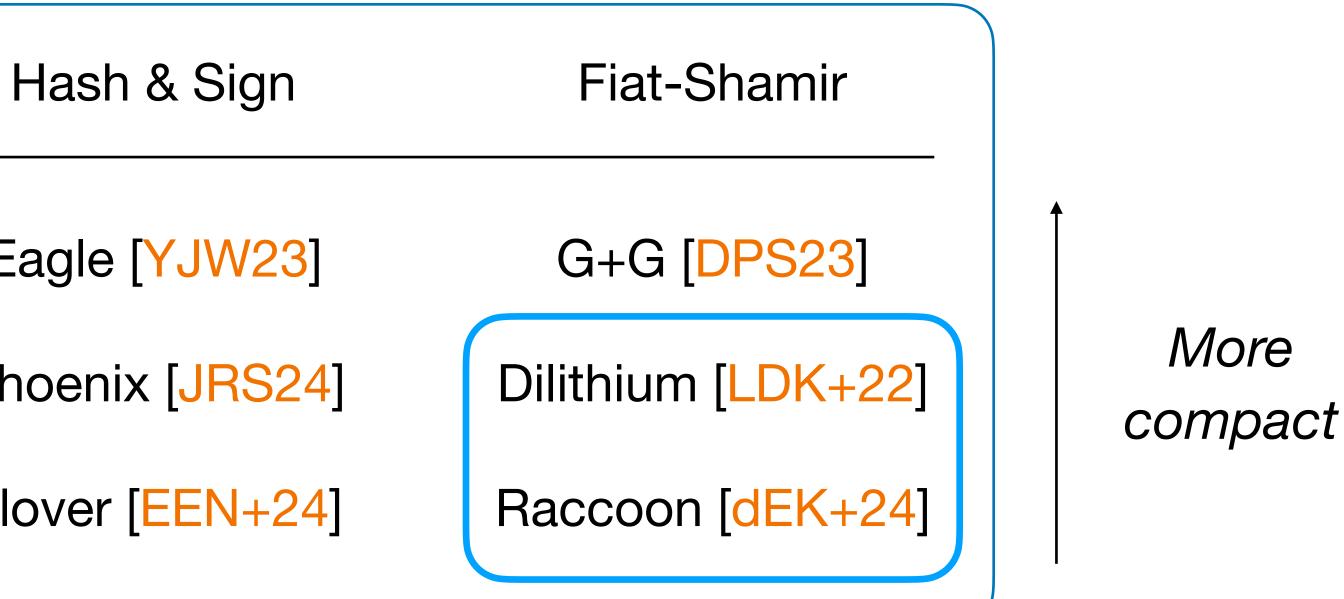
Has	sh & Sign	Fia	t-Shamir	
Eagle	ə [YJW23]	G+0	G [DPS23]	
Phoer	nix [JRS24]	Dilithiu	ım [<mark>LDK+22</mark>]	More compa
Plove	r [<mark>EEN+24</mark>]	Racco	on [dEK+24]	

Lattice-based Threshold Signatures **Candidate schemes**

Easier to thresholdize

Gaussian Sampling	Eagl
Rejection Sampling	Phoe
Noise Flooding	Plove

This talk: Raccoon and Dilithium threshold variants.



Lattice-based Threshold Signatures

An active field of research, with different designs.

Thresholdization technique	Size	Speed	Rounds	Comm/party
MPC	S	Slow	15	$\geq 1 MB$
FHE	М	As fast as FHE	2	$\geq 1 MB$
Tailored	S-M	Fast	2-4	$20 \text{ kB} \rightarrow 56T \text{ kB}$

Lattice-based Threshold Signatures

An active field of research, with different designs.

Thresholdization technique	Size	Speed	Rounds	Comm/party
MPC	S	Slow	15	$\geq 1 MB$
FHE	М	As fast as FHE	2	$\geq 1 MB$
Tailored	S-M	Fast	2-4	$20 \text{ kB} \rightarrow 56T \text{ kB}$

This talk: Tailored

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

 \rightarrow advanced properties?

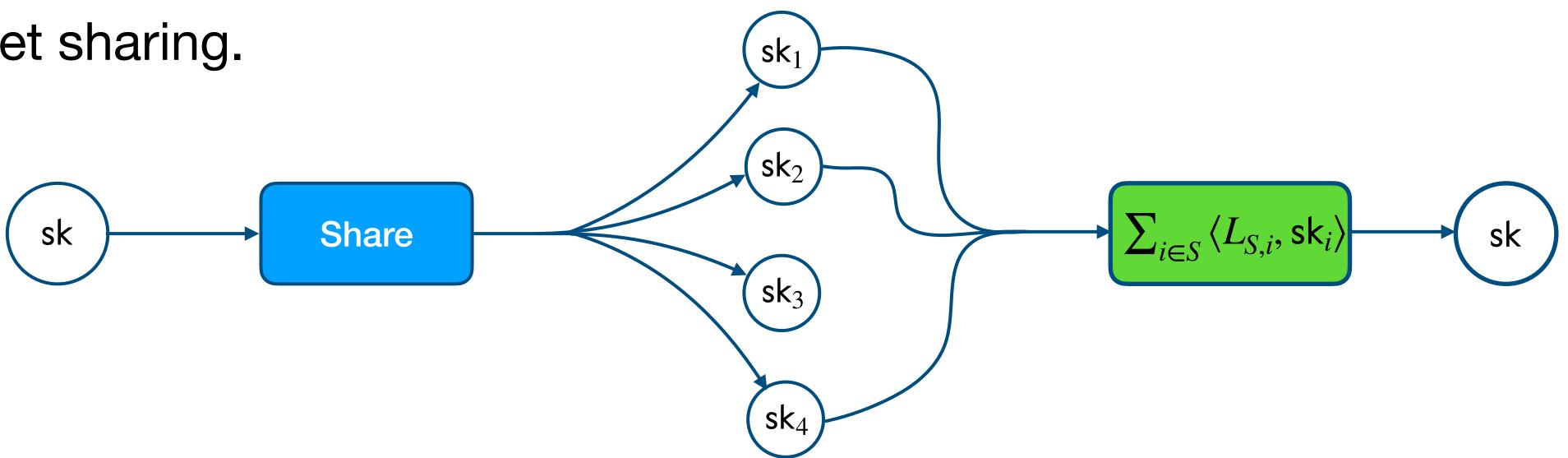
Two-round n-out-of-n and Multi-Si Dilithium-like **Trapdoor Commitment from Lattices***

Ivan Damgård¹, Claudio Orlandi¹, Akira Takahashi¹, and Mehdi Tibouchi²

 \rightarrow more compact and T-out-of-N?

Main technique of this talk

Short secret sharing.



- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- T shares: can recover sk
 - Reconstruction vector $L_{S,i}$ with small coefficients
- $\leq T 1$ shares: can't recover sk

Main technique of this talk

Short secret sharing.



- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- T shares: can recover sk
 - Reconstruction vector $L_{S,i}$ with small coefficients
- $\leq T 1$ shares: can't recover sk

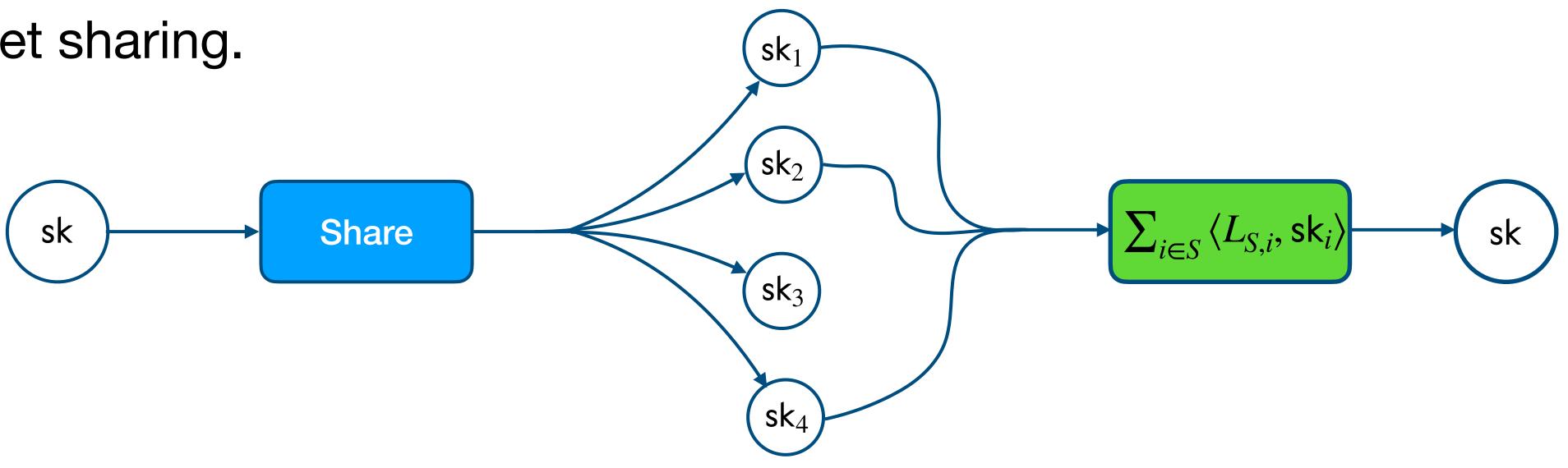
Example: *N*-out-of-*N* sharing (one share per party)

- $\mathsf{sk}_1, \ldots, \mathsf{sk}_N \leftarrow \mathscr{D}^N_\sigma$ and $\mathsf{sk} = \sum_i \mathsf{sk}_i$
- $L_{S,i} = 1$

Extends to T-out-of-N by having several shares per party.

Main technique of this talk

Short secret sharing.



- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- T shares: can recover sk 0
 - Reconstruction vector $L_{S,i}$ with small coefficients • A compact Dilithium-like Threshold Signature
- $\circ \leq T 1$ shares: can't recover sk

Applications:

Identifiable aborts in Threshold Raccoon

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

Raccoon signature scheme

Raccoon . Keygen() \rightarrow sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short \boldsymbol{r}
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v}\mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

* omitting usual rounding techniques

Raccoon signature scheme

Raccoon . Keygen() \rightarrow sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short \boldsymbol{r}
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v}\mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

Unforgeable assuming

- Hint-MLWE
- SelfTargetMSIS

Hint-MLWE assumption [KLSS23].

