Beyond the Threshold

Detecting Aborts in Lattice-based Threshold Signature Schemes

Guilhem Niot, joint works with Rafael del Pino, Thomas Espitau, Shuichi Katsumata,

- Thomas Prest, Michael Reichle, Kaoru Takemure
)

Visit Cryptography and Privacy Lab, Seoul National University - Dec. 2024
"

1. Background

(7-out-of-N) threshold signatures

What are they?

An Iinteractive protocol to distribute signature generation.

ﬁ t " ” = 1 verification key vk
ske sk; » 1 partial signing key sk; per party

= Given at least T-out-of-/V partial
signing keys, we can sign.

(7-out-of-N) threshold signatures

What are they?

An Iinteractive protocol to distribute signature generation.

O

—_— Signature 6 on msg

SKe (T.N) = (3.6)

Core security properties

o Correctness: Given at least 1-out-of-/V partial signing keys, we can sign.

o Unforgeability: The signature scheme remains unforgeable even if up to
T — 1 parties are corrupted.

It’s not possible to forge a
new signhature, even by
taking part in the signing
protocol.

More desirable properties

o Distributed Key Generation: Protocol allowing to distributively sample key
material.

o Abort identification (or robustness): In the presence of malicious users, the
signature protocol can identify misbehaving users (or guarantee a valid output).

o Small round complexity: Ideally can be as low as one round.

o Backward compatibility: Threshold schemes should ideally be compatible
with existing primitives.

Threshold Signatures based on Lattices

¢ MPC-based solutions [CS19], [TPCZ24]
¢ ?2-round TS via FHE: [BGG+18], [ASY22], [GKS23]

¢ TS with noise flooding (based on Raccoon): 3-round [dPKM+24], many
follow-ups in 2024

Threshold Raccoon: Practical Threshold Signatures
from Standard Lattice Assumptions

Rafael del Pino!, Shuichi Katsumata!?, Mary Maller!:3, Fabrice Mouhartem*, Thomas
Prest!, Markku-Juhani Saarinen'

Threshold Signatures based on Lattices

¢ MPC-based solutions [CS19], [TPCZ24]
¢ ?2-round TS via FHE: [BGG+18], [ASY22], [GKS23]

¢ [S with noise flooding (based on Raccoon): 3-round [dPKM+24], many
follow-ups in 2024

Threshold Raccoon: Practical Threshold Signatures
from Standard Lattice Assumptions

Rafael del Pino!, Shuichi Katsumata!?, Mary Maller!:3, Fabrice Mouhartem*, Thomas
Prest!, Markku-Juhani Saarinen'

Threshold Raccoon, a practical 3-round threshold signature

Total

K Number Signers | vk | | sig | communication

128 < 1024 4 kB 13 kB 40 kB

... but only considers core security properties: correctness and unforgeabillity.

Advanced properties for ThRaccoon

Small round complexity

Distributed Key Generation (DKG) + Robustness
2-round [EKT24], [BKLM+24]

Two-Round Threshold Signature from
Algebraic One-More Learning with Errors

Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature
from Lattices

Thomas Espitau!, Shuichi Katsumata'?, Kaoru Takemure* !+?

Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors
Thomas Espitau! ®, Guilhem Niot!*? @, and Thomas Prest’

Cecilia Boschini Darya Kaviani Russell W. E. Lai
ETH Ziirich, Switzerland UC Berkeley, USA Aalto University, Finland

Giulio Malavolta Akira Takahashi Mehdi Tibouchi
Bocconi University, Italy JPMorgan Al Research & AlgoCRYPT CoE, USA NTT, Japan
MPI-SP, Germany

Advanced properties for ThRaccoon

Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature

Distributed Key Generation (DKG) + Robustness

from Lattices

Thomas Espitau! ®, Guilhem Niot!? @, and Thomas Prest’

K # rounds Slgner§ ber | vk | | sig | TOt?I .
session communication
128 4 3T 4 kB 13 kB 56T kB

¢ Question: can we avoid the cost of robustness when parties behave
honestly?

o Only identify aborts instead of correcting them?

