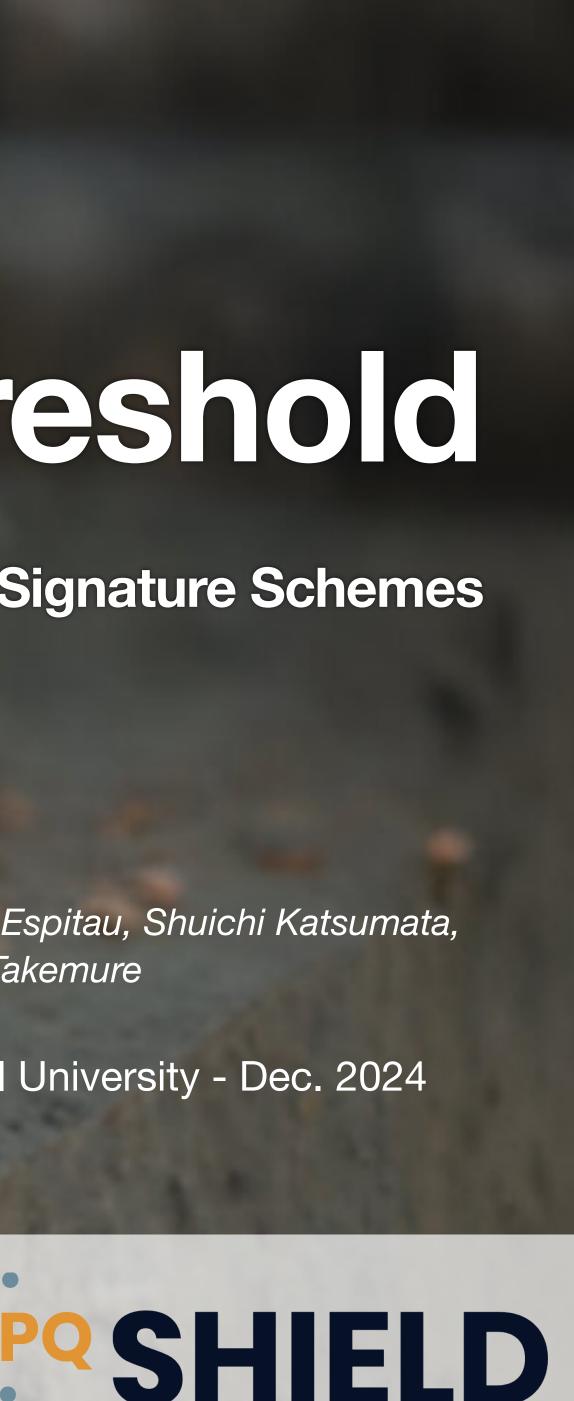
Beyond the Threshold

Detecting Aborts in Lattice-based Threshold Signature Schemes

Guilhem Niot, joint works with Rafael del Pino, Thomas Espitau, Shuichi Katsumata, Thomas Prest, Michael Reichle, Kaoru Takemure

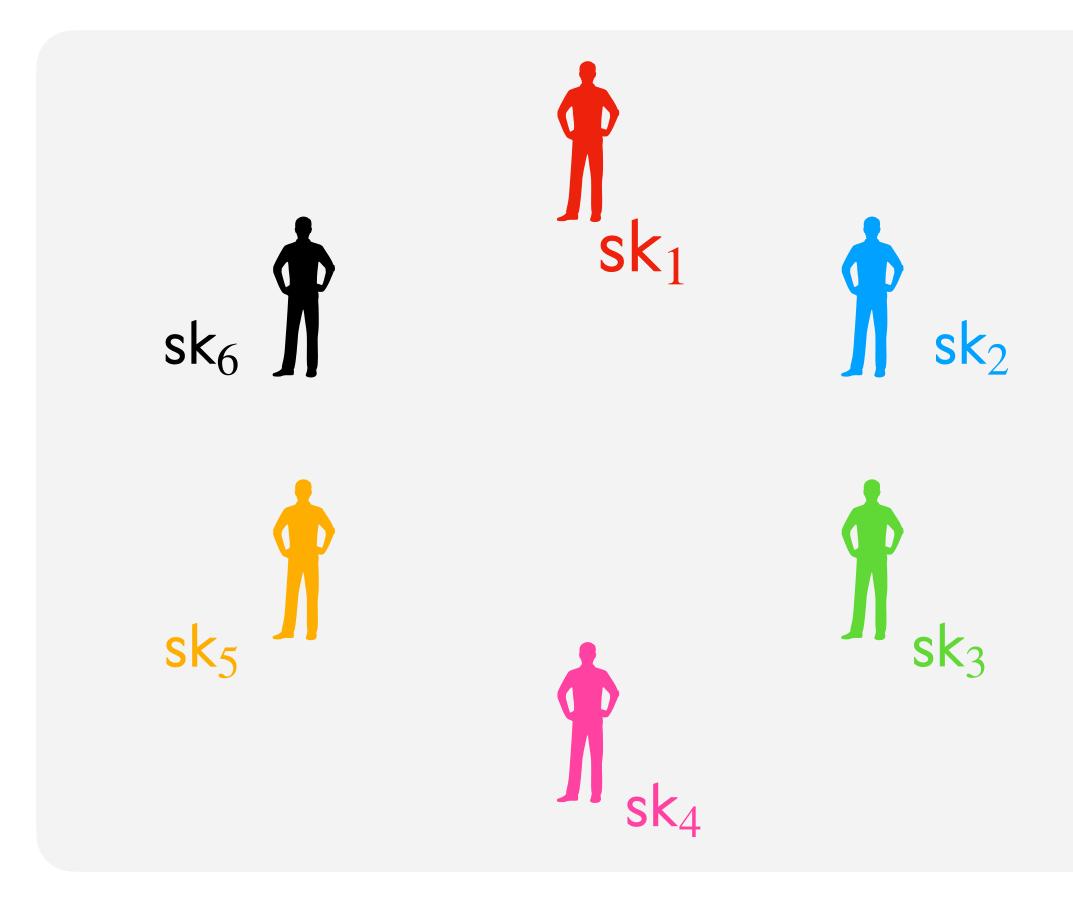
Visit Cryptography and Privacy Lab, Seoul National University - Dec. 2024



1. Background

(*T*-out-of-*N*) threshold signatures What are they?

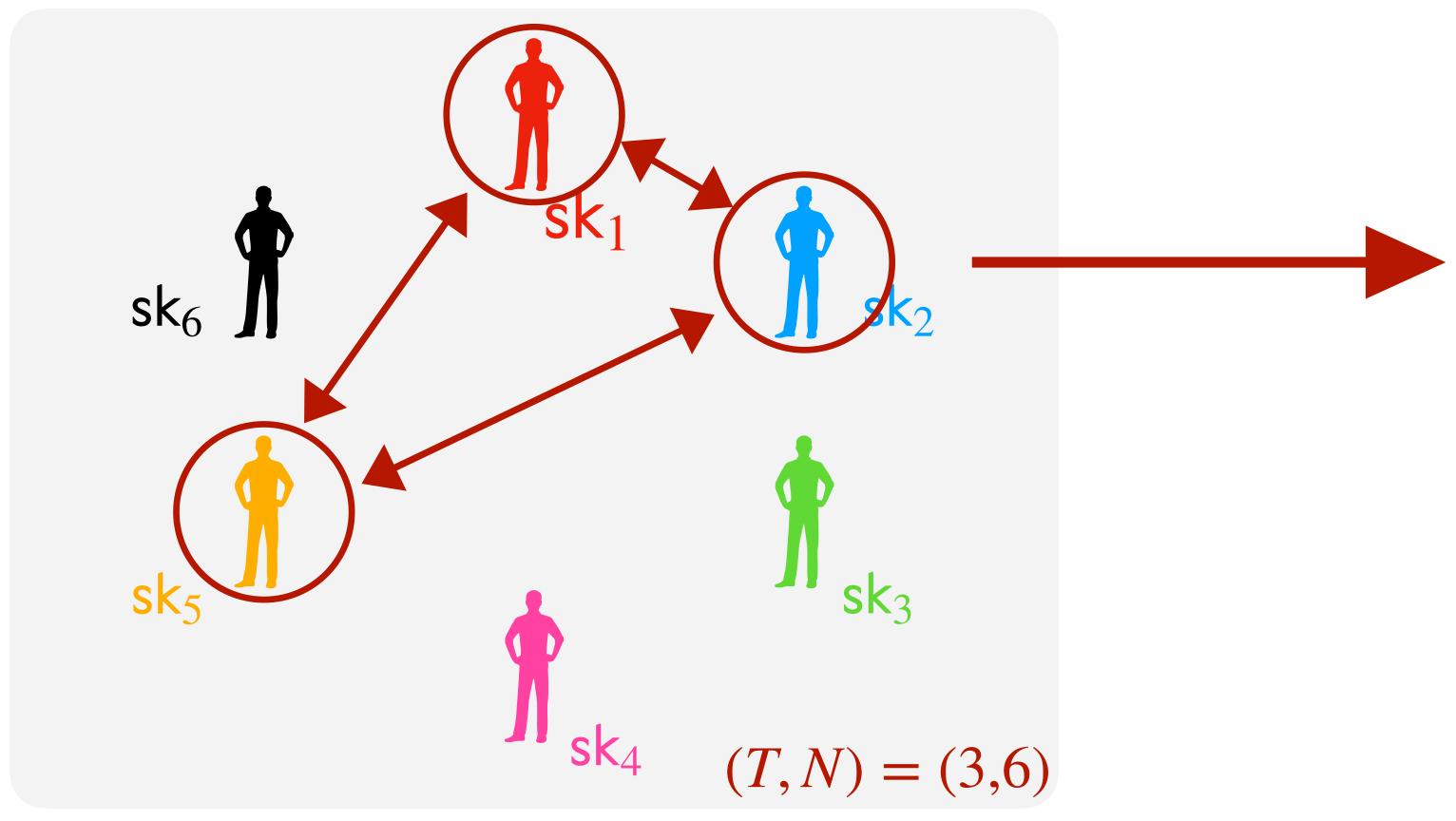
An interactive protocol to distribute signature generation.