 $(\mathbf{A}, \mathbf{vk})$ is pseudorandom even if given Q "hints":

$$(c_i, \mathbf{z}_i := c_i \cdot \mathbf{sk} + \mathbf{r}_i)$$
 for $i \in [Q]$

As hard as $MLWE_{\sigma}$ if

$$\sigma_{\mathbf{r}} \ge \sqrt{Q} \cdot \|c\| \cdot \sigma$$

Raccoon . Keygen() \rightarrow sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short **r**
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v}\mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert **z** short

Shamir sharing on secret sk $\in \mathscr{R}_q^t$ Sample polynomial $f \in \mathscr{R}_q^{\ell}[X]$ s.t.

- $f(0) = \text{sk and } \deg f \le T 1$
- Partial signing keys $sk_i := [[sk]]_i = f(i)$

Properties:

- with < T shares, sk is perfectly hidden
- with a set S of $\geq T$ shares, reconstruct sk via Lagrange interpolation

$$\mathsf{sk} = \sum_{i \in S} L_{S,i} \cdot \llbracket \mathsf{sk} \rrbracket_i$$

Raccoon . Keygen() \rightarrow sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short \boldsymbol{r}
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v}\mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

First (insecure) attempt

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{w}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

• Prevent ROS attack with commit-reveal of \mathbf{w}_i

First (insecure) attempt

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short \mathbf{r}_i

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

• Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast W_i

Round 3:

•
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [[sk]]_i$ is large \rightarrow Leaks $[[sk]]_i$

First (insecure) attempt

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [[sk]]_i$ is large \rightarrow Leaks $[[sk]]_i$
- Solution: add a zero-share Δ_i :
 - Derived with a PRF, using pre-shared pairwise keys
 - ^o Any set of < T values Δ_i is uniformly random

$$\circ \quad \sum_{i \in S} \Delta_i = 0$$

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{w}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Threshold Raccoon, a practical threshold signature

Speed	Rounds	 vk 	sig	Total communication
Fast	3	4 kB	13 kB	40 kB

... but does not provide a DKG, or robustness / identifiable aborts.

3. Another direction for ThRaccoon

Flood and Submerse: Distributed Key Generation and Robust Threshold Signature from Lattices

Thomas Espitau¹ \bigcirc , Guilhem Niot^{1,2} \bigcirc , and Thomas Prest¹ \bigcirc

How to Shortly Share a Short Vector DKG with Short Shares and Application to Lattice-Based Threshold Signatures with Identifiable Aborts

Rafael del Pino¹ ⁽⁶⁾, Thomas Espitau¹ ⁽⁶⁾, Guilhem Niot^{1,2} ⁽⁶⁾, and Thomas Prest¹ ⁽⁶⁾

Challenge of making ThRaccoon robust

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Compute zero-share Δ_i
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Why is it challenging to add robustness to ThRaccoon?

- Incompatibility of the sharings of sk and \mathbf{r}_i , that 0 prevents a simple verification of computations
- Additional non-linearity introduced by Δ_i Ο

Challenge of making ThRaccoon robust

The
the I
Dire
•
•
A un
Dire
•
Dire
•

Let's take a step back!

key challenge in ThRaccoon is to hide a secret $L_{S,i} \cdot [[sk]]_i$ with randomness \mathbf{r}_i .

ection 1 (Threshold Raccoon):

- The shares of sk are **uniform**
- The randomness shares \mathbf{r}_i are **short**

niform zero-share Δ_i is added to partial signatures to hide $L_{S,i} \cdot [[sk]]_i$.

ection 2: Can we make both $L_{S,i} \cdot [[sk]]_i$ and \mathbf{r}_i uniform?

• Use Shamir-sharing for both sk and $\mathbf{r} \rightarrow$ Flood and submerse [ENP24]

ection 3: Can we make both $L_{S,i} \cdot [[sk]]_i$ and \mathbf{r}_i short?

Use a short secret-sharing for both sk and r

Flood and submerse

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Compute zero-share Δ_i
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

[ENP24]. Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i , and Shamir sharing $[[\mathbf{r}_i]]$
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[[\mathbf{r}_i]]_j$ to user j

Round 2:

• Broadcast \mathbf{w}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- $\llbracket \mathbf{r} \rrbracket_i = \sum_j \llbracket \mathbf{r}_j \rrbracket_i$
- Broadcast $[[\mathbf{z}]]_i = c \cdot [[\mathbf{sk}]]_i + [[\mathbf{r}]]_i$

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

Flood and submerse

- Security: $[[\mathbf{r}]]_i$ is uniform and hides $[[\mathbf{sk}]]_i$
- This protocol can be augmented to achieve robustness:
 - Add a complaints round
 - Use of a V3S (Verifiable Short Secret Sharing) to prove shortness of **r**, and correct Shamir-sharing
 - Can also be used to implement DKG

[ENP24]. Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short \mathbf{r}_i , and Shamir sharing $[[\mathbf{r}_i]]$

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[[\mathbf{r}_i]]_i$ to user j

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

•
$$\llbracket \mathbf{r} \rrbracket_i = \sum_j \llbracket \mathbf{r}_j \rrbracket_i$$

• Broadcast $[[\mathbf{z}]]_i = c \cdot [[\mathbf{sk}]]_i + [[\mathbf{r}]]_i$

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

Flood and submerse

- Security: $[[\mathbf{r}]]_i$ is uniform and hides $[[\mathbf{sk}]]_i$
- This protocol can be augmented to achieve robustness:
 - Add a complaints round
 - Use of a V3S (Verifiable Short Secret Sharing) to prove shortness of **r**, and correct Shamir-sharing
 - Can also be used to implement DKG

Speed: Fast **Rounds:** 4 **Communication:** $T \cdot 56$ kB DKG + Robustness

[ENP24]. Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short \mathbf{r}_i , and Shamir sharing $[[\mathbf{r}_i]]$

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[[\mathbf{r}_i]]_i$ to user j

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

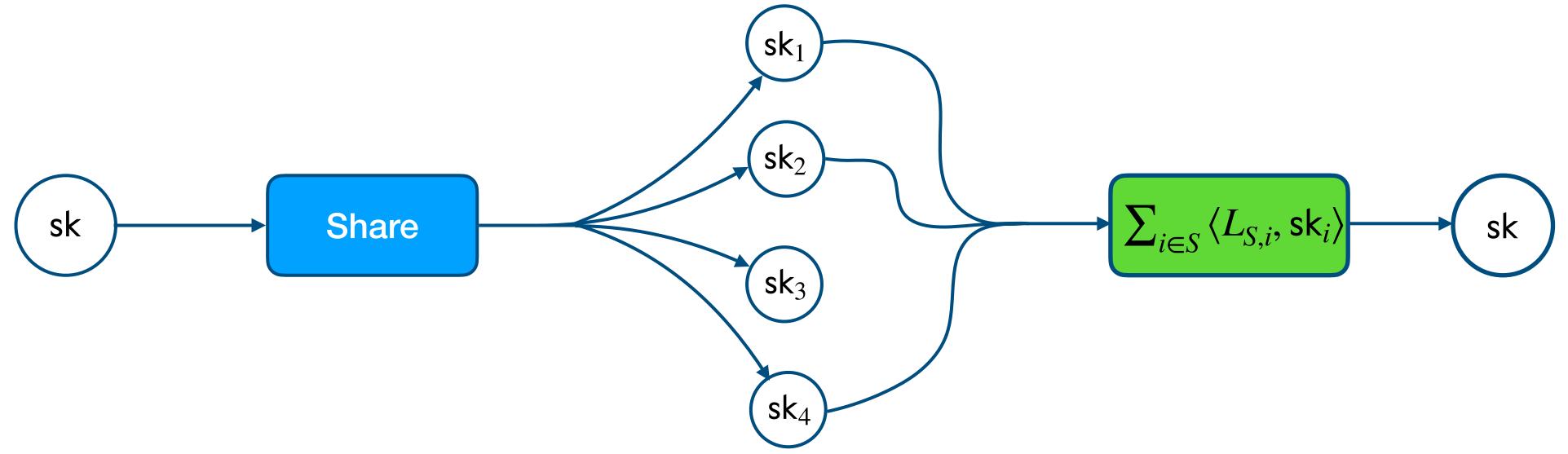
•
$$\llbracket \mathbf{r} \rrbracket_i = \sum_j \llbracket \mathbf{r}_j \rrbracket_i$$

• Broadcast $[[\mathbf{z}]]_i = c \cdot [[\mathbf{sk}]]_i + [[\mathbf{r}]]_i$

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

• Another approach relies on sampling a sharing of sk such that we have:

- Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- T shares: can recover sk + reconstruction vector $L_{S,i}$ with small coefficients
- $\leq T 1$ shares: can't recover sk



ShortSS . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = c \cdot \langle L_{S,i}, \mathbf{sk}_i \rangle + \mathbf{r}_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

For simplicity, we consider one share per party. Security.

- $c \cdot \langle L_{S,i}, \mathsf{sk}_i \rangle$ is short $\rightarrow \mathbf{r}_i$ hides it.
 - Prove security with Hint-MLWE

ShortSS. Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = c \cdot \langle L_{S,i}, \mathbf{sk}_i \rangle + \mathbf{r}_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

For simplicity, we consider one share per party. Security.

- $c \cdot \langle L_{S,i}, \mathsf{sk}_i \rangle$ is short $\rightarrow \mathbf{r}_i$ hides it.
 - Prove security with Hint-MLWE

Identifiable aborts.

• Each $vk_i^{(j)} = [A \ I] \cdot s_i^{(j)}$ is a valid public key $(s_i^{(j)} is)$ short), for $sk_i = (s_i^{(1)}, s_i^{(2)}, ...)$

 \rightarrow Each (c, \mathbf{z}_i) is a valid signature for $\langle L_{S,i}, (vk_i^{(j)})_i \rangle$

- Identifiable abort is as easy as verifying partial signatures!
- Akin to abort identification in Sparkle (Threshold Schnorr): perform partial verifications.

Instantiating this scheme.

number of parties.