Focus of this presentation

¢ Efficient Abort Identification
O Separate signing protocol and (costly) abort identification protocol

o Signing protocol in 3 rounds + small communication

¢ Overview of 3 techniques to achieve Abort |dentification
o Based on Non-Interactive ZK proofs (NIZK)
o Based on Verifiable Secret Sharing (VSS) [ENP24]

o Novel Short Secret Sharing technique (for small thresholds)

2. Sighing with (Threshold) Raccoon

Raccoon signature scheme

« vk =[A 1] - sk, for sk short

« Sample ashortr

- W=[A I]-r

e ¢ = H(W, msg)

e Z=c-Sk+r

» Output sig = (c, z)

e wW=|[A I]l-Z—c-Vk
» Assert c = H(w, msg)

e Assert Z short

Raccoon signature scheme

Unforgeable assuming
« vk =[A 1] - sk, for sk short ¢ Hint-MLWE
¢ SelfTargetMSIS

e Sample ashortr

Hint-MLWE assumption [KLSS23].

- w=I[A I]-r
. ¢ = H(w, msg) (A, vk) is pseudorandom even if given
+Zz=c-sk+r Q “hints”:

e Qutput SIg — (C, Z) (Cl’ Zl .= Cl ’ Sk + rl) for l S [Q]

e w=[A I]-Z—c-vk As hard as MLWE,; if

« Assertc = H(w, msg) O, > Q y Sl(C) O
e Assert Z short

Threshold Raccoon

« vk =[A 1] - sk, for sk short

e Sample ashortr

- W=[A I]-r

e ¢ = H(w, msg)

e Z=c-Sk+r

» Output sig = (c, z)

e W=[A I]-Z—c-vVk
» Assert c = H(w, msg)
e Assert Z short

Shamir sharing on secret

Sample polynomial f € %g[X] s.t.
e f(0)=skanddegf<T-1
» Partial signing keys sk; := [[sk]]; = f(i)

Properties:

« with < T shares, sk is perfectly hidden

« with a set .S of > T shares, reconstruct sk via Lagrange

interpolation

sk =) L, - [skI,

€5

Threshold Raccoon

« vk =[A 1] - sk, for sk short

« Sample ashortr

- W=[A I]-r

e ¢ = H(W, msg)

e Z=c-Sk+r

» Output sig = (c, z)

e wW=|[A I]l-Z—c-Vk
» Assert c = H(w, msg)

e Assert Z short

First (insecure) attempt

ThRaccoon . Sign(sk, msg) — sig
Round 1:
« Sample a short r;
e W, =[A 1I]-r1
 Broadcastcmt; = H_ (W)

Round 2:
» Broadcast w;

Round 3:

« W= Ziwi

e ¢ = H(w, msg)
» Broadcast z; = Lg; - ¢ - [sk]|; + r;

l

Combine: the final signature is

(c, ZieS Z;)

Threshold Raccoon

First (insecure) attempt

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ BUt, I'l iS Sma” VS LS,Z - C [[Sk]]l iS Iarge . Sampe a short I;

— Leaks [[sk]|. I
« Broadcastcmt; = H__ (W)

Round 2:
« Broadcast w;

Round 3:

« W= Ziwi
e ¢ = H(w, msg)
» Broadcast z; = Lg; - ¢ - [sk]|; + r;

Combine: the final signature is

(c, ZieS Z;)

Threshold Raccoon

First (insecure) attempt

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ BUt, I'l iS Sma” VS LS,Z - C [[Sk]]l iS Iarge . Sampe a short I;

— Leaks [[sk]|. PwimA
» Broadcastcmt; = H__(W.)