- I verification key vk
- I partial signing key sk_i per party
- Given at least *T*-out-of-*N* partial signing keys, we can sign.

(*T*-out-of-*N*) threshold signatures What are they?

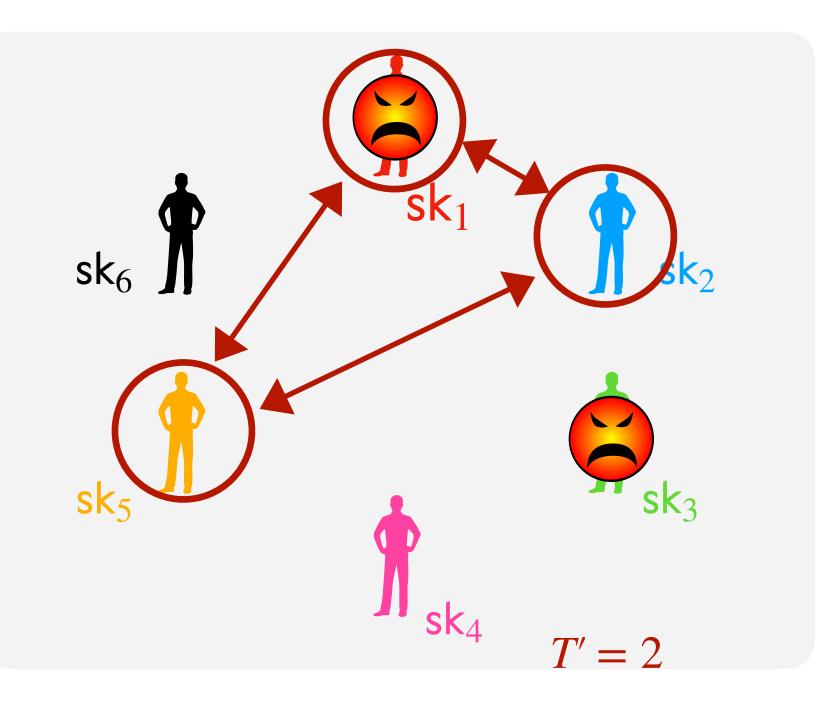
An interactive protocol to distribute signature generation.



Signature σ on msg

Core security properties

- **Correctness:** Given at least T-out-of-N partial signing keys, we can sign.
- o Unforgeability: The signature scheme remains unforgeable even if up to T-1 parties are corrupted.



It's not possible to forge a new signature, even by taking part in the signing protocol.

More desirable properties

- Distributed Key Generation: Protocol allowing to distributively sample key material.
- **Abort identification (or robustness):** In the presence of malicious users, the signature protocol can identify misbehaving users (or guarantee a valid output).
- o Small round complexity: Ideally can be as low as one round.
- Backward compatibility: Threshold schemes should ideally be compatible with existing primitives.

Threshold Signatures based on Lattices

- MPC-based solutions [CS19], [TPCZ24]
- 2-round TS via FHE: [BGG+18], [ASY22], [GKS23]
- TS with noise flooding (based on Raccoon): 3-round [dPKM+24], many follow-ups in 2024

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

Threshold Signatures based on Lattices

- MPC-based solutions [CS19], [TPCZ24]
- 2-round TS via FHE: [BGG+18], [ASY22], [GKS23]
- TS with noise flooding (based on Raccoon): 3-round [dPKM+24], many follow-ups in 2024

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

Threshold Raccoon, a practical 3-round threshold signature

K	Number Signers	 vk 	sig	Total communication
128	≤ 1024	4 kB	13 kB	40 kB

... but only considers core security properties: correctness and unforgeability.

Advanced properties for ThRaccoon

Small round complexity 2-round [EKT24], [BKLM+24]

Two-Round Threshold Signature from Algebraic One-More Learning with Errors

Thomas Espitau¹, Shuichi Katsumata^{1,2}, Kaoru Takemure^{* 1,2}

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Cecilia Boschini ETH Zürich, Switzerland Darya Kaviani UC Berkeley, USA Russell W. F. Lai Aalto University, Finland

Giulio Malavolta Bocconi University, Italy MPI-SP, Germany Akira Takahashi JPMorgan AI Research & AlgoCRYPT CoE, USA Mehdi Tibouchi NTT, Japan

Distributed Key Generation (DKG) + Robustness

Flood and Submerse: Distributed Key Generation and Robust Threshold Signature from Lattices

Thomas Espitau¹ \bigcirc , Guilhem Niot^{1,2} \bigcirc , and Thomas Prest¹ \bigcirc

Advanced properties for ThRaccoon

Distributed Key Generation (DKG) + Robustness

K	# rounds	Signers per session	 vk 	sig	Total communication
128	4	3T	4 kB	13 kB	56T kB

- Question: can we avoid the cost of robustness when parties behave honestly?
 - Only identify aborts instead of correcting them?

Flood and Submerse: Distributed Key Generation and Robust Threshold Signature from Lattices

Thomas Espitau¹ \bigcirc , Guilhem Niot^{1,2} \bigcirc , and Thomas Prest¹ \bigcirc

Focus of this presentation

Efficient Abort Identification

- Separate signing protocol and (costly) abort identification protocol Signing protocol in 3 rounds + small communication

- Overview of 3 techniques to achieve Abort Identification
 - Based on Non-Interactive ZK proofs (NIZK)
 - Based on Verifiable Secret Sharing (VSS) [ENP24]
 - Novel Short Secret Sharing technique (for small thresholds)

2. Signing with (Threshold) Raccoon

Raccoon signature scheme

Raccoon . Keygen() \rightarrow sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short \boldsymbol{r}
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v}\mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

Raccoon signature scheme

Raccoon . Keygen() \rightarrow sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short \boldsymbol{r}
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v}\mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

Unforgeable assuming

- Hint-MLWE
- SelfTargetMSIS

Hint-MLWE assumption [KLSS23].

 $(\mathbf{A}, \mathbf{vk})$ is pseudorandom even if given Q "hints":

$$(c_i, \mathbf{z}_i := c_i \cdot \mathbf{sk} + \mathbf{r}_i)$$
 for $i \in [Q]$

As hard as $MLWE_{\sigma}$ if

$$\sigma_{\mathbf{r}} \ge \sqrt{Q} \cdot s_1(c) \cdot \sigma$$

Raccoon . Keygen() \rightarrow sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short **r**
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v}\mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert **z** short

Shamir sharing on secret

Sample polynomial $f \in \mathscr{R}_q^{\ell}[X]$ s.t.

- $f(0) = \text{sk and } \deg f \le T 1$
- Partial signing keys $sk_i := [[sk]]_i = f(i)$

Properties:

- with < T shares, sk is perfectly hidden
- with a set S of $\geq T$ shares, reconstruct sk via Lagrange interpolation

$$\mathsf{sk} = \sum_{i \in S} L_{S,i} \cdot \llbracket \mathsf{sk} \rrbracket_i$$

Raccoon . Keygen() \rightarrow sk, vk

• $vk = [A \ I] \cdot sk$, for sk short

Raccoon . Sign(sk, msg) \rightarrow sig

- Sample a short \boldsymbol{r}
- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- $\mathbf{z} = c \cdot \mathbf{sk} + \mathbf{r}$
- Output sig = (c, \mathbf{z})

Raccoon. Verify(vk, msg, sig = (c, \mathbf{z}))

- $\mathbf{w} = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{z} c \cdot \mathbf{v}\mathbf{k}$
- Assert $c = H(\mathbf{w}, \mathsf{msg})$
- Assert z short

First (insecure) attempt

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [[sk]]_i$ is large \rightarrow Leaks $[[sk]]_i$

First (insecure) attempt

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short \mathbf{r}_i

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

• Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast W_i

Round 3:

•
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [[sk]]_i$ is large \rightarrow Leaks $[[sk]]_i$