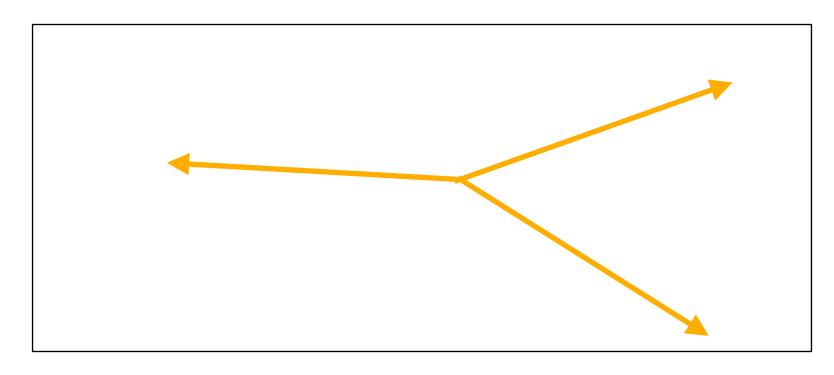
For $N \leq 16$,

Phase	# rounds	vk	sig	Total communication
Signing	3	4 kB	11 L/D	25 kB
Abort Identification	0	4 KD	11 kB	

• In the *T*-out-of-*N* setting, the number of shares grows with $\binom{N}{T-1}$, this scheme thus only supports a small

Bonus: tighter check bounds using Short SS

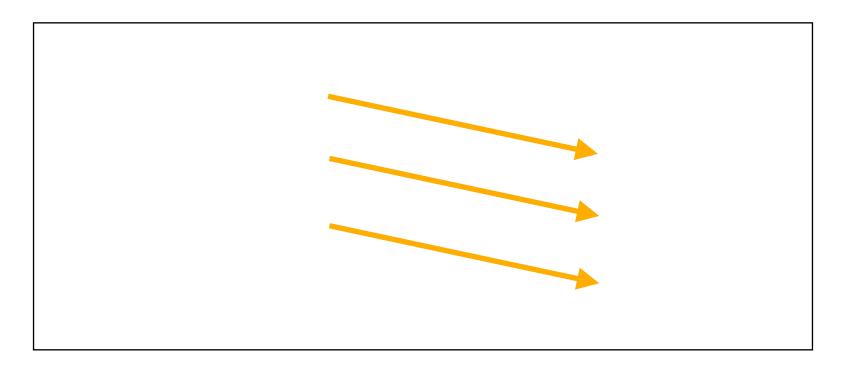
What can we say about the norm of T Gaussians?



Average-case: $O(\sqrt{T})$

- When users are honest: average-case.
- Colliding malicious users can force worst-case.

Looking in more detail, the correctness of the previous schemes relies on the shortness of $z = \sum_{i} z_{i}$.

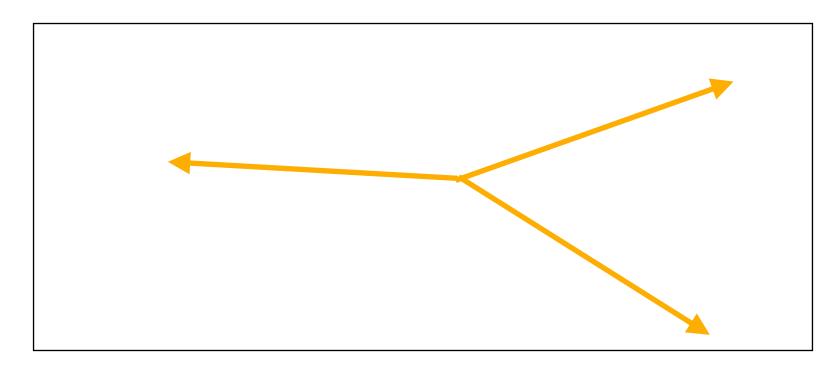


Worst-case: O(T)

Bonus: tighter check bounds using Short SS

Looking in more detail, the correctness of the previous schemes relies on the shortness of $z = \sum_{i} z_{i}$.

What can we say about the norm of *T* Gaussians?

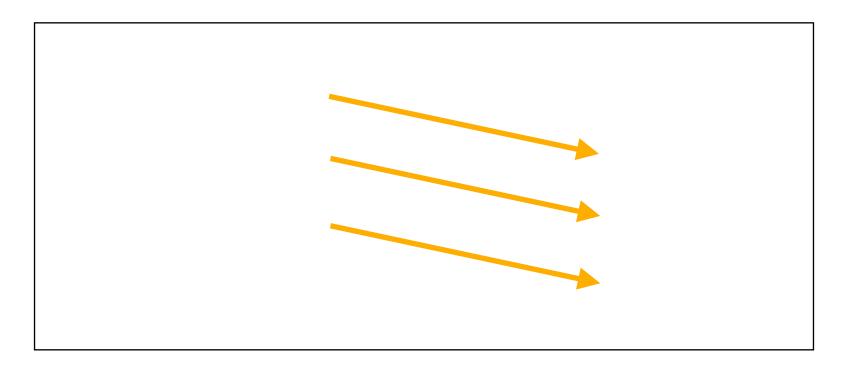


Average-case: $O(\sqrt{T})$

- When users are honest: average-case.
- Colliding malicious users can force worst-case.

In Flood and Submerse, \mathbf{z}_i is masked (uniformlooking sharings), hard to detect worst-case

 \rightarrow bound in O(T) that reduces security \leq

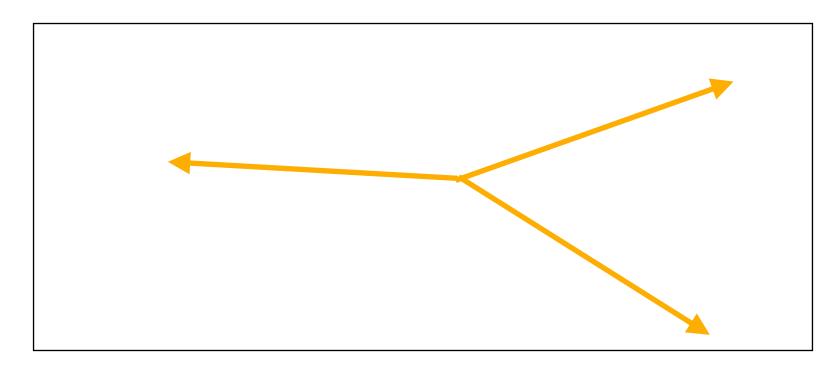


Worst-case: O(T)

Bonus: tighter check bounds using Short SS

Looking in more detail, the correctness of the previous schemes relies on the shortness of $z = \sum_{i} z_{i}$.

What can we say about the norm of T Gaussians?

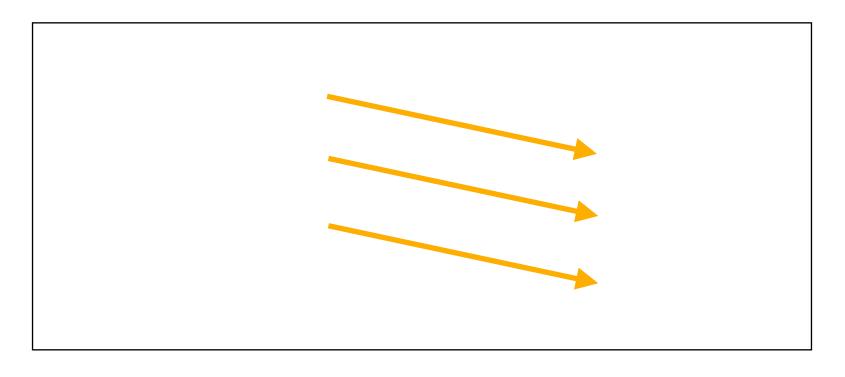


Average-case: $O(\sqrt{T})$

- When users are honest: average-case.
- Colliding malicious users can force worst-case.

In Flood and Submerse, \mathbf{z}_i is masked (uniformlooking sharings), hard to detect worst-case

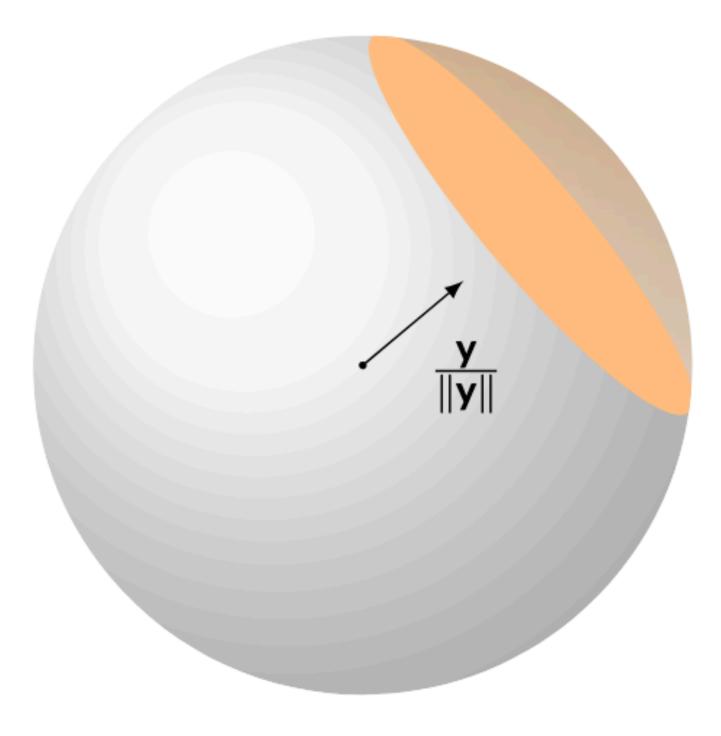
 \rightarrow bound in O(T) that reduces security \leq



Worst-case: O(T)

With Short SS, \mathbf{z}_i is short and we can detect collusions and worst-case behaviour!