Round 2:
» Broadcast w;

Round 3:

« W= Ziwi
e ¢ = H(w, msg)
» Broadcastz; = Lg; - ¢ - [sk]|; + r;

Combine: the final signature is

(c, ZieS Z;)

Threshold Raccoon

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ BUt, I'l iS Sma” VS LS,Z - C - [[Sk]]l iS Iarge o Sampe a short rl.
— Leaks [[sk]]. cwi=lA Ik
 Broadcastcmt; = H,_ (W,
Round 2:
* Solution: add a zero-share A : * Broadcast W,
_ _ Round 3:
© Any set of < T values A, is uniformly random w=Y w
° — ; j
© zieSAi: 0 e ¢ = H(w, msg)

» Broadcastz; = Lg; - ¢ - [[sk]]; + r; +A,

Combine: the final signature is

(c, ZieS Z;)

Building a zero-share

O @, O O

D P D3 Dy
%1 0 mi - m;i ; m, 4
%2 m, 0 m, 3 m; 4
%3 msj m;j 0 m; ,

O Users 1 and J share a symmetric key Ki,j and generate

a fresh m, ; = PRF(K ;, sid) during each session

b

© User i knows all the m; ; in its row and column

Building a zero-share

O @, O O

D P D3 Dy
%1 0 mi - m;j 3 m; 4
%2 m, ; 0 m, 3 m; 4
%3 mj m;j 0 m; ,

O Users 1 and J share a symmetric key Ki,j and generate

a fresh m, ; = PRF(K ;, sid) during each session

b

© User i knows all the m; ; in its row and column

Building a zero-share

O @, O O

D P D5 Dy
%1 0 mi - m;j 3 m; 4
%2 m, ; 0 m, 3 m, 4
%3 msj m;j , 0 m; ,

O Users 1 and J share a symmetric key Ki,j and generate

a fresh m, ; = PRF(K ;, sid) during each session

b

© User i knows all the m; ; in its row and column

Building a zero-share

O @, O O

D P D3 Dy
%1 0 mi - m;i ; m, 4
%2 m, 0 m, 3 m; 4
%3 msj m;j 0 m; ,

Users i and j share a symmetric key K; jand generate

a fresh m, ; = PRF(K ;, sid) during each session

b

User i knows all the m,

We take A; = iz M

— valid sharing of O

. 1n Its row and column

J

—m;, mod g

J

Building a zero-share

O O O O

D P D3 Dy
%1 0 mi - m;j 3 m; 4
%2 m, ; 0 m, ; m, 4
2 3 mj m;j , 0 m; ,
%4 My mg, my 3 0

Users i and j share a symmetric key K; jand generate

a fresh m; ; = PRF(K;

. j» sid) during each session

User i knows all the m, ; in its row and column

We take A, = —m;; mod ¢

i T J

— valid sharing of O

If < 1 users are corrupted, nothing more than the
zero-sum with the remaining shares leaks

3. Abort identification

Identify aborts via NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

« Sample a short r;
® Wi — :A I] ’ ri
» Broadcast cmt; = H_, (W)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

. A

l

» Broadcast z; = Lg; - ¢ - [[sk]l; + I; + A,

Combine: the final signature is

(c. ZieS Z)

What can go wrong?

* A malicious user uses a large r;
* r,;is not consistent with w;
* Z;is incorrectly computed

© A, is not the correct one

© orincorrect computation of z; = Ly ; - ¢ - [[sk]];

Identify aborts via NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

« Sample a short r;
® Wi — :A I]) ri
» Broadcastcmt; = H__.(W,)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

. A

l

» Broadcast z; =Lg; - ¢ - [sk]l; + r; + A,

Combine: the final signature is

(c. ZieS Z)

What can go wrong?

* A malicious user uses a large r;
* r,;is not consistent with w;
* Z;is incorrectly computed

© A, is not the correct one

© orincorrect computation of z; = Ly ; - ¢ - [[sk]];

Identify aborts via NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

« Sample a short r;
o Wi —_ :A I] ‘ ri
» Broadcast cmt; = H_, (W)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

. A

l

» Broadcast z; = Lg; - ¢ - [[sk]l; + I; + A,

Combine: the final signature is

(c. ZieS Z)

What can go wrong?

* A malicious user uses a large r;
* r,;is not consistent with w;
* Z;is incorrectly computed

© A, is not the correct one

© orincorrect computation of z; = Ly ; - ¢ - [[sk]];

Identify aborts via NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

« Sample a short r;
® Wi — :A I] ’ ri
» Broadcastcmt; = H__ (W)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

. A

l

» Broadcastz; = Lg; - ¢ - [sk]l; + r; + A,

Combine: the final signature is

(c. ZieS Z)

What can go wrong?