First (insecure) attempt

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i$

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- Prevent ROS attack with commit-reveal of \mathbf{w}_i
- But, \mathbf{r}_i is small vs $L_{S,i} \cdot c \cdot [[sk]]_i$ is large \rightarrow Leaks $[[sk]]_i$
- Solution: add a zero-share Δ_i :
 - ^o Any set of < T values Δ_i is uniformly random

$$\circ \quad \sum_{i \in S} \Delta_i = 0$$

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

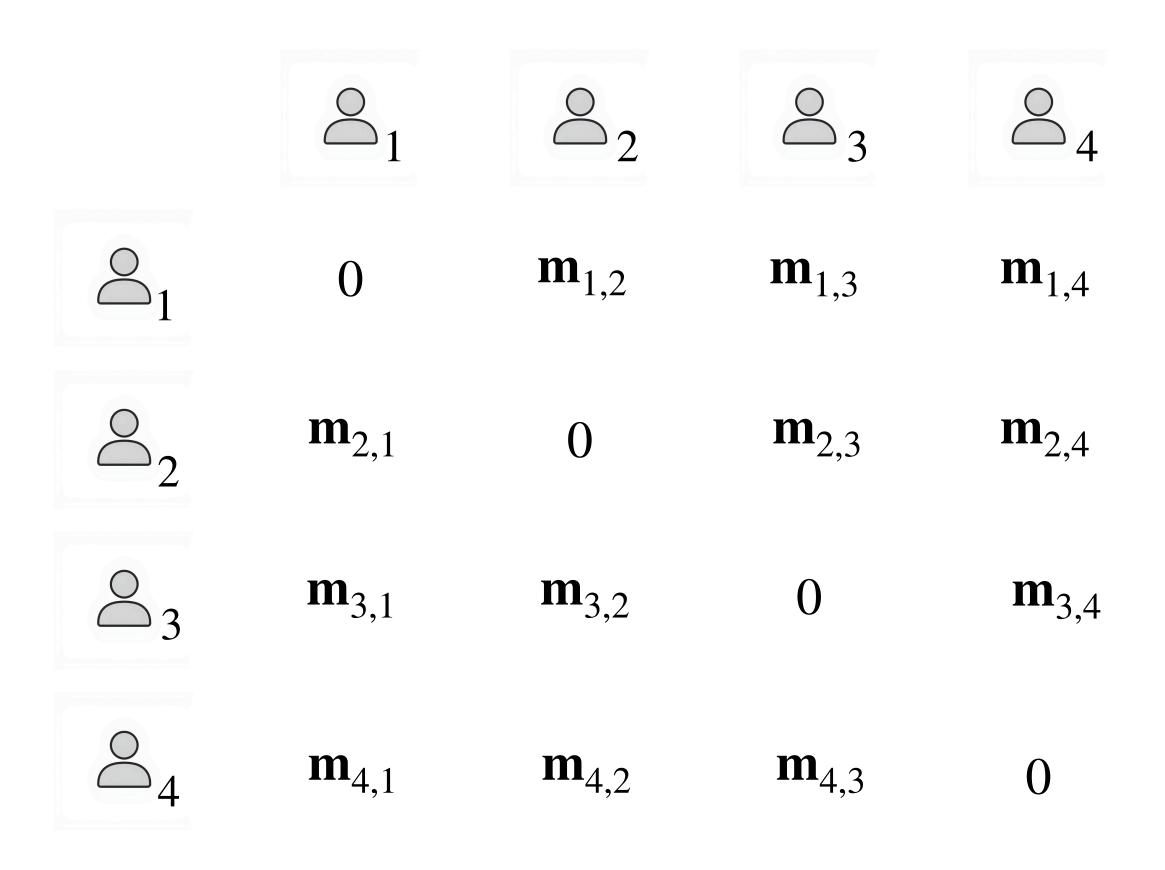
• Broadcast \mathbf{w}_i

Round 3:

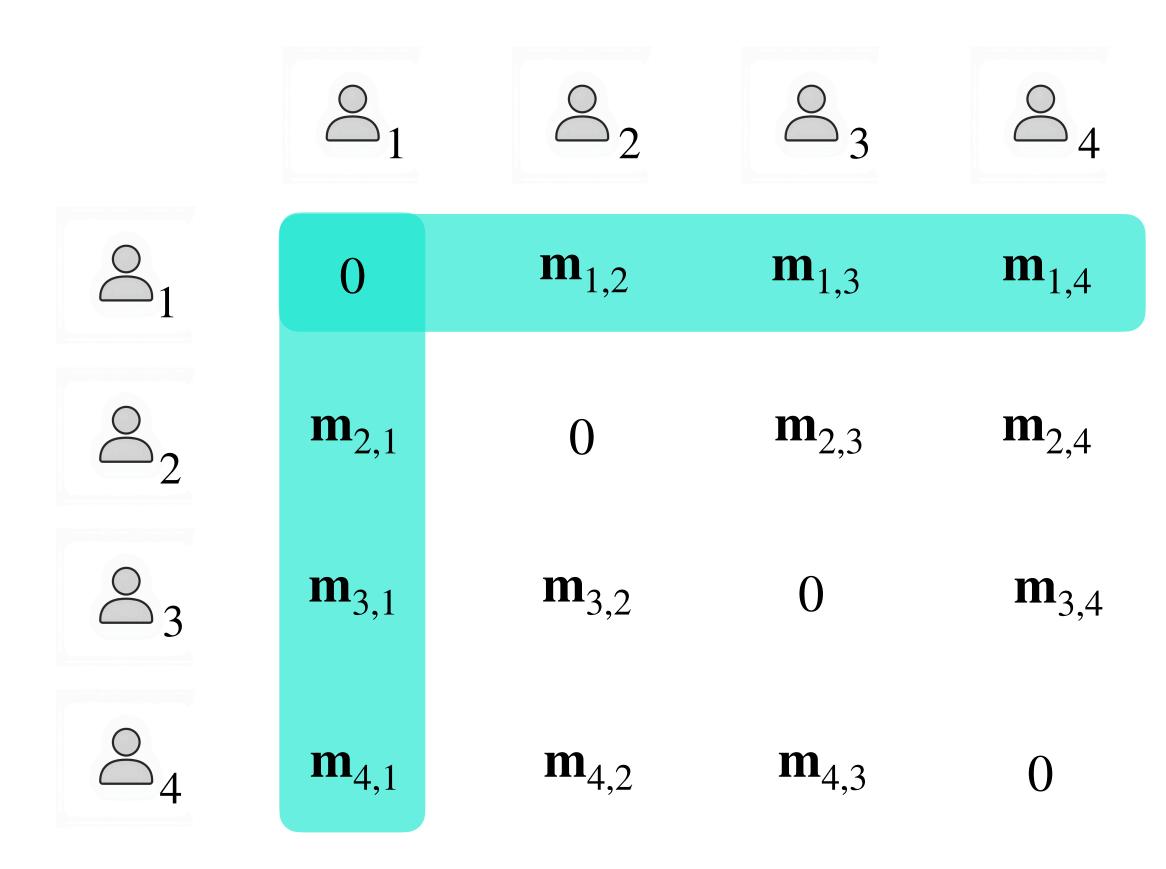
•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