The Death Star Algorithm



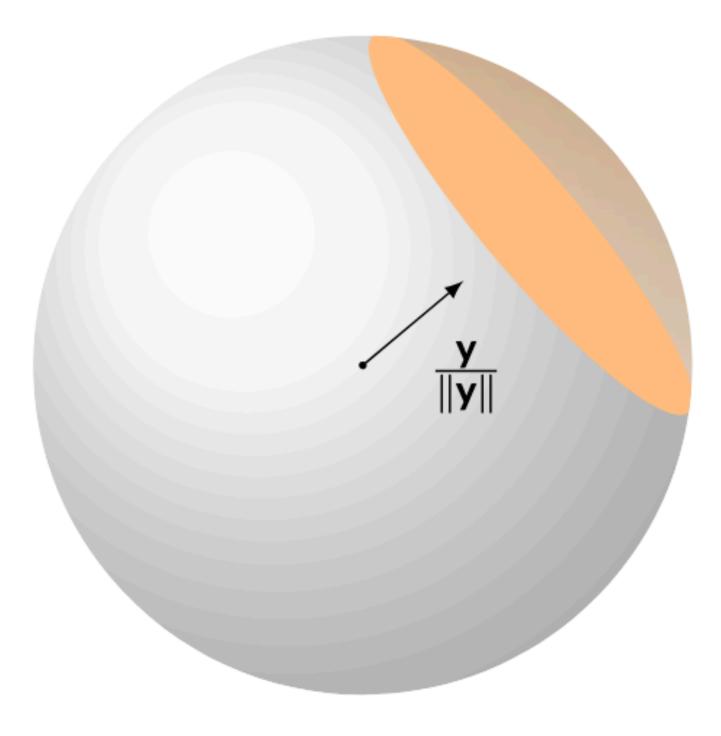
$$\mathsf{lf}\,\mathbf{x} \leftarrow \mathscr{D}_{\sigma'}$$

- $\|\mathbf{x}\|$ is concentrated around its expected value $\sqrt{n\sigma}$
- For any vector y,

$$\langle \mathbf{x}, \mathbf{y} \rangle < \sigma \sqrt{O(\lambda)} \cdot \|\mathbf{y}\|$$

except with probability $2^{-\lambda}$.

The Death Star Algorithm



The Death Star Algorithm

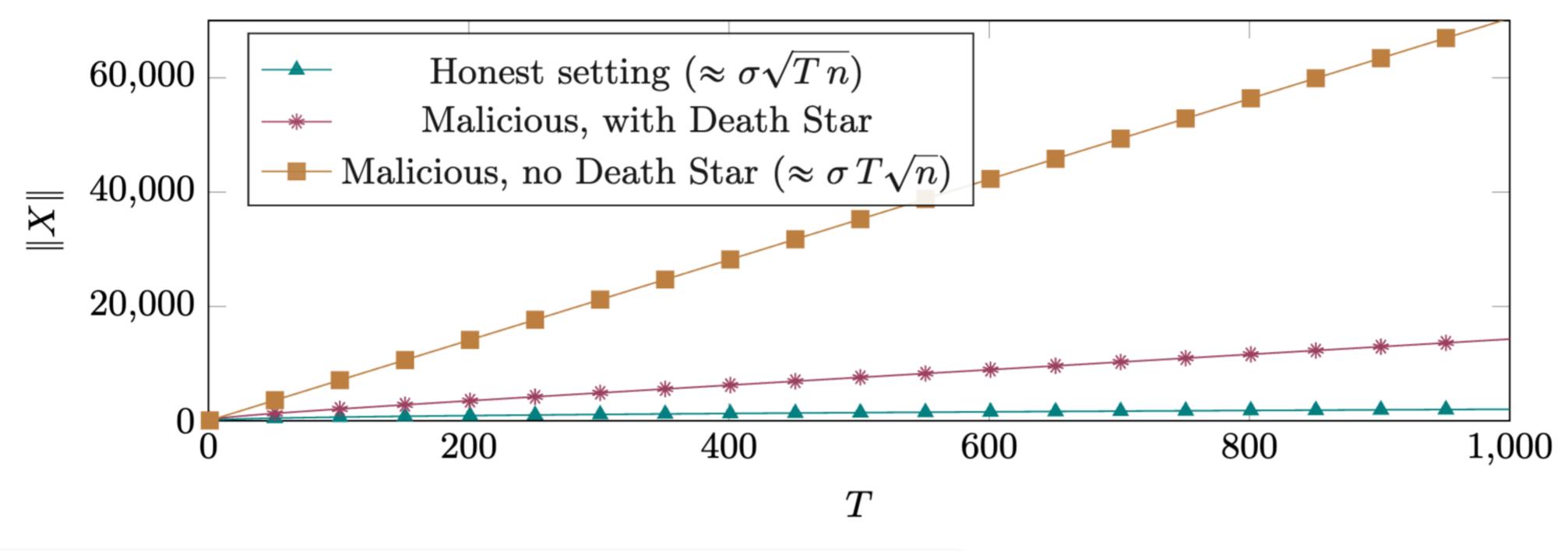
For each signer i,

- If $\|\mathbf{x}_i\| \ge (1 + o(1))\sqrt{n\sigma}$, reject i• If $\langle \mathbf{x}_i, \mathbf{y}_i \rangle \ge \sigma \sqrt{O(\lambda)} \|\mathbf{y}_i\|$, where $\mathbf{y}_i = \sum_{j \ne i} \mathbf{x}_j$, reject i

Detect exactly cheating parties except with proba $2^{-\lambda}$

When no signer is rejected, the sum $\mathbf{x} = \sum_{i} \mathbf{x}_{i}$ verifies $\|\mathbf{x}\| \le \sigma \cdot T \cdot \sqrt{2\log 2 \cdot \lambda}$ $+\sigma \cdot \sqrt{T \cdot n} \cdot (1 + \varepsilon)$

The Death Star Algorithm



Norm of $\mathbf{x} = \sum_{i} \mathbf{x}_{i}$ for $\sigma = 1$, n = 4096, 128 bits of security, and $T \le 1000$

4. Compact Dilithium-like Threshold Signatures

Finally! A Compact Lattice-Based Threshold Signature

Rafael del Pino¹ \odot and Guilhem Niot^{1,2} \odot

Fiat-Shamir with Aborts signature

$\mathsf{Rej}(\mathbf{v},\chi_r,\chi_z,M)\to \mathbf{z}\mid \bot$

•
$$\mathbf{r} \leftarrow \chi_{\mathbf{r}}$$

•
$$\mathbf{z} = \mathbf{v} + \mathbf{r}$$

•
$$b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})}, 1\right)\right)$$

• If
$$b = 0$$
 then $\mathbf{z} = \bot$

For proper parameters, $\text{Rej}(\mathbf{v}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M) \sim \text{Ideal}(\chi_{\mathbf{z}}, M)$.

 \rightarrow distribution of z is independent of the secret value v

$\mathsf{Ideal}(\chi_z, M) \to \mathbf{z} \mid \bot$

•
$$\mathbf{Z} \leftarrow \chi_{\mathbf{Z}}$$

•
$$b \leftarrow \mathscr{B}\left(\frac{1}{M}\right)$$

• If
$$b = 0$$
 then $\mathbf{z} = \mathbf{1}$

Fiat-Shamir with Aborts signature

$$\begin{aligned} & \operatorname{Rej}(\mathbf{v}, \chi_r, \chi_z, M; \mathbf{r}) \to \mathbf{z} \mid \bot \\ & \bullet \quad \mathbf{z} = \mathbf{v} + \mathbf{r} \\ & \bullet \quad b \leftarrow \mathscr{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})}, 1\right) \right) \\ & \bullet \quad \operatorname{If} b = 0 \text{ then } \mathbf{z} = \bot \\ & \bullet \quad \operatorname{Return} \mathbf{z} \end{aligned}$$

In the ROM, the distribution of signatures of the above scheme is independent of the secret sk.

 \rightarrow allows to prove unforgeability

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{Z})

FSwA.Verify(vk, msg, sig = (c, z))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v}\mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

$\mathsf{FSwA}.\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{Z})
- How to support T-out-of-N?

$\mathsf{TH}\text{-}\mathsf{FSwA}\,.\,\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

• Broadcast $\mathbf{z}_i = \operatorname{Rej}(c \cdot \operatorname{sk}_i, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Intuition N-out-of-N setting: take N short secrets sk_i

$\mathsf{FSwA}.\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $z = \bot$ then restart
- Return (c, \mathbf{Z})
- How to support T-out-of-N?

 \rightarrow Use short secret sharing

$\mathsf{TH}\text{-}\mathsf{FSwA}\,.\,\mathsf{Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = \operatorname{Rej}(c \cdot \langle L_{S,i}, \operatorname{sk}_i \rangle, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $\mathbf{z} = \bot$ then **restart**
- Return (c, \mathbf{Z})
- How to support T-out-of-N?
 - \rightarrow Use short secret sharing
- \circ **W**_{*i*} is leaked even in case of rejection
 - Need proof strategy to show independence of secret
 - [DOTT22] hides rejected \mathbf{W}_i with a trapdoor commitment scheme
 - [BTT22] simulates rejected W_i but with regularity lemma (degraded parameters)

TH-FSwA . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = \operatorname{Rej}(c \cdot \langle L_{S,i}, \operatorname{sk}_i \rangle, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

$FSwA.Sign(sk, msg) \rightarrow sig$

- $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = \operatorname{Rej}(c \cdot \operatorname{sk}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r})$
- If $\mathbf{z} = \bot$ then **restart**
- Return (c, \mathbf{Z})
- How to support T-out-of-N?
 - \rightarrow Use short secret sharing
- \circ **W**_{*i*} is leaked even in case of rejection
 - Need proof strategy to show independence of secret
 - [DOTT22] hides rejected \mathbf{W}_i with a trapdoor commitment scheme
 - [BTT22] simulates rejected \mathbf{W}_i but with regularity lemma (degraded parameters)
 - \rightarrow Tighter simulation lemma

TH-FSwA . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = \operatorname{Rej}(c \cdot \langle L_{S,i}, \operatorname{sk}_i \rangle, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_i)$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

• $[A \quad I] \cdot z$, with $z \leftarrow \chi_z$ is indistinguishable from uniform

Lemma: Rejected \mathbf{W}_i is indistinguishable from uniform if:

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$, with $\mathbf{r} \leftarrow \chi_{\mathbf{r}}$ is indistinguishable from uniform

For $N \leq 8$,

Distributions	Speed	Rounds	 vk 	sig	Total communication
Gaussians	Fast	3	2.6 kB	2.6 kB	5.6 kB
Uniforms			2.9 kB	6.3 kB	13.5 kB

Comparable to Dilithium size: 2.4kB at NIST level II!

