
Beyond the Threshold
Detecting Aborts in Lattice-based Threshold Signature Schemes

Guilhem Niot, joint works with Rafael del Pino, Thomas Espitau, Shuichi Katsumata,
Thomas Prest, Michael Reichle, Kaoru Takemure

Visit Cryptography and Privacy Lab, Seoul National University - Dec. 2024

1. Background

(-out-of-) threshold signaturesT N
What are they?

An interactive protocol to distribute signature generation.

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

1 verification key

1 partial signing key per party

Given at least -out-of- partial
signing keys, we can sign.

𝗏𝗄

𝗌𝗄i

T N

(-out-of-) threshold signaturesT N
What are they?

An interactive protocol to distribute signature generation.

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

(T, N) = (3,6)

Signature on σ 𝗆𝗌𝗀

Core security properties
Correctness: Given at least -out-of- partial signing keys, we can sign.

Unforgeability: The signature scheme remains unforgeable even if up to
 parties are corrupted.

T N

T − 1

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

T′ = 2

It’s not possible to forge a
new signature, even by
taking part in the signing
protocol.

More desirable properties

Distributed Key Generation: Protocol allowing to distributively sample key
material.

Abort identification (or robustness): In the presence of malicious users, the
signature protocol can identify misbehaving users (or guarantee a valid output).

Small round complexity: Ideally can be as low as one round.

Backward compatibility: Threshold schemes should ideally be compatible
with existing primitives.

Threshold Signatures based on Lattices

MPC-based solutions [CS19], [TPCZ24]

2-round TS via FHE: [BGG+18], [ASY22], [GKS23]

TS with noise flooding (based on Raccoon): 3-round [dPKM+24], many
follow-ups in 2024

Threshold Signatures based on Lattices

MPC-based solutions [CS19], [TPCZ24]

2-round TS via FHE: [BGG+18], [ASY22], [GKS23]

TS with noise flooding (based on Raccoon): 3-round [dPKM+24], many
follow-ups in 2024
TS with noise flooding

Threshold Raccoon, a practical 3-round threshold signature

κ Number Signers | vk | | sig | Total
communication

128 4 kB 13 kB 40 kB≤ 1024

… but only considers core security properties: correctness and unforgeability.

Advanced properties for ThRaccoon

Distributed Key Generation (DKG) + Robustness
Small round complexity

2-round [EKT24], [BKLM+24]

Advanced properties for ThRaccoon

Distributed Key Generation (DKG) + Robustness

κ # rounds Signers per
session | vk | | sig | Total

communication

128 4 3T 4 kB 13 kB 56T kB

Question: can we avoid the cost of robustness when parties behave
honestly?

Only identify aborts instead of correcting them?

Focus of this presentation

Efficient Abort Identification
Separate signing protocol and (costly) abort identification protocol

Signing protocol in 3 rounds + small communication

Overview of 3 techniques to achieve Abort Identification

Based on Non-Interactive ZK proofs (NIZK)

Based on Verifiable Secret Sharing (VSS) [ENP24]

Novel Short Secret Sharing technique (for small thresholds)

2. Signing with (Threshold) Raccoon

Raccoon signature scheme
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

Raccoon signature scheme
𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

Unforgeable assuming
Hint-MLWE
SelfTargetMSIS

Hint-MLWE assumption [KLSS23].

 is pseudorandom even if given

Q “hints”:

 for

(A, 𝗏𝗄)

(ci, zi := ci ⋅ 𝗌𝗄 + ri) i ∈ [Q]

As hard as if

MLWEσ

σr ≥ Q ⋅ s1(c) ⋅ σ

Threshold Raccoon
Shamir sharing on secret

Sample polynomial s.t.

• and

• Partial signing keys

f ∈ ℛℓ
q[X]

f(0) = 𝗌𝗄 deg f ≤ T − 1
𝗌𝗄i := [[𝗌k]]i = f(i)

Properties:

• with shares, is perfectly hidden

• with a set of shares, reconstruct via Lagrange

interpolation

< T 𝗌𝗄
S ≥ T 𝗌𝗄

𝗌𝗄 = ∑
i∈S

LS,i ⋅ [[𝗌𝗄]]i

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

First (insecure) attempt𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short𝗏𝗄 = [A I] ⋅ 𝗌𝗄 𝗌𝗄

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

• Sample a short

•

•

•

• Output

r
w = [A I] ⋅ r
c = H(w, 𝗆𝗌𝗀)
z = c ⋅ 𝗌𝗄 + r

𝗌𝗂𝗀 = (c, z)

𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, 𝗆𝗌𝗀, 𝗌𝗂𝗀 = (c, z))