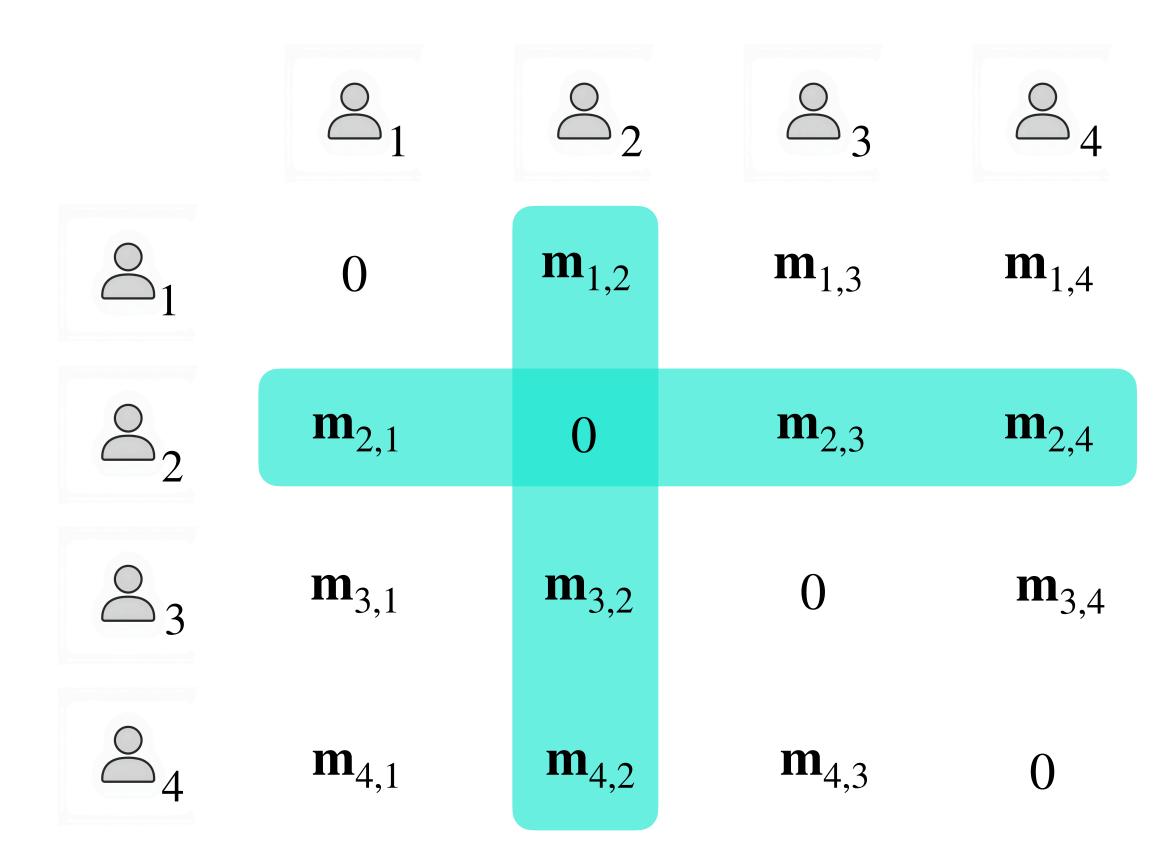
$$(c, \sum_{i \in S} \mathbf{z}_i)$$



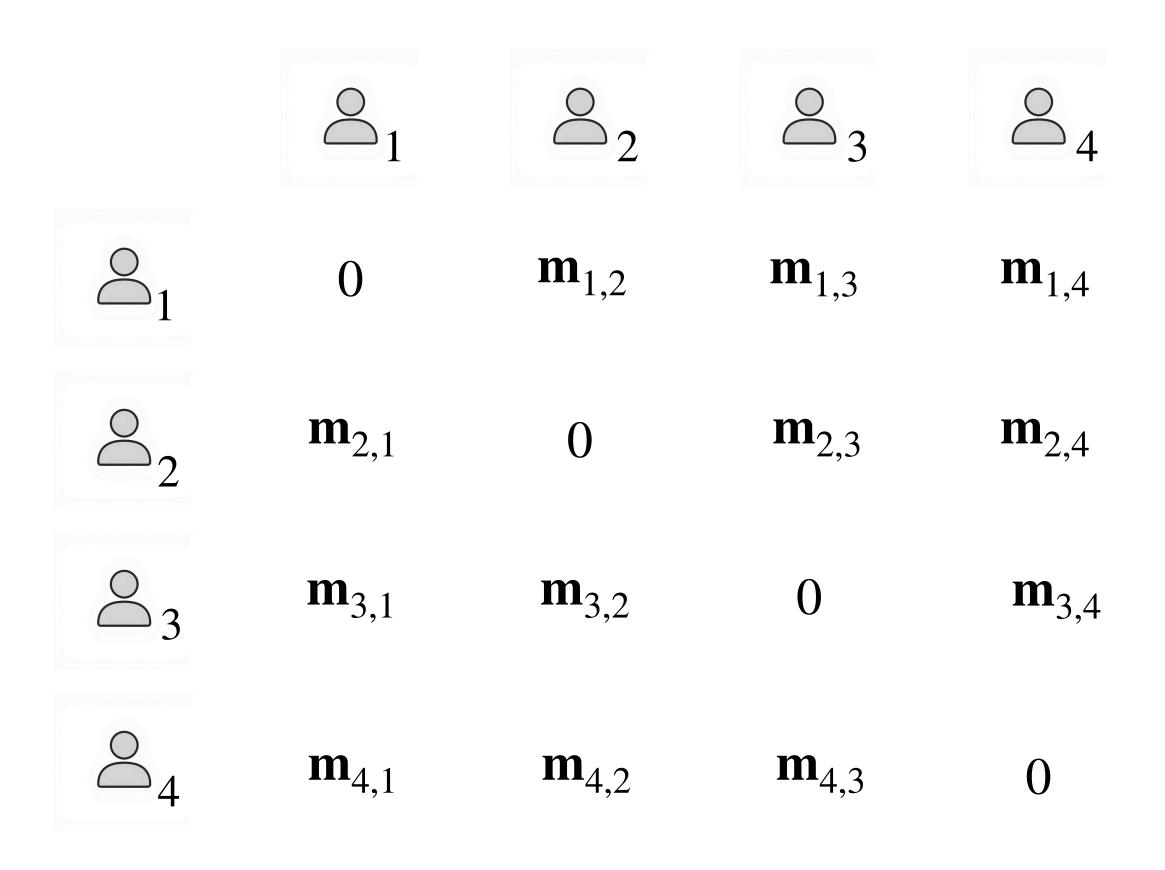
- Users *i* and *j* share a symmetric key $K_{i,j}$ and generate 0 a fresh $\mathbf{m}_{i,j} = \mathsf{PRF}(K_{i,j}, \mathsf{sid})$ during each session
- User *i* knows all the $\mathbf{m}_{i,j}$ in its row and column 0



- Users *i* and *j* share a symmetric key $K_{i,j}$ and generate 0 a fresh $\mathbf{m}_{i,j} = \mathsf{PRF}(K_{i,j}, \mathsf{sid})$ during each session
- User *i* knows all the $\mathbf{m}_{i,j}$ in its row and column 0



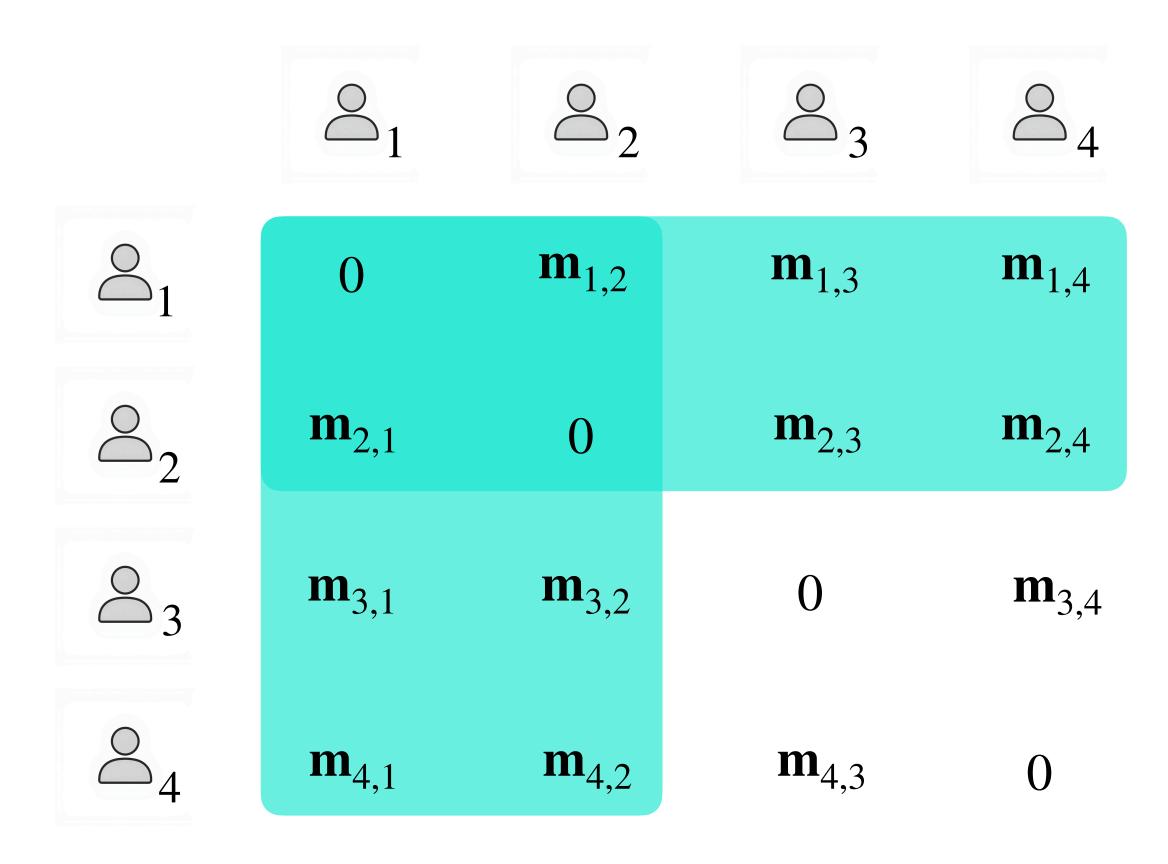
- Users *i* and *j* share a symmetric key $K_{i,j}$ and generate 0 a fresh $\mathbf{m}_{i,j} = \mathsf{PRF}(K_{i,j}, \mathsf{sid})$ during each session
- User *i* knows all the $\mathbf{m}_{i,j}$ in its row and column 0



- Users *i* and *j* share a symmetric key $K_{i,j}$ and generate 0 a fresh $\mathbf{m}_{i,j} = \mathsf{PRF}(K_{i,j}, \mathsf{sid})$ during each session
- User *i* knows all the $\mathbf{m}_{i,j}$ in its row and column 0

• We take
$$\Delta_i = \sum_{j \neq i} \mathbf{m}_{i,j} - \mathbf{m}_{j,i} \mod q$$

 \rightarrow valid sharing of 0



- Users i and j share a symmetric key $K_{i,j}$ and generate 0 a fresh $\mathbf{m}_{i,j} = \mathsf{PRF}(K_{i,j}, \mathsf{sid})$ during each session
- User *i* knows all the $\mathbf{m}_{i,j}$ in its row and column 0

• We take
$$\Delta_i = \sum_{j \neq i} \mathbf{m}_{i,j} - \mathbf{m}_{j,i} \mod q$$

 \rightarrow valid sharing of 0

^o If < T users are corrupted, nothing more than the zero-sum with the remaining shares leaks

3. Abort identification

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

• $c = H(\mathbf{w}, \mathsf{msg})$

•
$$\Delta_i = \sum_j \mathbf{m}_{i,j} - \mathbf{m}_{j,i} \mod q$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- A malicious user uses a large \mathbf{r}_i
- \mathbf{r}_i is not consistent with \mathbf{w}_i
- \mathbf{Z}_i is incorrectly computed \blacklozenge
 - Δ_i is not the correct one 0
 - or incorrect computation of $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

• $c = H(\mathbf{w}, \mathsf{msg})$

•
$$\Delta_i = \sum_j \mathbf{m}_{i,j} - \mathbf{m}_{j,i} \mod q$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- A malicious user uses a large \mathbf{r}_i
- \mathbf{r}_i is not consistent with \mathbf{w}_i
- \mathbf{Z}_i is incorrectly computed \blacklozenge
 - Δ_i is not the correct one 0
 - or incorrect computation of $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short \mathbf{r}_i