* A malicious user uses a large r;
* r,;is not consistent with w;
* Z;is incorrectly computed

© A, is not the correct one

© orincorrect computation of z; = Ly ; - ¢ - [[sk]];

Identify aborts via NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

e Samp
° Wl p—

e ashort r;

A I]-r;

» Broadcastcmt; = H__.(W,)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

» Broadcast z; = Lg; - ¢ - [[sk]l; + I; + A,

Combine: the final signature is

(c. ZieS Z)

What can go wrong?

* A malicious user uses a large r;
* r,;is not consistent with w;
* Z;is incorrectly computed

© A, is not the correct one

© orincorrect computation of z; = Lg; - ¢ - [sk]l; + r; + A,

¢ The scheme is mostly linear: let’s try proving shortness of
I'; and correct computation of z; via NIZK!

O |[ssue: A, is secretly sampled with a PRF... Costly to
prove.

© Instead: Ensure that user 1 and j agree on m, j

Identify aborts via NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

e Samp
° Wl p—

e ashort r;

A I]-r;

» Broadcast cmt; = H_ (W)

Round 2:
» Broadcast w;

Round 3:

» Broadcast z; = Lg; - ¢ - [[sk]l; + I; + A,

Combine: the final signature is

(c. ZieS Z)

ThRaccoon . IdAbort()

Round 1:

- Broadcast commitments on values r;, (m; ;, m; ;);

e Broadcast 11; proving that:
e T;issmallandw, = [A 1] -

A; = ZJ- m;,;,—Im;;

Round 2:

« Check consistency of others’ commitmenton m. .. m. .

1,]° "),1
« If inconsistent, broadcast complaint against j and
reveal K; ;

e Check proofs 11,

Round 3:

- Review complaints: recompute m; ; from K; ; and
determine cheating user

 Mark users with invalid proofs as malicious

Identify aborts via NIZK

Instantiating this scheme aiming for compactness.

* Perform the proof with the exact proof system LNP.

* Finally, compress proof with the SNARK Labrador .

« Use Ajtai commitments for the 1" polynomials committed by each user: size does not increase with the size
of the witness.

Phase # rounds Slgner:‘; ber | vk | | sig | TOtaf“ .
session communication
Signing 3 T 30 kB
4 kB 13 kB
Abort 3 T 60 + 6T kB

|dentification

Identify aborts via NIZK

Instantiating this scheme aiming for compactness.

 Additional contributions

* First description and security analysis of NIZK based on Labrador

« Extraction from n = poly(A) proofs at once without an exponential loss

thout NIZK

10N W

4. Abort identificat

Abort identification without NIZK

ThRaccoon . Sign(sk, msg) — sig Start over!
Round 1:

« Sample a short r; Why is it challenging to avoid a NIZK for aborts in ThRaccoon?

W, =[A I]-T © Incompatibility of the sharings of sk and r,, that prevent
» Broadcastcmt; = H_(W;) a simple verification of computations.

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

© Additional non-linearity introduced by A,

- Broadcast z; = Lg; - ¢ - [[sk]l; + I; + A,

Combine: the final signature is

(c. ZieS Z)

Abort identification without NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

e Samp
° Wl p—

e ashort r;

A I]-r;

» Broadcastcmt; = H__.(W,)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

» Broadcast z; = Lg; - ¢ - [[sk]l; + r; + A,

Combine: the final signature is

(c, ZieS ;)

Start over!

Why is it challenging to avoid a NIZK for aborts in ThRaccoon?

© Incompatibility of the sharings of sk and r;, that prevent
a simple verification of computations.