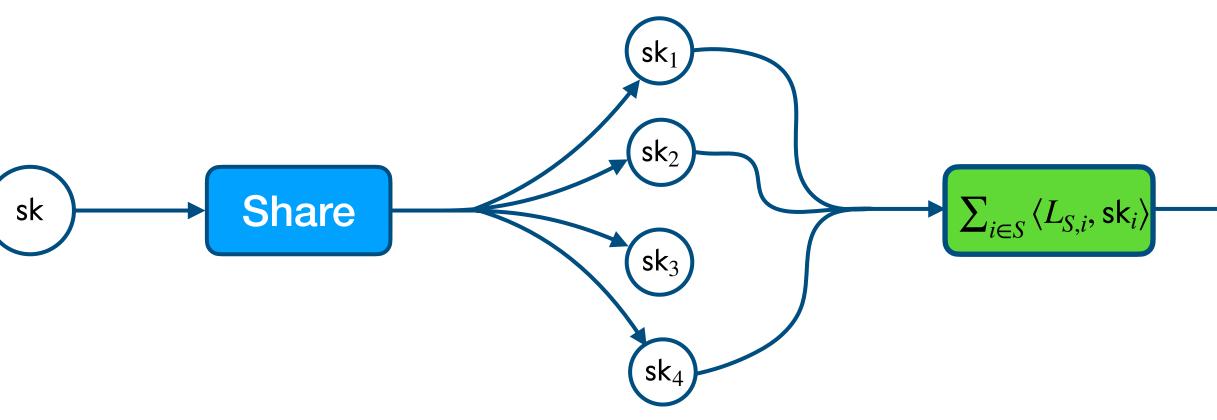
4. How to concretely sample short sharings

How to Shortly Share a Short Vector DKG with Short Shares and Application to Lattice-Based Threshold Signatures with Identifiable Aborts

Rafael del Pino¹ ⁽⁶⁾, Thomas Espitau¹ ⁽⁶⁾, Guilhem Niot^{1,2} ⁽⁶⁾, and Thomas \mathbf{Prest}^1 \odot

Short Secret Sharing

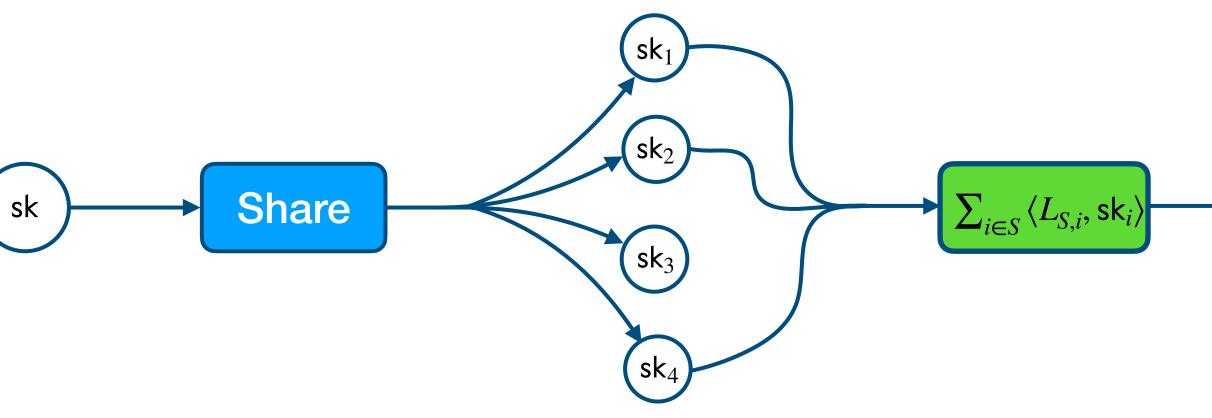
- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- *T* shares: can recover sk + reconstruction vector $L_{S,i}$ with small coefficients
- $\leq T 1$ shares: can't recover sk



Short Secret Sharing

- o Individual pool of short shares $\mathbf{sk}_i = (\mathbf{s}_i^{(1)}, \mathbf{s}_i^{(2)}, \dots)$
- T shares: can recover sk + reconstruction vector $L_{S,i}$ with small coefficients
- $\circ \leq T 1$ shares: can't recover sk

- But, in a lattice-based scheme, it is fine to:
- Leak an offset of the secret: $sk = sk_{safe} + sk_{leak}$
- \rightarrow We just need $\begin{bmatrix} A & I \end{bmatrix} \cdot sk$ to look uniform



Observation: hard to not leak the secret with these constraints...

° Leak hints on the secrets $h = c \cdot sk + y$, for large enough y

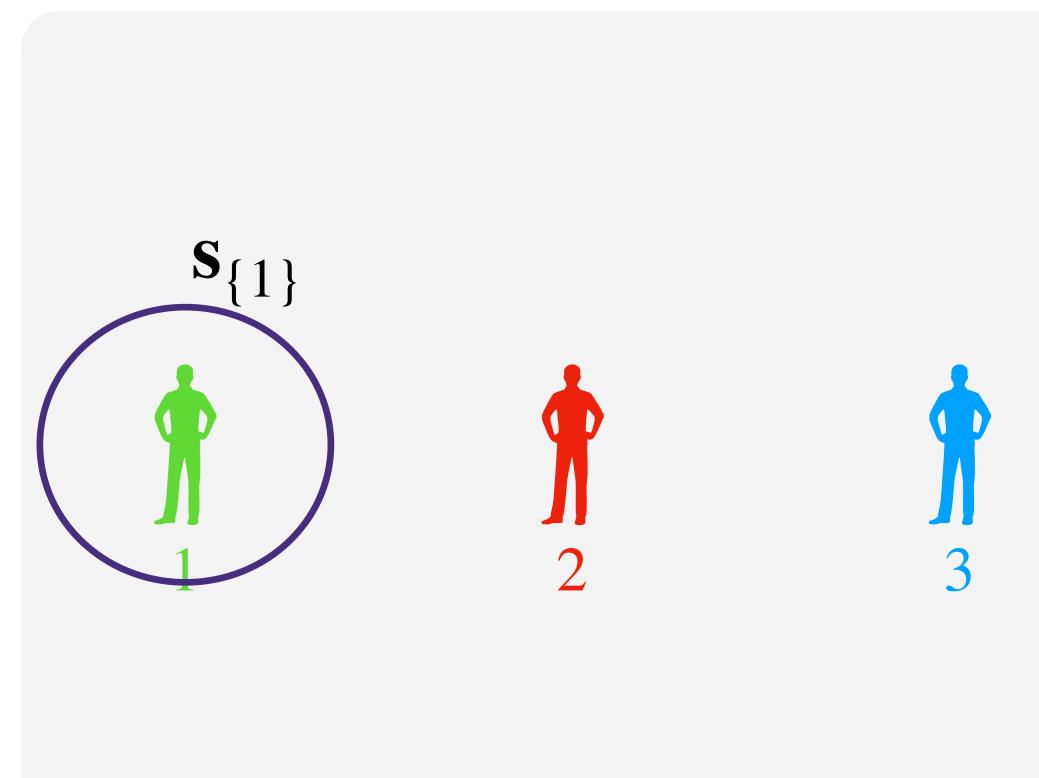
Short Secret Sharing

- Weaken zero-knowledge \rightarrow Functional simulatability
- We are interested in protocols generating sharings such that:
- ^o When < T parties are corrupted,
 - Their views can be simulated replacing $[A \ I] \cdot sk$ with a uniform sample
 - It is possible to simulate a function on honest shares (i.e. obtain a hint on honest shares $h = c \cdot \langle L_{S,i}, sk_i \rangle + y$

Inspired by the fractional knowledge notion in [ENP24], introduced for VSS.

Idea: sample a share for any possible set of corrupted parties.

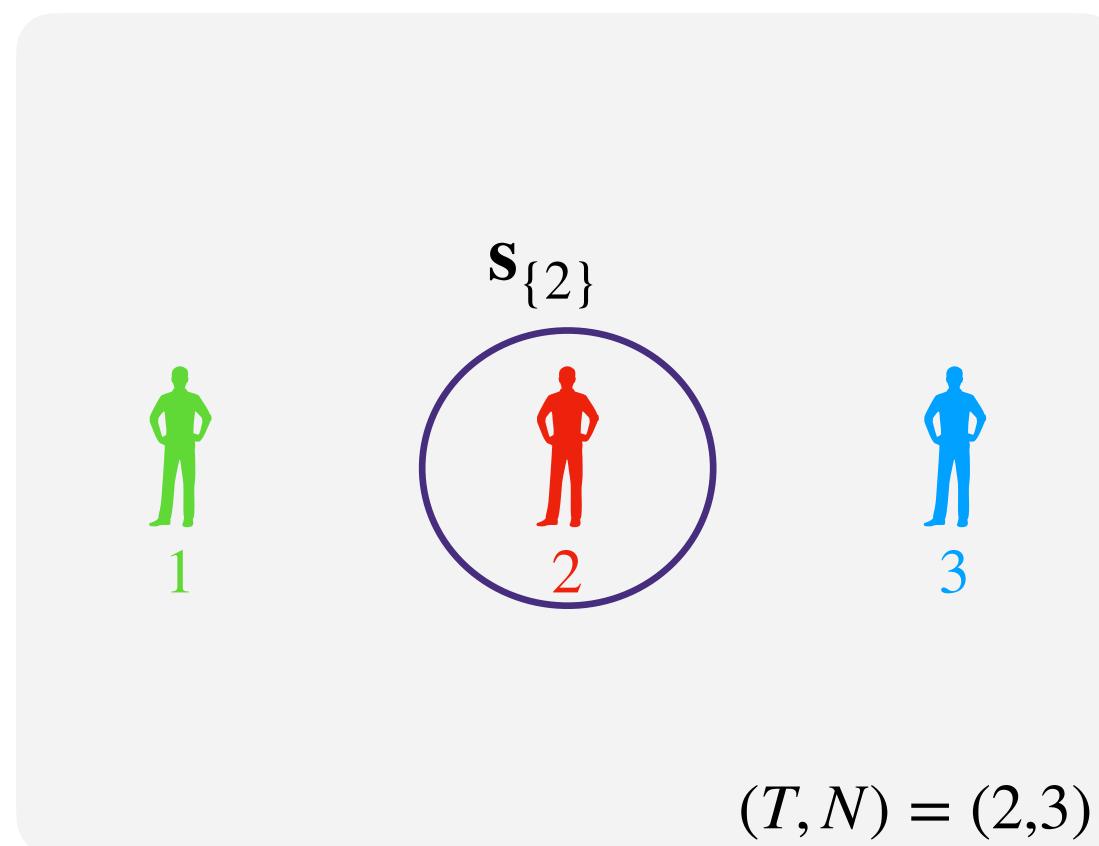
1. For any set \mathcal{T} of T-1 parties, sample a uniform share $S_{\mathcal{T}}$.