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

• Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- $\Delta_i = \sum_j \mathbf{m}_{i,j} \mathbf{m}_{j,i} \mod q$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[\mathbf{s}k]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- A malicious user uses a large \mathbf{r}_i
- \mathbf{r}_i is not consistent with \mathbf{w}_i
- \mathbf{Z}_i is incorrectly computed \blacklozenge
 - Δ_i is not the correct one 0
 - or incorrect computation of $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$ 0

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

•
$$\Delta_i = \sum_j \mathbf{m}_{i,j} - \mathbf{m}_{j,i} \mod q$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- A malicious user uses a large \mathbf{r}_i
- \mathbf{r}_i is not consistent with \mathbf{w}_i
- \mathbf{Z}_i is incorrectly computed \blacklozenge
 - Δ_i is not the correct one 0
 - or incorrect computation of $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- $\Delta_i = \sum_j \mathbf{m}_{i,j} \mathbf{m}_{j,i} \mod q$
- Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

- A malicious user uses a large \mathbf{r}_i
- \mathbf{r}_i is not consistent with \mathbf{W}_i
- \mathbf{Z}_i is incorrectly computed
 - Δ_i is not the correct one 0
 - or incorrect computation of $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$
- The scheme is mostly linear: let's try proving shortness of \mathbf{r}_i and correct computation of \mathbf{z}_i via NIZK!
 - Issue: Δ_i is secretly sampled with a PRF... **Costly** to prove.
 - Instead: Ensure that user i and j agree on $\mathbf{m}_{i,j}$ 0

$\mathsf{ThRaccoon.Sign}(\mathsf{sk},\mathsf{msg})\to\mathsf{sig}$

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

• $c = H(\mathbf{w}, \mathsf{msg})$

•
$$\Delta_i = \sum_j \mathbf{m}_{i,j} - \mathbf{m}_{j,i} \mod q$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

ThRaccoon . IdAbort()

Round 1:

- Broadcast commitments on values \mathbf{r}_i , $(\mathbf{m}_{i,j}, \mathbf{m}_{j,i})_i$
- Broadcast Π_i proving that:
 - \mathbf{r}_i is small and $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$

•
$$\mathbf{z}_i = L_{S,i} \cdot c \cdot [[\mathbf{s}k]]_i + \mathbf{r}_i + \Delta_i$$
 where
 $\Delta_i = \sum_j \mathbf{m}_{i,j} - \mathbf{m}_{j,i}$

Round 2:

- Check consistency of others' commitment on $\mathbf{m}_{i,i}, \mathbf{m}_{i,i}$
 - If inconsistent, broadcast complaint against j and reveal $K_{i,j}$
- Check proofs Π_i

Round 3:

- Review complaints: recompute $\mathbf{m}_{i,j}$ from $K_{i,j}$ and determine cheating user
- Mark users with invalid proofs as malicious

Instantiating this scheme aiming for compactness.

- Use Ajtai commitments for the T polynomials common of the witness.
- Perform the proof with the exact proof system LNP.
- Finally, compress proof with the SNARK Labrador .

Phase	# rounds	Signers per session	vk	sig	Total communication
Signing	3	Т	4 kB	13 kB	30 kB
Abort Identification	3	Т			60 + 6T kB

• Use Ajtai commitments for the T polynomials committed by each user: size does not increase with the size

Instantiating this scheme aiming for compactness.

- Additional contributions
 - First description and security analysis of NIZK based on Labrador
 - Extraction from $n = poly(\lambda)$ proofs at once without an exponential loss

4. Abort identification without NIZK

Abort identification without NIZK

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

•
$$c = H(\mathbf{w}, \mathsf{msg})$$

- $\Delta_i = \sum_j \mathbf{m}_{i,j} \mathbf{m}_{j,i} \mod q$ Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Start over!

Why is it challenging to avoid a NIZK for aborts in ThRaccoon?

- Incompatibility of the sharings of sk and \mathbf{r}_i , that prevent 0 a simple verification of computations.
- Additional non-linearity introduced by Δ_i 0

Abort identification without NIZK

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

• $c = H(\mathbf{w}, \mathsf{msg})$

•
$$\Delta_i = \sum_j \mathbf{m}_{i,j} - \mathbf{m}_{j,i} \mod q$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

Start over!

Why is it challenging to avoid a NIZK for aborts in ThRaccoon?

- ^o Incompatibility of the sharings of sk and \mathbf{r}_i , that prevent a simple verification of computations.
- ^o Additional non-linearity introduced by Δ_i

Let's use compatible sharings for sk and \mathbf{r}_i !

- Shamir sharing [ENP24]
- Novel short secret sharing

Abort identification by Shamir-Sharing r_i

ThRaccoon . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

• $c = H(\mathbf{w}, \mathsf{msg})$

•
$$\Delta_i = \sum_j \mathbf{m}_{i,j} - \mathbf{m}_{j,i} \mod q$$

• Broadcast $\mathbf{z}_i = L_{S,i} \cdot c \cdot [[sk]]_i + \mathbf{r}_i + \Delta_i$

Combine: the final signature is

$$(c, \sum_{i\in S} \mathbf{z}_i)$$

[ENP24]. Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i , and Shamir sharing $[[\mathbf{r}_i]]$
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[[\mathbf{r}_i]]_j$ to user j

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $[[\mathbf{z}]]_i = c \cdot [[\mathbf{sk}]]_i + \sum_j [[\mathbf{r}_j]]_i$

Combine: the final signature is

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

[ENP24]. Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short \mathbf{r}_i , and Shamir sharing $[\![\mathbf{r}_i]\!]$

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[\![\mathbf{r}_i]\!]_j$ to user j

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_i \mathbf{w}_i$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\llbracket \mathbf{z} \rrbracket_i = c \cdot \llbracket \mathsf{sk} \rrbracket_i + \sum_j \llbracket \mathbf{r}_j \rrbracket_i$

Combine: the final signature is

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

- A malicious user uses a large \mathbf{r}_i , inconsistent with \mathbf{w}_i
- $[[\mathbf{r}_i]]$ is invalid
- \mathbf{z}_i is incorrectly computed
 - incorrect computation of $[[\mathbf{z}]]_i = c \cdot [[\mathbf{sk}]]_i + \sum_i [[\mathbf{r}_i]]_i$

$[\texttt{ENP24}] . \texttt{Sign}(\mathsf{sk}, \mathsf{msg}) \rightarrow \mathsf{sig}$

Round 1:

- Sample a short \mathbf{r}_i , and Shamir sharing $[[\mathbf{r}_i]]$
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[[\mathbf{r}_i]]_j$ to user j

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_i \mathbf{w}_i$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\llbracket \mathbf{z} \rrbracket_i = c \cdot \llbracket \mathsf{sk} \rrbracket_i + \sum_j \llbracket \mathbf{r}_j \rrbracket_i$

Combine: the final signature is

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

- A malicious user uses a large \mathbf{r}_i , inconsistent with \mathbf{w}_i
- $[[\mathbf{r}_i]]$ is invalid
- \mathbf{z}_i is incorrectly computed
 - incorrect computation of $[[\mathbf{z}]]_i = c \cdot [[\mathbf{sk}]]_i + \sum_i [[\mathbf{r}_i]]_i$

[ENP24]. Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short \mathbf{r}_i , and Shamir sharing $[[\mathbf{r}_i]]$

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[\![\mathbf{r}_i]\!]_j$ to user j

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_i \mathbf{w}_i$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\llbracket \mathbf{z} \rrbracket_i = c \cdot \llbracket \mathsf{sk} \rrbracket_i + \sum_j \llbracket \mathbf{r}_j \rrbracket_i$

Combine: the final signature is

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

- A malicious user uses a large \mathbf{r}_i , inconsistent with \mathbf{w}_i
- $[[\mathbf{r}_i]]$ is invalid
- \mathbf{z}_i is incorrectly computed
 - incorrect computation of $[[\mathbf{z}]]_i = c \cdot [[\mathbf{sk}]]_i + \sum_i [[\mathbf{r}_i]]_i$

[ENP24]. Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short \mathbf{r}_i , and Shamir sharing $[\![\mathbf{r}_i]\!]$

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[\![\mathbf{r}_i]\!]_j$ to user j

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_i \mathbf{w}_i$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $[[\mathbf{z}]]_i = c \cdot [[\mathbf{sk}]]_i + \sum_j [[\mathbf{r}_j]]_i$

Combine: the final signature is

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

- A malicious user uses a large \mathbf{r}_i , inconsistent with \mathbf{w}_i
- $[[\mathbf{r}_i]]$ is invalid
- \mathbf{z}_i is incorrectly computed
 - incorrect computation of $[[\mathbf{z}]]_i = c \cdot [[\mathbf{sk}]]_i + \sum_i [[\mathbf{r}_i]]_i$

$[\mathsf{ENP24}] \, . \, \mathsf{Sign}(\mathsf{sk},\mathsf{msg}) \to \mathsf{sig}$

Round 1:

• Sample a short \mathbf{r}_i , and Shamir sharing $[\![\mathbf{r}_i]\!]$

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[\![\mathbf{r}_i]\!]_j$ to user j

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_i \mathbf{w}_i$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\llbracket \mathbf{z} \rrbracket_i = c \cdot \llbracket \mathsf{sk} \rrbracket_i + \sum_j \llbracket \mathbf{r}_j \rrbracket_i$