© Additional non-linearity introduced by A,

Let’s use compatible sharings for sk and r}!

o Shamir sharing [ENP24]

O Novel short secret sharing

Abort identification by Shamir-Sharing r,

[ENP24] . Sign(sk, msg) — si
ThRaccoon . Sign(sk, msg) — sig g : :

Round 1: Round 1:
« Sample a short r; « Sample a short r;, and Shamir sharing [[1;]]

e Ww.=[A 1I]-T1 e W.=[A I]-r1
» Broadcastcmt; = H_ (W) » Broadcast cmt; = H, (W)

Round 2: « Privately send [[r,]] ; to user]

» Broadcast w; Round 2:
Round 3: » Broadcast w;
« W=) W, Round 3:
« W=D W,
e ¢ = H(w, msg)
» Broadcast z; = Lg; - ¢ - [[sk]l; + r; + A, . Broadcast [[z]|; = ¢ - [[sk]l; + ZJ- [[x;1I;

Combine: the final signature is Combine: the final signature is

(C9 ZiES Zi) (Cﬂ ZiES Ls,i ' [[Z]]i)

Abort identification by Shamir-Sharing r,

ENP24] . Si K, '
|].Sign(sk, msg) — sig What can go wrong?

Round 1:

« Sample a short r;, and Shamir sharing [[1;]]
R T e imual
- w.=[A I]-T, [r;] is invalid

* A malicious user uses a large r;, inconsistent with w;

 Broadcast cmt; = H_ (W) * Z,is incorrectly computed

« Privately send [[ri]]j to user o incorrect computation of [[z]], = ¢ - [sk]. + Z]. [[I‘]-]]l-

Round 2:
» Broadcast w;

. Broadcast [[z]]; = ¢ - [[sk]]; + Zj [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i) [[Z]]i)

Abort identification by Shamir-Sharing r,

ENP24] . Si K, '
|].Sign(sk, msg) — sig What can go wrong?

Round 1:
« Sample a short I;, and Shamir sharing [[r;]]

- W, =[A 1] 1
 Broadcast cmt; = H_ (W) * Z,is incorrectly computed

* A malicious user uses a large r;, inconsistent with w;

¢ [[r] isinvalid

« Privately send [[ri]]j to user o incorrect computation of [[z]], = ¢ - [sk]. + Z]. [[I‘]-]]l-

Round 2:
» Broadcast w;

. Broadcast [[z]]; = ¢ - [[sk]]; + Zj [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i) [[Z]]i)

Abort identification by Shamir-Sharing r,

ENP24] . Si K, '
|].Sign(sk, msg) — sig What can go wrong?

Round 1:

« Sample a short r;, and Shamir sharing [[1;]]
. T e inual
- w.=[A I]-T, [r;] is invalid

* A malicious user uses a large r;, inconsistent with w;

 Broadcast cmt; = H_ (W) * Z,is incorrectly computed

« Privately send [[ri]]j to user o incorrect computation of [[z]], = ¢ - [sk]. + Z]. [[I‘]-]]l-

Round 2:
» Broadcast w;

. Broadcast [[z]]; = ¢ - [[sk]]; + Zj [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i) [[Z]]i)

Abort identification by Shamir-Sharing r,

ENP24] . Si K, '
|].Sign(sk, msg) — sig What can go wrong?

Round 1:

« Sample a short r;, and Shamir sharing [[1;]]
R T e imual
- w.=[A I]-T, [r;] is invalid

* A malicious user uses a large r;, inconsistent with w;

 Broadcast cmt; = H_ (W) * Z,is incorrectly computed

« Privately send [[ri]]j to user o incorrect computation of [[z]], = ¢ - [sk]. + Z]. [[I‘]-]]l-

Round 2:
» Broadcast w;

. Broadcast [[Z]]; = ¢ - [sk]l; + 2,- [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i) [[Z]]i)

Abort identification by Shamir-Sharing r,

[ENP24] . Sign(sk, msg) — sig

Round 1:

 Sample a short r;, and Shamir sharing [[r,]]

® Wi — [A I]) ri
» Broadcast cmt; = H_ (W)

« Privately send [[rl-]]j to user j

Round 2:
» Broadcast w;

. Broadcast [[z]]; = ¢ - [[sk]]; + Zj [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i) [[Z]]i)

l

What can go wrong?