Idea: sample a share for any possible set of corrupted parties.

1. For any set \mathcal{T} of T-1 parties, sample a uniform share $S_{\mathcal{T}}$.

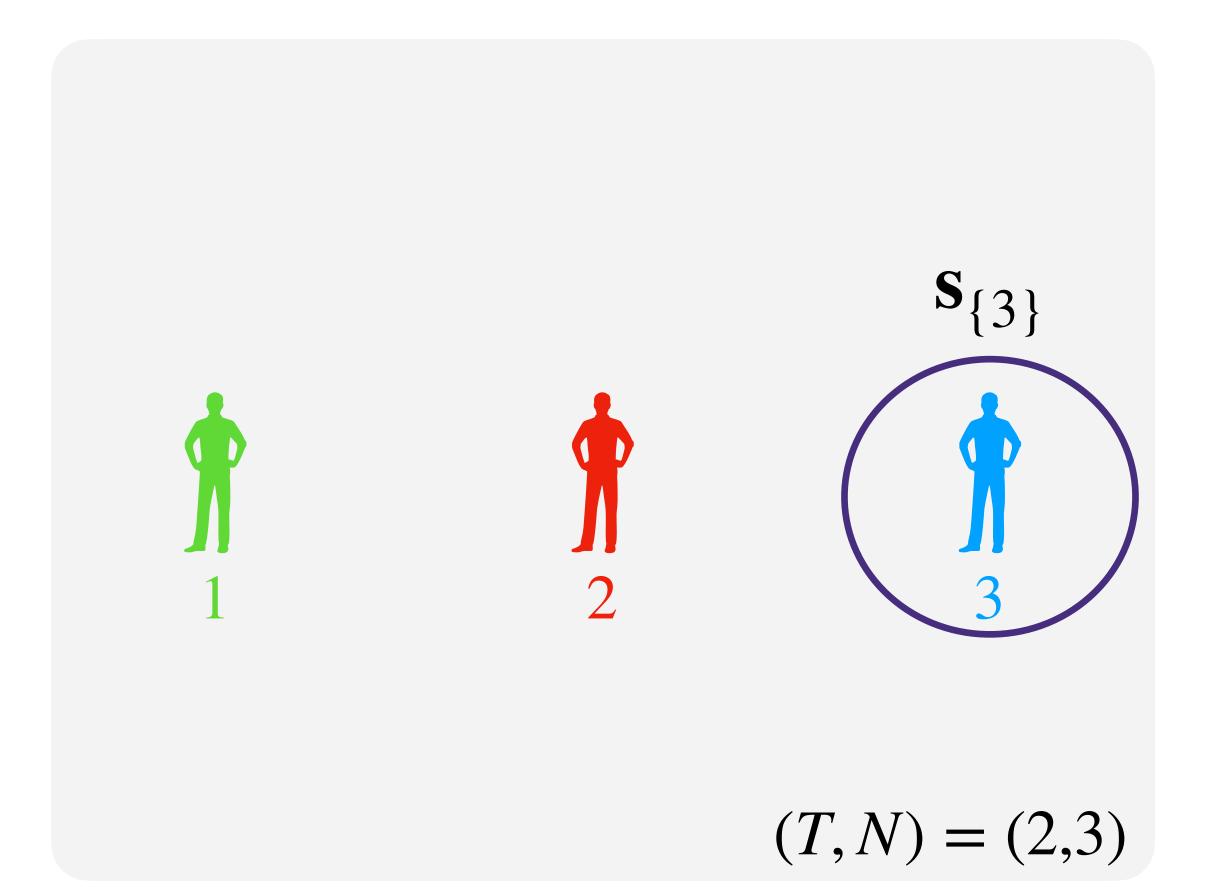
 ${f S}_{\{1\}}$



Idea: sample a share for any possible set of corrupted parties.

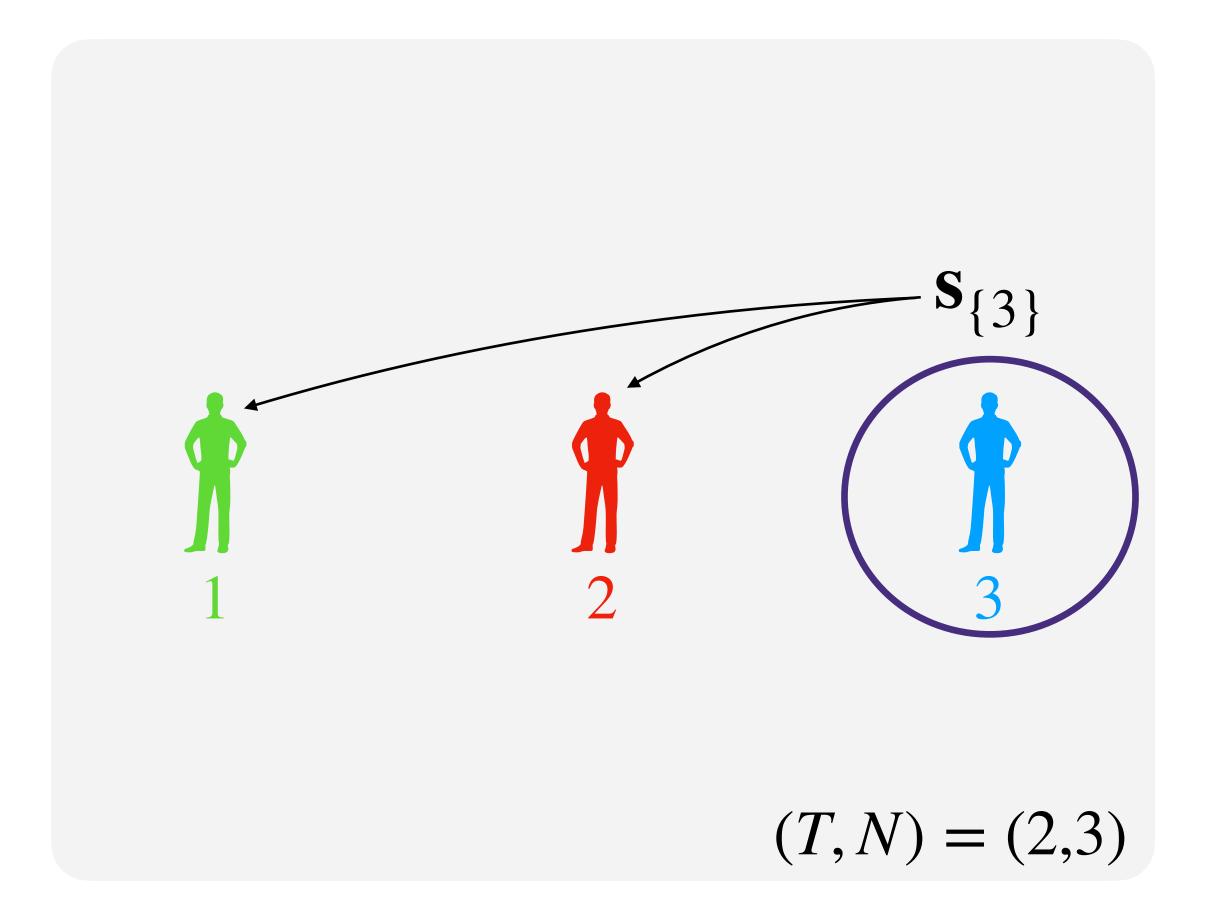
1. For any set \mathcal{T} of T - 1 parties, sample a uniform share $\mathbf{s}_{\mathcal{T}}$.

 $s_{\{1\}} s_{\{2\}}$



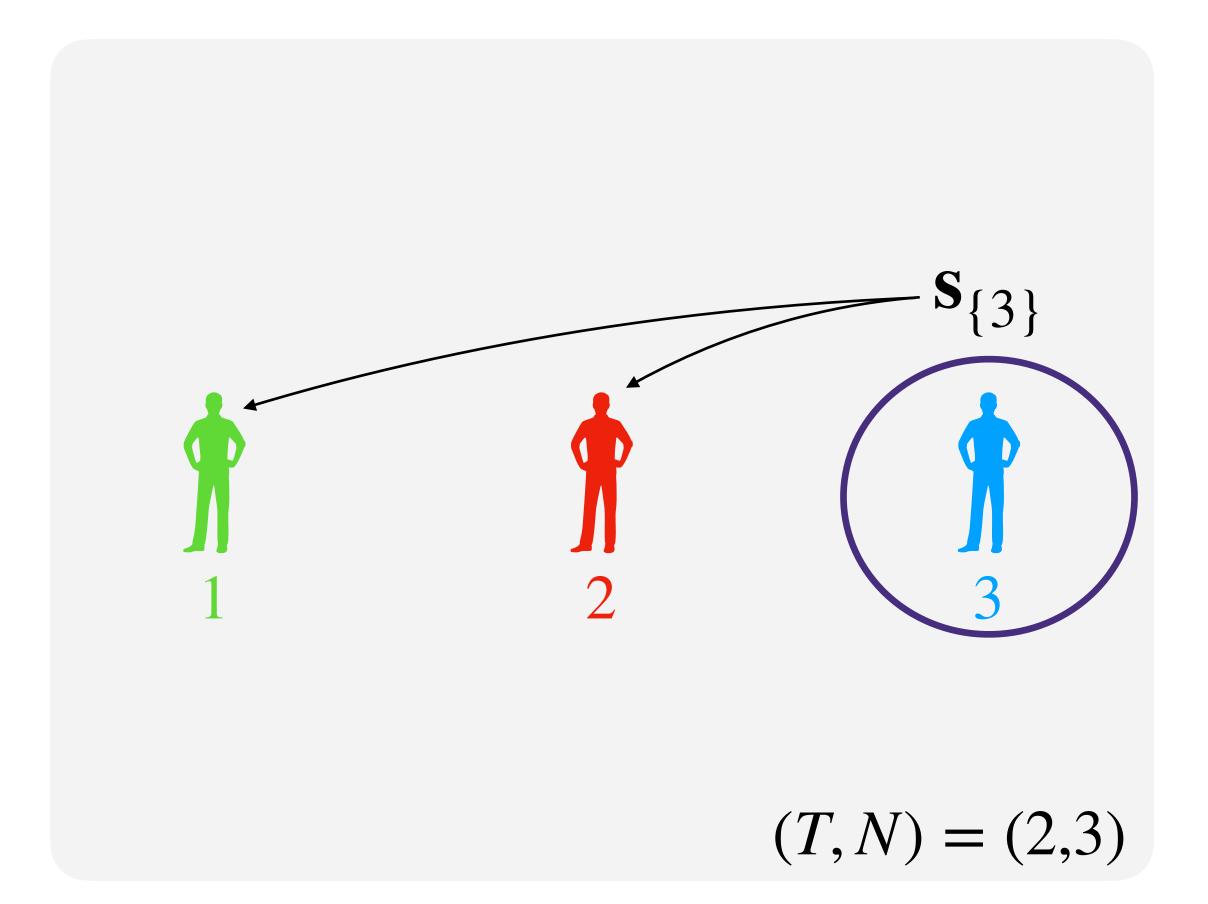
Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T 1 parties, sample a uniform share $\mathbf{s}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{s}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}$.



Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $S_{\mathcal{T}}$.
- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}.$
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.



Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T-1 parties, sample a uniform share $\mathbf{S}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}.$
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.

Properties:

- Reconstruction coefficients 0 or 1
- ^o When < T corrupted parties, at least one $\mathbf{S}_{\mathcal{T}}$ remains hidden.
 - \rightarrow guarantees that sk remains protected

Idea: sample a share for any possible set of corrupted parties.

- 1. For any set \mathcal{T} of T 1 parties, sample a short share $\mathbf{s}_{\mathcal{T}}$.
- 2. Distribute $\mathbf{s}_{\mathcal{T}}$ to the parties in $[N] \setminus \mathcal{T}$.
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.

Properties:

- Reconstruction coefficients 0 or 1
- ° When < T corrupted parties, at least one $s_{\mathcal{T}}$ remains hidden.

 \rightarrow guarantees that $[A I] \cdot sk$ looks uniform (MLWE assumption)

Idea: sample a share for any possible set of corrupted parties.

1. For any set \mathcal{T} sample a short

- 2. Distribute $\mathbf{S}_{\mathcal{T}}$ to $[N] \setminus \mathcal{T}.$
- 3. Define $\mathbf{sk} = \sum_{\mathcal{T}} \mathbf{s}_{\mathcal{T}}$.

Caveat: This scheme has a number of shares that is equal to $\begin{pmatrix} N \\ T-1 \end{pmatrix}$. efficients 0 or 1

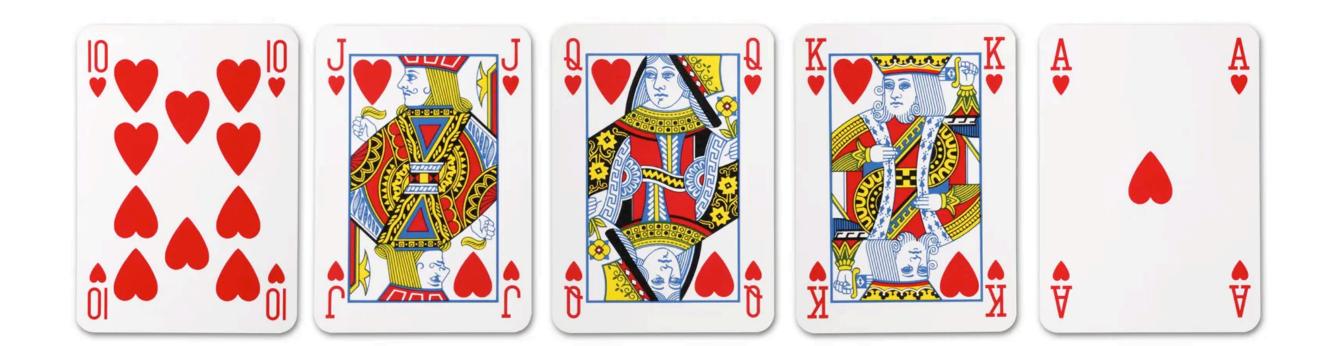
ted parties, at least

one $\mathbf{S}_{\mathcal{T}}$ remains hidden.

 \rightarrow guarantees that $[A \ I] \cdot sk$ looks uniform (MLWE assumption)