Combine: the final signature is

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

- A malicious user uses a large \mathbf{r}_i , inconsistent with \mathbf{w}_i
- $[[\mathbf{r}_i]]$ is invalid
- \mathbf{z}_i is incorrectly computed
 - incorrect computation of $[[\mathbf{z}]]_i = c \cdot [[\mathbf{sk}]]_i + \sum_i [[\mathbf{r}_i]]_i$
- [ENP24] introduced a Verifiable Secret Sharing (VSS) allowing to prove the (approximate) shortness of r_i and consistency of the sharing [[r_i]]
- Assuming the presence of 3T users during abort identification, Shamir-sharing allows error correction, and re-computation of [[z]] to detect malicious users

[ENP24]. Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short \mathbf{r}_i , and Shamir sharing $[[\mathbf{r}_i]]$

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[[\mathbf{r}_i]]_i$ to user j

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_{i} \mathbf{w}_{i}$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\llbracket \mathbf{z} \rrbracket_i = c \cdot \llbracket \mathsf{sk} \rrbracket_i + \sum_i \llbracket \mathbf{r}_j \rrbracket_i$

Combine: the final signature is

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

Verifiable Secret Sharing:

- VSS. Prove($[[\mathbf{r}]]) \rightarrow \pi, (\pi_i)_i$
- For user *i*, VSS. Verify($[[\mathbf{r}]]_i, \pi, \pi_i$) $\rightarrow 0 \mid 1$

Guarantee: if T honest users verify VSS proofs, then \mathbf{r} is small and consistently shared.

with T users

[ENP24]. Sign(sk, msg) \rightarrow sig

Round 1:

• Sample a short \mathbf{r}_i , and Shamir sharing $[\![\mathbf{r}_i]\!]$

•
$$\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$$

- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$
- Privately send $[\![\mathbf{r}_i]\!]_j$ to user j

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

- $\mathbf{w} = \sum_i \mathbf{w}_i$
- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\llbracket \mathbf{z} \rrbracket_i = c \cdot \llbracket \mathsf{sk} \rrbracket_i + \sum_j \llbracket \mathbf{r}_j \rrbracket_i$

Combine: the final signature is

$$(c, \sum_{i \in S} L_{s,i} \cdot \llbracket \mathbf{z} \rrbracket_i)$$

IdAbort()

with 3T users

Round 1:

- Run $\pi, \pi_i^j = \text{VSS} \cdot \text{Prove}(\llbracket \mathbf{r}_i \rrbracket)$
- Privately send $[\![\mathbf{r}_i]\!]_j, \pi_i^j$ to user j
- Broadcast π , $\llbracket \mathbf{w}_i \rrbracket = \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} \cdot \llbracket \mathbf{r}_i \rrbracket$

Round 2:

- Check VSS . Verify($[[\mathbf{r}_j]]_i, \pi, \pi_j^i$) and $[[\mathbf{w}_j]]_i = [\mathbf{A} \ \mathbf{I}] \cdot [[\mathbf{r}_j]]_i$ for $j \neq i$
 - If invalid, broadcast complaint and reveal $[[\mathbf{r}_{i}]]_{i}$ and π_{i}^{i} .
- Broadcast $\llbracket \mathbf{z} \rrbracket_i = c \cdot \llbracket \mathbf{sk} \rrbracket_i + \sum_j \llbracket \mathbf{r}_j \rrbracket_i$

Round 3:

- Mark as malicious users that sent invalid proofs or inconsistent $[[\mathbf{w}_i]]$
- Mark as malicious users that sent Reconstruct([[w_i]]) different from
 w_i used during signing
- Recover [[z]] from the [[z]]_i using Reed-Solomon error-correction
 - Mark as malicious users that sent a different $[[\mathbf{z}]]_i$ during signing

Instantiating this scheme.

- lacksquare
- Additional optimizations: \bullet

 - Compress proof of correct computation of W_i

Phase	# rounds	Signers per session	vk	sig	Total communication
Signing	3	Т		13 kB	30 + 0.032T kB
Abort Identification	3	3T	4 kB		13 + 70T kB

communication)

We can use the VSS from [ENP24] to instantiate this scheme, that relies on Hint-MLWE to prove security.

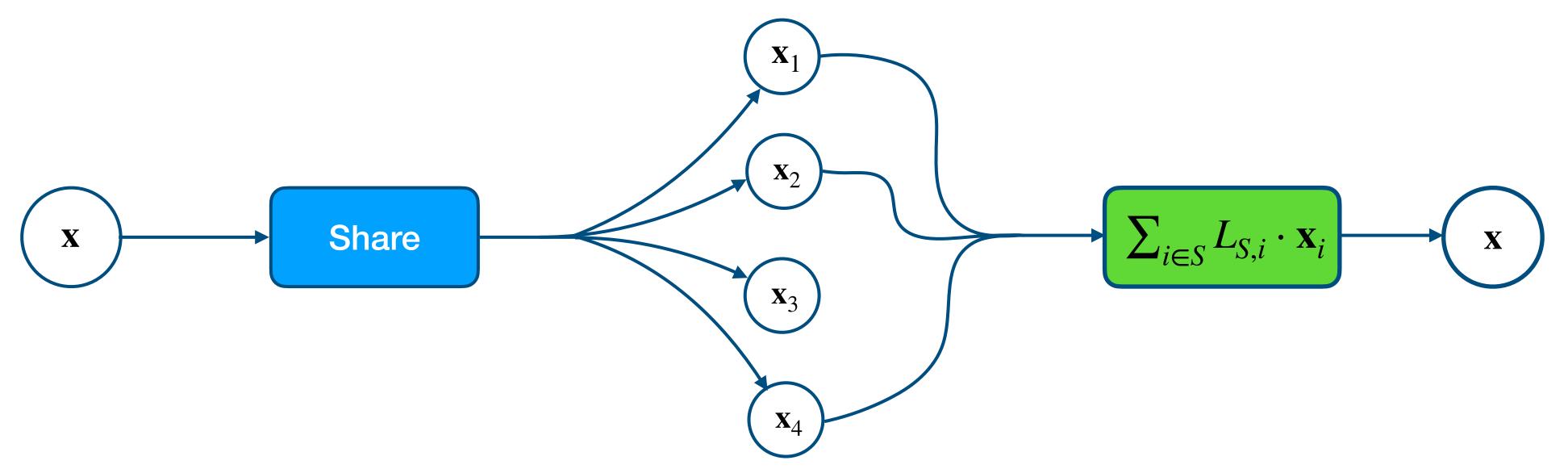
• Adaptive variant of Hint-MLWE to leverage that only $\ll Q$ VSS proofs are produced in this scheme.

• Successfully defers all the expensive parts of [ENP24] to the abort identification protocol (more users, larger

- How about using another sharing for sk instead?
 - \rightarrow The core issue in ThRaccoon was that the reconst could not hide them: let's make them small!

 \rightarrow The core issue in ThRaccoon was that the reconstruction coefficients and shares of sk were large, and \mathbf{r}_i

- How about using another sharing for sk instead?
 - \rightarrow The core issue in ThRaccoon was that the reconstructed on the them: let's make them small!

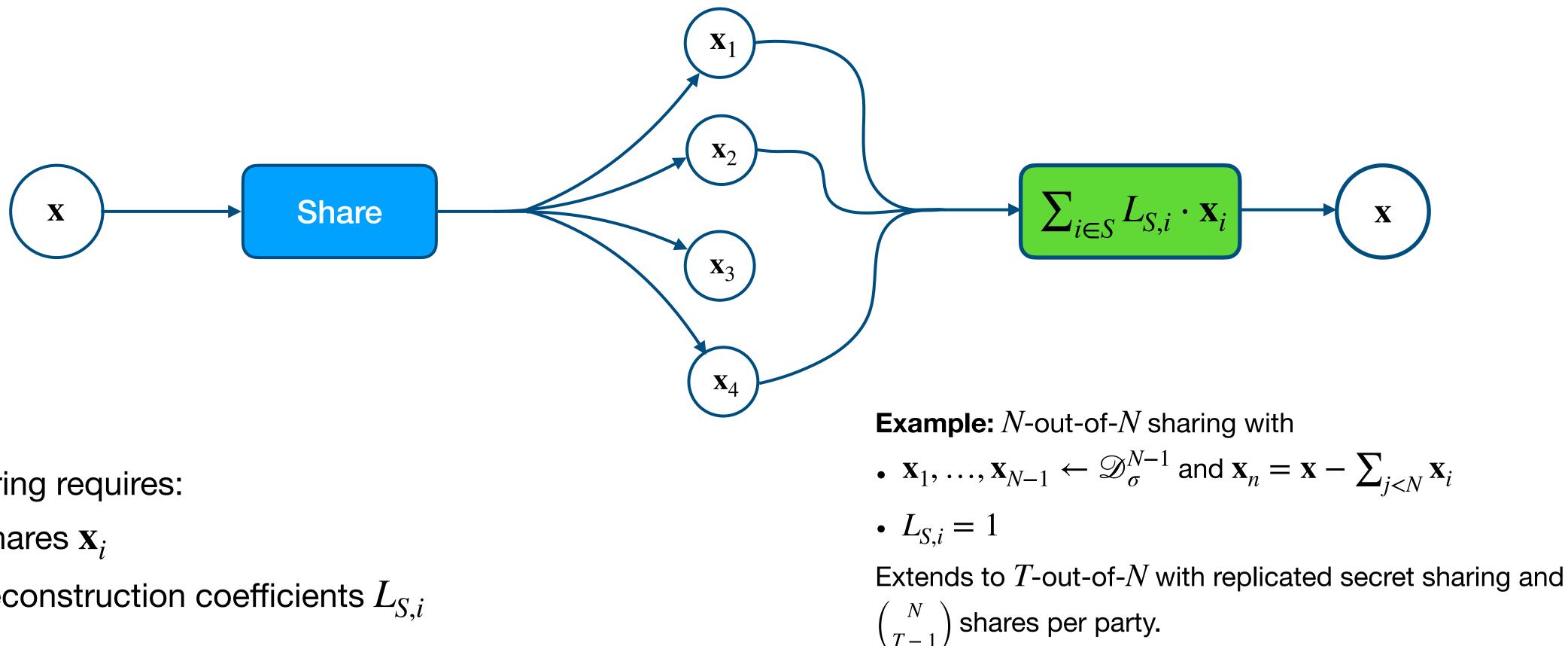


Short sharing requires:

- Short shares \mathbf{X}_i
- Small reconstruction coefficients $L_{S,i}$

 \rightarrow The core issue in ThRaccoon was that the reconstruction coefficients and shares of sk were large, and \mathbf{r}_i

- How about using another sharing for sk instead?
 - could not hide them: let's make them small!