L 4

\ 4

¢

A malicious user uses a large r;, inconsistent with w.
[r;] is invalid
Z; is incorrectly computed

o incorrect computation of [[z]], = ¢ - [sk]. + Z]. [x;]l;

[ENP24] introduced a Verifiable Secret Sharing (VSS)
allowing to prove the (approximate) shortness of r; and

consistency of the sharing [[1;]]

Assuming the presence of 37 users during abort
identification, Shamir-sharing allows error correction, and

re-computation of [|z]] to detect malicious users

Abort identification by Shamir-Sharing r,

ENP24] . Sign(sk, |
|].Sign(sk, msg) — sig Verifiable Secret Sharing:

Round 1: * VSS.Prove([r]) — =, (),

« Sample a short r;, and Shamir sharing [[r:]| . -
WA Il ¢ Foruseri, VSS. Verify([[r],n,z;) — 0|1

. Broadcastcmt; = H__(W,) Guarantee: if 1" honest users verify VSS proofs, then r is small

. and consistently shared.
« Privately send [[rl-]]j to user j y

Round 2:
» Broadcast w;

. Broadcast [[z]]; = ¢ - [[sk]]; + Zj [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i) [[Z]]i)

Abort identification by Shamir-Sharing r,

[ENP24] . Sign(sk, msg) — sig with T users IdAbort() with 3T users

Round 1: Round 1:
« Sample a short r;, and Shamir sharing [[1;]] + Runz, 7} = VSS . Prove([[r;]})
- w,=[A I]-T, . Privately send [[r/], 7Z'l] to user j
» Broadcast cmt; = H_ (W) » Broadcast z, [w;]| = [A 1] - [Ir;]
« Privately send [[r,]] i to user Round 2: |
« Check VSS. Verify([[rj i» TT, 7rjl) and [[W]-]]i =[A I]- [[rj]]l- for
JF
. If invalid, broadcast complaint and reveal [[rj]]l- and Jr]l

. Broadcast [[z]]; = ¢ - [sk]l; + ZJ. [[r;1I;

Round 2:
» Broadcast w;

Round 3:

Broad [z]] Tsk]l Z (] Mark as malicious users that sent invalid proofs or inconsistent [[w;]]
« Broadcast ||Z]|; = ¢ - [Isk]|: +) .[r;ll:
| l ;I Mark as malicious users that sent Reconstruct([[w;]]) different from

Combine: the final signature is W; used during signing

e Recover [[Z]] from the [[Z]]; using Reed-Solomon error-correction
(Ca ZIES Ls,i) [[Z]]l) l

« Mark as malicious users that sent a different [z]]; during signing

Instantiating this scheme.

Abort identification by Shamir-Sharing r,

 We can use the VSS from [ENP24] to instantiate this scheme, that relies on Hint-MLWE to prove secuirity.

« Additional optimizations:

« Adaptive variant of Hint-MLWE to leverage that only << Q) VSS proofs are produced in this scheme.

« Compress proof of correct computation of w;

Phase # rounds Slgner_s per | vk | | sig | TOt?I .
session communication
Signing 3 T 30 + 0.032T kB
A 4 kB 13 kB
bort 3 3T 13 + 70T kB
|dentification

« Successfully defers all the expensive parts of [ENP24] to the abort identification protocol (more users, larger

communication)

Another approach with a novel short sharing

» How about using another sharing for sk instead?

— The core issue in ThRaccoon was that the reconstruction coefficients and shares of sk were large, and r;
could not hide them: let’s make them small!

Another approach with a novel short sharing

» How about using another sharing for sk instead?

— The core issue in ThRaccoon was that the reconstruction coefficients and shares of sk were large, and r;

could not hide them: let’s make them small!

O—

Short sharing requires:
 Short shares X

« Small reconstruction coefficients LSl-

Another approach with a novel short sharing

» How about using another sharing for sk instead?

— The core issue in ThRaccoon was that the reconstruction coefficients and shares of sk were large, and r;

could not hide them: let’s make them small!

O—

Example: N-out-of-N sharing with
N-1 e |
Short sharing requires: o Xpp o Xy < DT and X, =X =2, X,

 Short shares X; o« Lg; =1

. . Extends to 7-out-of-/N with replicated secret sharing and
« Small reconstruction coefficients Lg ; P g

<TN 1) shares per party.