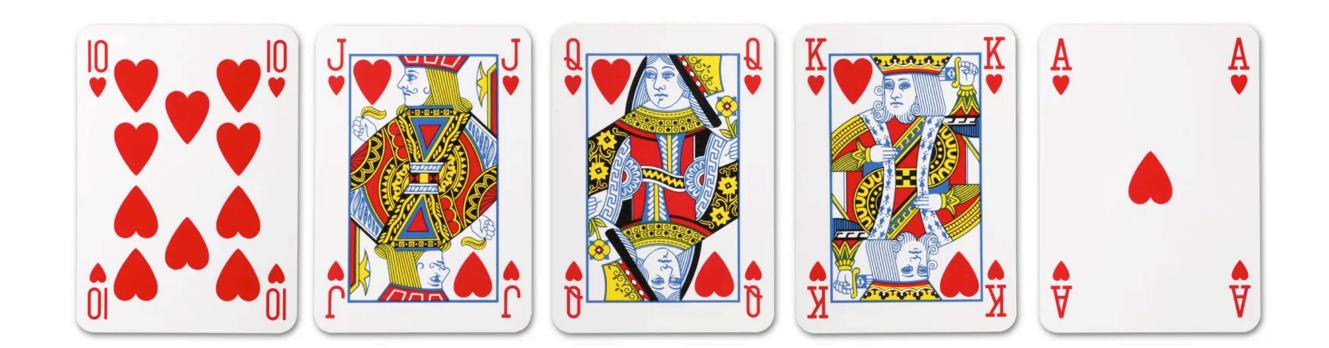
Full collection

 $N \, \mathrm{cards}$



Full collection

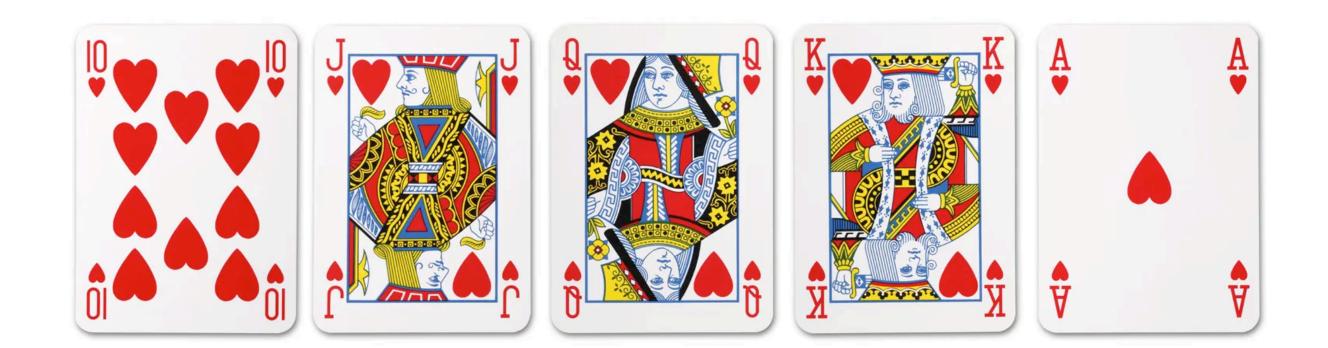
 $N \, \mathrm{cards}$



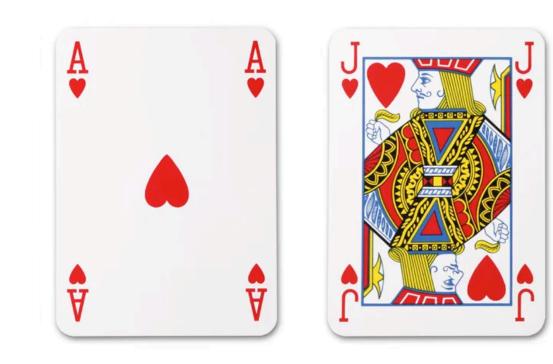
Draw with replacement

Full collection

 $N \, \mathrm{cards}$

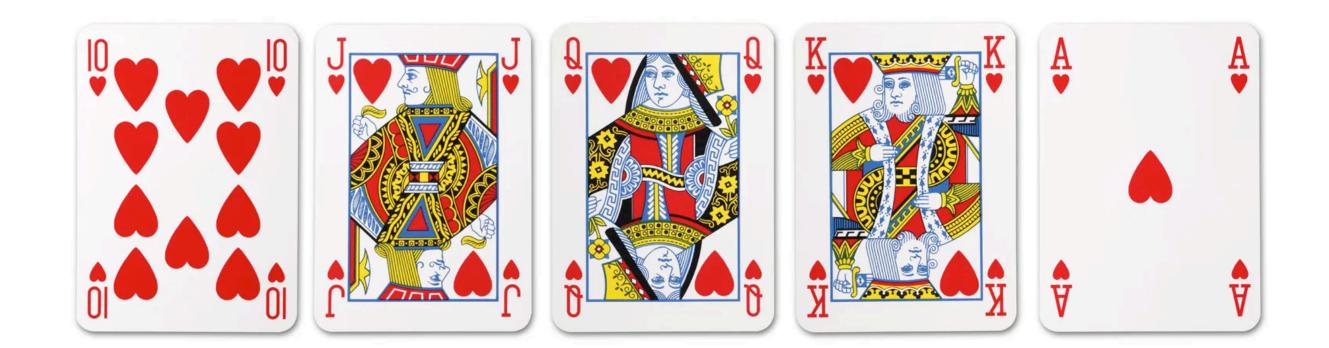


Draw with replacement

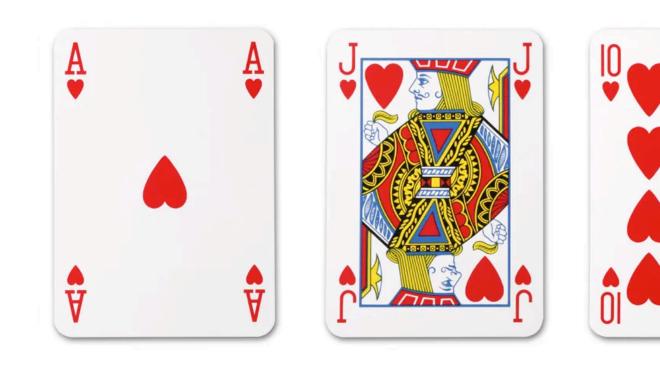


Full collection

 $N \, \mathrm{cards}$



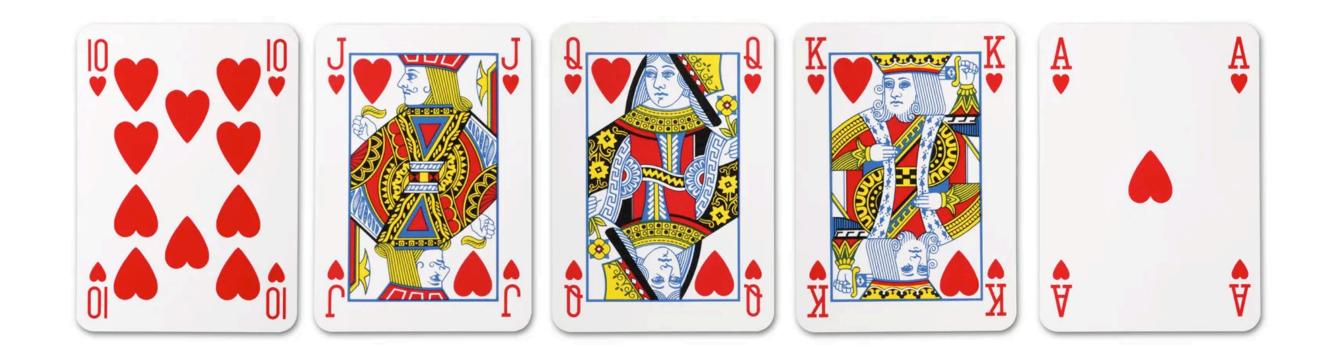
Draw with replacement



2

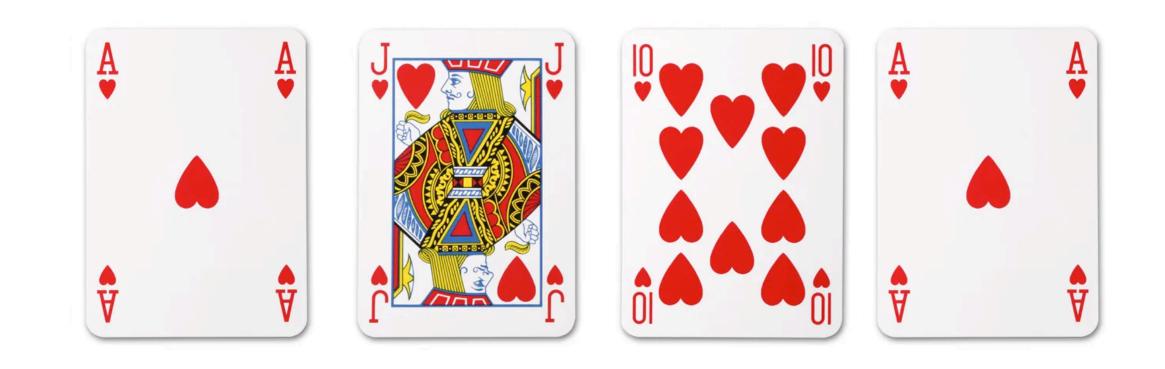
Full collection

N cards



4

Draw with replacement



2

How many draws to get the full collection?

 $\sim N \log N$

Full collection sk =

 $N \, {\rm shares}$

Full collection sk

 $N \, {\rm shares}$

Idea: Randomly distribute one share per party.

Desired properties:

- Reconstruction threshold: Minimum number of parties T needed to gather all the shares? (with overwhelming probability)
- Security threshold: Maximum number of parties T' such that at least one share is not known (with overwhelming probability)

 $sk = s_1 + s_2 + s_3 + s_4$ Example: $s_1, \dots, s_{N-1} \leftarrow \mathcal{D}_{\sigma}^{N-1} \text{ and}$ $s_N = sk - \sum_{i < N} s_i$

Full collection

N shares

Idea: Randomly distribute one share per party.

Desired properties:

- **Reconstruction threshold:** Minimum number of parties T needed to gather all the shares? (with overwhelming probability)
- Security threshold: Maximum number of parties T' such that at least one share is not known (with overwhelming probability) Bounds T, T' are exactly bounds of the coupon collector problem. Both $T, T' \sim N \log N$, with gap \approx $N \rightarrow$

 $\mathbf{sk} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 + \mathbf{s}_3$ \mathbf{S}_{4} **Example:** • $\mathbf{s}_1, \dots, \mathbf{s}_{N-1} \leftarrow \mathscr{D}_{\sigma}^{N-1}$ and $\mathbf{s}_N = \mathbf{sk} - \sum_{i < N} \mathbf{s}_i$

$$\approx 1 + \frac{128}{\log N}$$

Full collection

N shares

Better parameters by amplifying properties:

$$sk = s_1^1 +$$
$$= \dots$$
$$= s_1^m +$$

Share sk multiple times \rightarrow proba $1 - 1/2^m$

 $\mathbf{sk} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 + \mathbf{s}_4$

• **Reconstruction threshold:** If for given T, proba 1/2 of reconstructing sk $\mathbf{S}_2^1 + \mathbf{S}_3^1 + \mathbf{S}_4^1$

 $s_2^m + s_3^m + s_4^m$

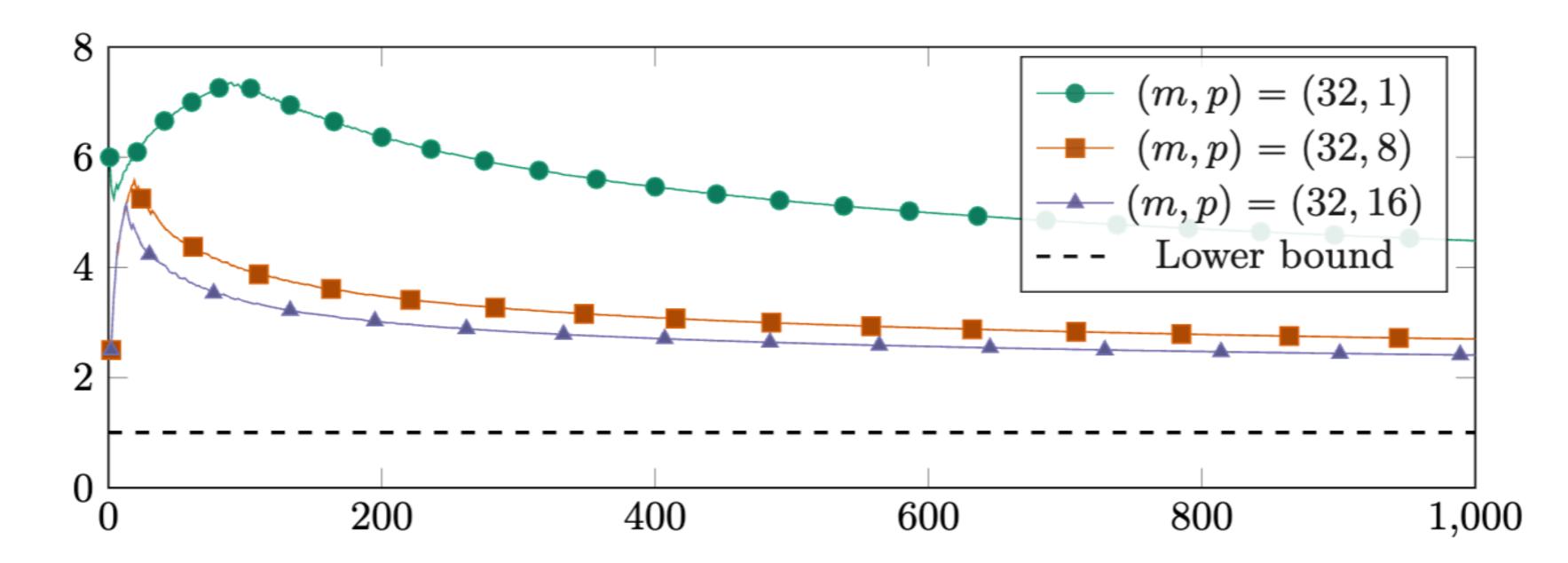
Full collection *N* shares

Better parameters by amplifying properties:

- **Reconstruction threshold:** Share sk multiple times \rightarrow proba $1 1/2^m$ • Security threshold: Share multiple secrets sk
- If for given T', proba 1/2 of leaking sk_i, proba of leaking all the sk_i is $1/2^{p}$

 $\mathbf{sk} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 + \mathbf{s}_3$ \mathbf{S}_{4}

 $\mathbf{sk} = \mathbf{sk}_1 + \mathbf{sk}_2 + \dots + \mathbf{sk}_p$



Recall: *m*, *p* correspond respectively to amplification for reconstruction and security thresholds.

Ratio T/T' achieved by our sharing as a function of T'. The dotted line corresponds to an ideal asymptotic T/T' = 1.

Full collectionskN shares

Security:

We can prove that when $\leq T'$ parties a hints on sk (s_n = sk + y).

 \rightarrow Reduce security to Hint-MLWE

Use case: can be used for ThRaccoon with id abort without degrading parameters.



We can prove that when $\leq T'$ parties are corrupted, leaked shares can be seen as

Short secret sharing

- This presentation assumes a trusted dealer to sample the short secret sharing.
 - But, in our paper, we show that it is quite easy to design DKGs.

Conclusion

Conclusion

Introduced two short secret sharing methods

- small number of parties)
- gap between T and T'

Two applications

- ^o A compact threshold FSwA signature scheme for $N \leq 8$

• Based on replicated secret sharing (exponential number of shares \rightarrow for

• Based on coupon collector problem: scales to larger thresholds, but has a

• Threshold Raccoon with identifiable aborts (using partial verification keys)

Questions?