Short sharing requires:

- Short shares \mathbf{X}_i
- Small reconstruction coefficients $L_{S,i}$

 \rightarrow The core issue in ThRaccoon was that the reconstruction coefficients and shares of sk were large, and \mathbf{r}_i

ShortSS . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = c \cdot \mathbf{sk}_i + \mathbf{r}_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

For simplicity, we consider T = N and $L_{S,i} = 1$. Security.

- Everything is short in \mathbf{z}_i and \mathbf{r}_i hides $c \cdot \mathbf{sk}_i$.
 - Prove security with Hint-MLWE



ShortSS . Sign(sk, msg) \rightarrow sig

Round 1:

- Sample a short \mathbf{r}_i
- $\mathbf{w}_i = [\mathbf{A} \ \mathbf{I}] \cdot \mathbf{r}_i$
- Broadcast $cmt_i = H_{cmt}(\mathbf{w}_i)$

Round 2:

• Broadcast \mathbf{W}_i

Round 3:

•
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

- $c = H(\mathbf{w}, \mathsf{msg})$
- Broadcast $\mathbf{z}_i = c \cdot \mathbf{sk}_i + \mathbf{r}_i$

Combine: the final signature is

$$(c, \sum_{i \in S} \mathbf{z}_i)$$

For simplicity, we consider T = N and $L_{S,i} = 1$. Security.

- Everything is short in \mathbf{z}_i and \mathbf{r}_i hides $c \cdot \mathbf{sk}_i$.
 - Prove security with Hint-MLWE

Identifiable aborts.

• Each $vk_i = [A \ I] \cdot sk_i$ is a valid public key (sk_i is short)

 \rightarrow Each (c, \mathbf{z}_i) is a valid signature for vk_i

Identifiable abort is as easy as verifying partial signatures!

Instantiating this scheme.

number of parties.

For $N \leq 16$,

Phase	# rounds	Signers per session	vk	sig	Total communication
Signing	3	Т		11 kB	25 kB
Abort Identification	0	Т	4 kB		

• In the *T*-out-of-*N* setting, the number of shares grows with $\binom{N}{T-1}$, this scheme thus only supports a small

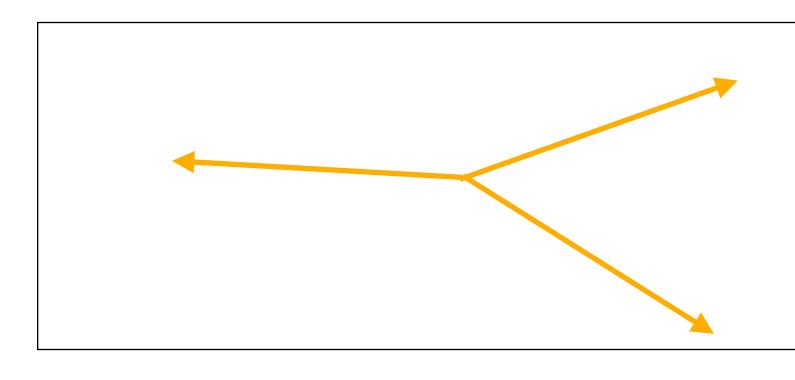
4. How large is the sum of T vectors?

How large is the sum of T vectors?

Taking a step back, all the presented schemes prove the shortness of \mathbf{r}_i and deduce the shortness of $\sum_i \mathbf{r}_i$.

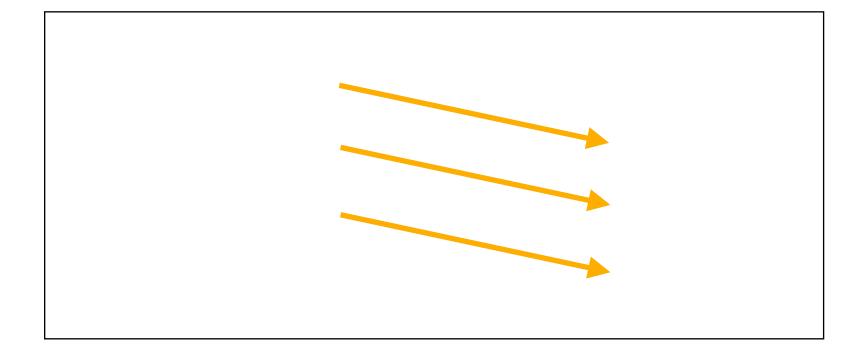
Consider vectors $\mathbf{r}_i \leftarrow \mathscr{D}_{\sigma}$.

What can we say about the norm of their sum?



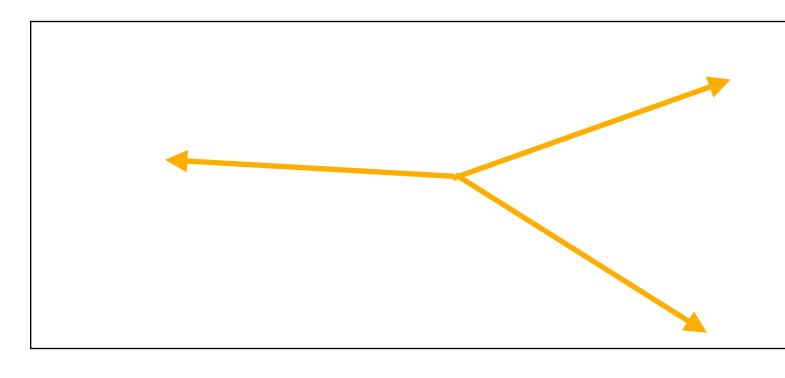
Average-case: $O(\sqrt{T})$

- When users are honest: average-case.
- Colliding malicious users can force worst-case.



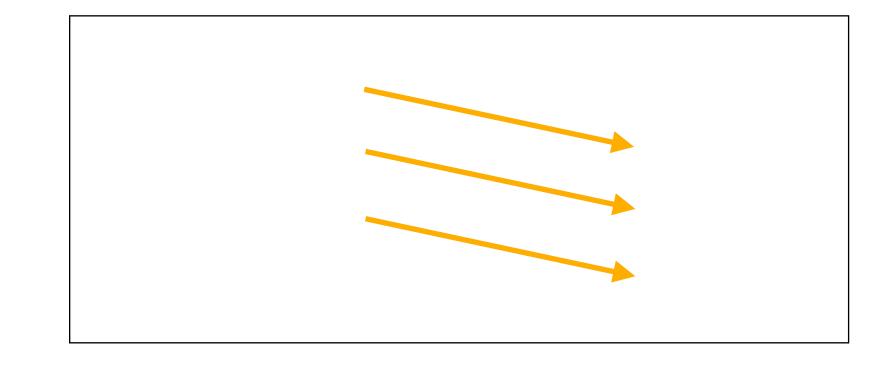
Worst-case: O(T)

How large is the sum of *T* vectors?



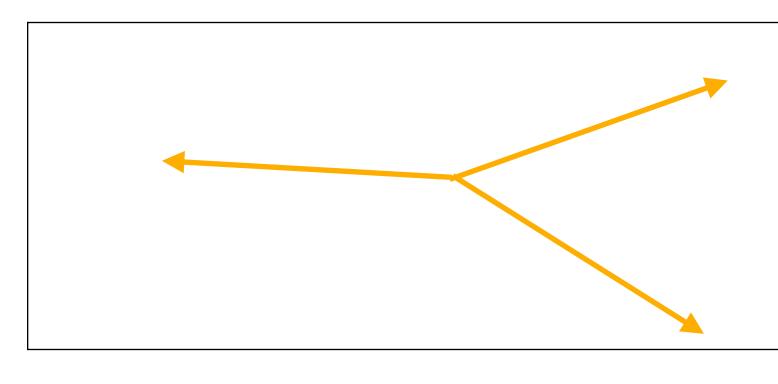
Average-case: $O(\sqrt{T})$

In our two first schemes, no direct access to \mathbf{r}_i (use of uniform-looking sharings) \rightarrow bound in O(T) that reduces security \leq



Worst-case: O(T)

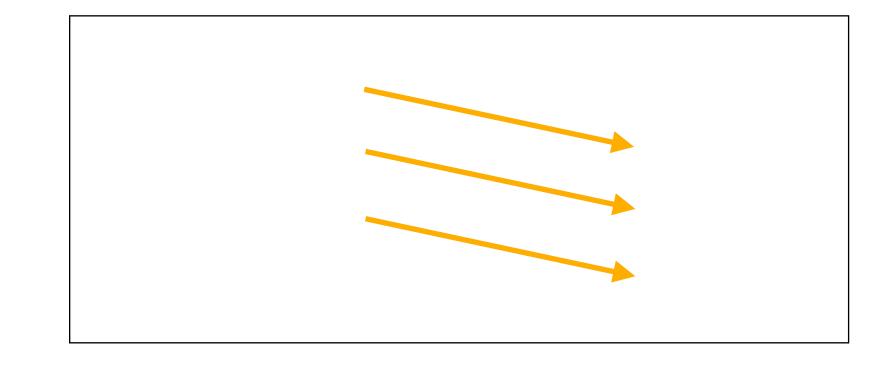
How large is the sum of *T* vectors?