Another approach with a novel short sharing

ShortSS . Sign(sk, msg) — sig
Round 1: For simplicity, we consider 7' = N and LS,i = 1.

« Sample a shortr, Security.
e W, =[A I]- T
 Broadcast cmt; = H_ (W)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

e ¢ = H(w, msg)

» Everything is short in Z; and r; hides ¢ - sk;.

* Prove security with Hint-MLWE

 Broadcastz; = c - sk; + T,

Combine: the final signature is

(c, z:ieS Z;)

Another approach with a novel short sharing

ShortSS . Sign(sk, msg) — sig

Round 1:
« Sample a short r;

o Wi — :A I]) ri
» Broadcast cmt; = H_, (W)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

e ¢ = H(w, msg)

 Broadcastz; = c - sk; + T,

Combine: the final signature is

(c, z:ieS Z;)

For simplicity, we consider T'= Nand Lg; = 1.
Security.
» Everything is short in Z; and r; hides ¢ - sk;.

* Prove security with Hint-MLWE

Identifiable aborts.

« Each vk; = [A 1] - sk; is a valid public key (sk; is
short)

— Each (¢, z)) is a valid signature for vk;

 |dentifiable abort is as easy as verifying partial
signatures!

Another approach with a novel short sharing

Instantiating this scheme.

N

. In the T-out-of-N setting, the number of shares grows with (T |

>, this scheme thus only supports a small

number of parties.

For N < 16,
Phase # rounds Slgner:s ber | vk | | sig | TOt?I .
session communication
Signing 3 T 25 kB
Noort 4 kB 11 kB
or
|dentification 0 T

4. How large is the sum of / vectors?

How large is the sum of 7' vectors?

Taking a step back, all the presented schemes prove the shortness of r; and deduce the shortness of Zi I;.

Consider vectors r; < < _.

What can we say about the norm of their sum?

Average-case: O(ﬁ) Worst-case: O(T)

 When users are honest: average-case.

* Colliding malicious users can force worst-case.

How large is the sum of 7' vectors?

Average-case: O(ﬁ) Worst-case: O(T)

In our two first schemes, no direct access to r, (use of uniform-looking sharings) = bound in O(T’) that
reduces security

How large is the sum of 7' vectors?

Average-case: O(ﬁ) Worst-case: O(T)

In our two first schemes, no direct access to r, (use of uniform-looking sharings) = bound in O(T’) that
reduces security

Can we do better with short secret sharing?

The Death Star Algorithm

f X <« 9,
/ « ||x|| is concentrated around its expected value \/Za
¥
Iyl « For any vectory,

(X,y) < oy/OW) - Iyl
except with probability 277,

The Death Star Algorithm

The Death Star Algorithm

For each signer i,

o 1 Ix;]] > (1 4 o(1))\/ no, reject i

/ . f(x,y) >0/ OW|ly;l|, where y. = Z#i X;, reject I
Y

When no signer is rejected, the sum x =)’ X; verifies
Ix|| <o-T-4/2log2- A
+0-\/T-n-(1 + €)

The Death Star Algorithm

60,000

40,000

20,000

T
Norm of X = Zixi foroc = 1, n = 4096, 128 bits of security, and 7" < 1000

- Honest setting (~ 04/ n) _,.—/"
e Malicious, with Death Star o
—= Malicious, no Death Star (~ 0 T/n) | ™
&
— A A A A A A A A A A A A A A A
200 400 600 300 1,000

Conclusion

Conclusion

¢ We proposed 3 lattice-based threshold signature schemes with efficient identifiable
abort.

* Fundamental difference in the secret sharings used for (sk, r;
o (Shamir, Additive) = NIZK scheme

o (Shamir, Shamir) = VSS scheme

o (Short, Short) — Partial verifications + Death Star Algorithm

o Other contributions
o Death Star algorithm

o Security analysis of NIZK based on Labrador
+ Adaptive Hint-MLWE

Conclusion

verifications

Signing Abort Identification max N
Scheme
Communication # parties Communication
NIZK-based 30 kB T 60 + 6T kB 1024
VSS-based 30 kB 3T 13 + 70T kB 1024
Short SS + partial O5KR 16

Questions?