Average-case: $O(\sqrt{T})$

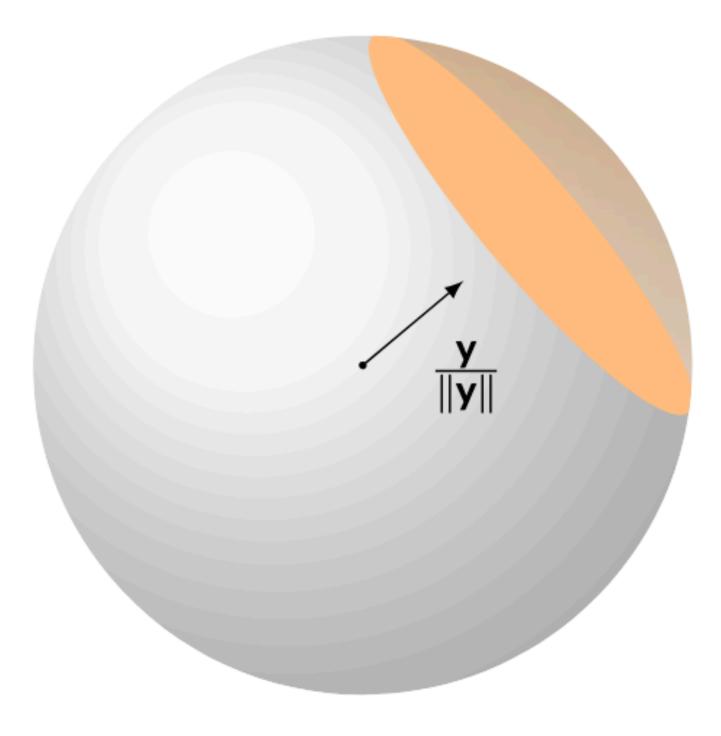
In our two first schemes, no direct access to \mathbf{r}_i (use of uniform-looking sharings) \rightarrow bound in O(T) that reduces security \leq

Can we do better with short secret sharing?



Worst-case: O(T)

The Death Star Algorithm



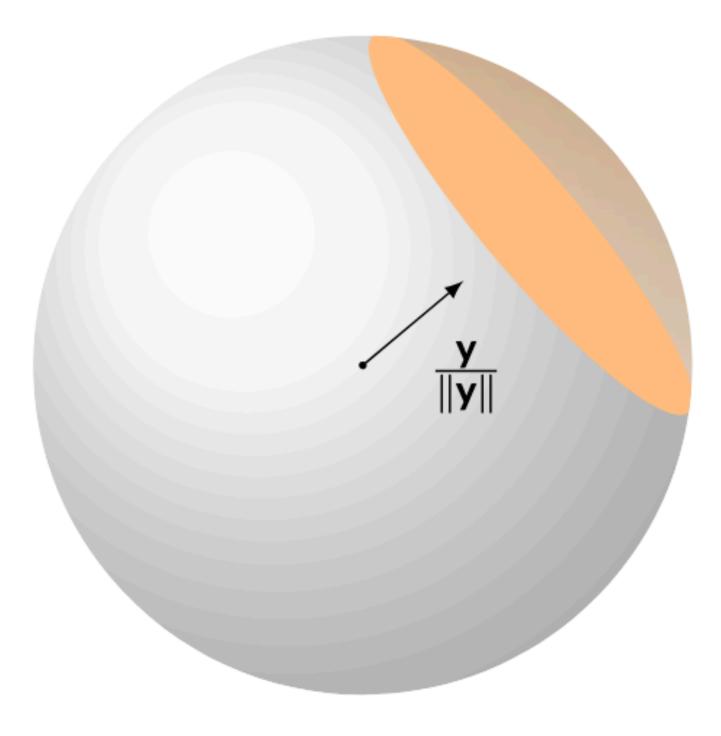
$$\mathsf{lf}\,\mathbf{x} \leftarrow \mathscr{D}_{\sigma'}$$

- $\|\mathbf{x}\|$ is concentrated around its expected value $\sqrt{n\sigma}$
- For any vector y,

$$\langle \mathbf{x}, \mathbf{y} \rangle < \sigma \sqrt{O(\lambda)} \cdot \|\mathbf{y}\|$$

except with probability $2^{-\lambda}$.

The Death Star Algorithm



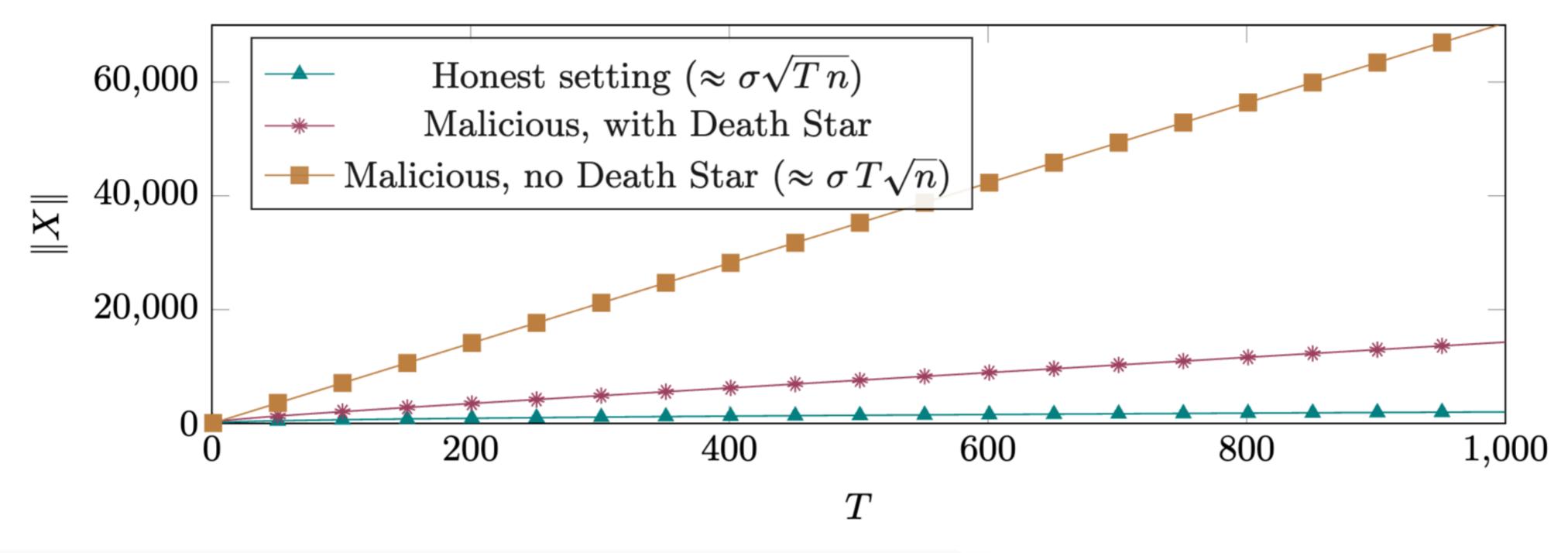
The Death Star Algorithm

For each signer i,

- If $\|\mathbf{x}_i\| \ge (1 + o(1))\sqrt{n\sigma}$, reject i• If $\langle \mathbf{x}_i, \mathbf{y}_i \rangle \ge \sigma \sqrt{O(\lambda)} \|\mathbf{y}_i\|$, where $\mathbf{y}_i = \sum_{j \ne i} \mathbf{x}_j$, reject i

When no signer is rejected, the sum $\mathbf{x} = \sum_{i} \mathbf{x}_{i}$ verifies $\|\mathbf{x}\| \le \sigma \cdot T \cdot \sqrt{2\log 2 \cdot \lambda}$ $+\sigma \cdot \sqrt{T \cdot n} \cdot (1 + \varepsilon)$

The Death Star Algorithm



Norm of $\mathbf{x} = \sum_{i} \mathbf{x}_{i}$ for $\sigma = 1$, n = 4096, 128 bits of security, and $T \le 1000$

Conclusion

Conclusion

- abort.
- Fundamental difference in the secret sharings used for $(\mathbf{sk}, \mathbf{r}_i)$
 - (Shamir, Additive) \rightarrow NIZK scheme
 - (Shamir, Shamir) \rightarrow VSS scheme
 - \circ (Short, Short) \rightarrow Partial verifications + Death Star Algorithm
- Other contributions
 - Death Star algorithm
 - Security analysis of NIZK based on Labrador
 - Adaptive Hint-MLWE

• We proposed 3 lattice-based threshold signature schemes with efficient identifiable

Conclusion

Scheme	Signing	Abort Ide	max N	
	Communication	# parties	Communication	
NIZK-based	30 kB	Т	60 + 6T kB	1024
VSS-based	30 kB	3T	13 + 70T kB	1024
Short SS + partial verifications	25kB			16

Questions?