•

• Assert

• Assert short

w = [A I] ⋅ z − c ⋅ 𝗏𝗄
c = H(w, 𝗆𝗌𝗀)
z

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of

But, is small vs is large

 Leaks

wi

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

First (insecure) attempt

Prevent ROS attack with commit-reveal of

But, is small vs is large

 Leaks

wi

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

Threshold Raccoon

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri

(c, ∑i∈S zi)

Prevent ROS attack with commit-reveal of

But, is small vs is large

 Leaks

Solution: add a zero-share :

Any set of values is uniformly random

wi

ri LS,i ⋅ c ⋅ [[𝗌k]]i

→ [[𝗌k]]i

Δi

< T Δi

∑i∈S Δi = 0
+Δi

Building a zero-share

1

2

3

4

1 2 3 4

m1,2 m1,3 m1,4

m2,1 m2,3 m2,4

m3,1 m3,2 m3,4

m4,1 m4,2 m4,3

0

0

0

0

Users and share a symmetric key and generate
a fresh during each session

User knows all the in its row and column

i j Ki,j
mi,j = 𝖯𝖱𝖥(Ki,j, 𝗌𝗂𝖽)

i mi,j

Building a zero-share

1

2

3

4

1 2 3 4

m1,2 m1,3 m1,4

m2,1 m2,3 m2,4

m3,1 m3,2 m3,4

m4,1 m4,2 m4,3

0

0

0

0

Users and share a symmetric key and generate
a fresh during each session

User knows all the in its row and column

i j Ki,j
mi,j = 𝖯𝖱𝖥(Ki,j, 𝗌𝗂𝖽)

i mi,j

Building a zero-share

1

2

3

4

1 2 3 4

m1,2 m1,3 m1,4

m2,1 m2,3 m2,4

m3,1 m3,2 m3,4

m4,1 m4,2 m4,3

0

0

0

0

Users and share a symmetric key and generate
a fresh during each session

User knows all the in its row and column

i j Ki,j
mi,j = 𝖯𝖱𝖥(Ki,j, 𝗌𝗂𝖽)

i mi,j

Building a zero-share

1

2

3

4

1 2 3 4

m1,2 m1,3 m1,4

m2,1 m2,3 m2,4

m3,1 m3,2 m3,4

m4,1 m4,2 m4,3

0

0

0

0

Users and share a symmetric key and generate
a fresh during each session

User knows all the in its row and column

We take

 valid sharing of 0

i j Ki,j
mi,j = 𝖯𝖱𝖥(Ki,j, 𝗌𝗂𝖽)

i mi,j

Δi = ∑j≠i mi,j − mj,i mod q

→

Building a zero-share

1

2

3

4

1 2 3 4

m1,2 m1,3 m1,4

m2,1 m2,3 m2,4

m3,1 m3,2 m3,4

m4,1 m4,2 m4,3

Users and share a symmetric key and generate
a fresh during each session

User knows all the in its row and column

We take

 valid sharing of 0

If users are corrupted, nothing more than the
zero-sum with the remaining shares leaks

i j Ki,j
mi,j = 𝖯𝖱𝖥(Ki,j, 𝗌𝗂𝖽)

i mi,j

Δi = ∑j≠i mi,j − mj,i mod q

→
< T

0

0

0

0

3. Abort identification

Identify aborts via NIZK
𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi = ∑j mi,j − mj,i mod q

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

(c, ∑i∈S zi)

What can go wrong?

A malicious user uses a large

 is not consistent with

 is incorrectly computed

 is not the correct one

or incorrect computation of

ri

ri wi

zi

Δi

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

Identify aborts via NIZK
𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi = ∑j mi,j − mj,i mod q

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

(c, ∑i∈S zi)

What can go wrong?

A malicious user uses a large

 is not consistent with

 is incorrectly computed

 is not the correct one

or incorrect computation of

ri

ri wi

zi

Δi

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

Identify aborts via NIZK
𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi = ∑j mi,j − mj,i mod q

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

(c, ∑i∈S zi)

What can go wrong?

A malicious user uses a large

 is not consistent with

 is incorrectly computed

 is not the correct one

or incorrect computation of

ri

ri wi

zi

Δi

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

Identify aborts via NIZK
𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi = ∑j mi,j − mj,i mod q

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

(c, ∑i∈S zi)

What can go wrong?

A malicious user uses a large

 is not consistent with

 is incorrectly computed

 is not the correct one

or incorrect computation of

ri

ri wi

zi

Δi

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

Identify aborts via NIZK
𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi = ∑j mi,j − mj,i mod q

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

(c, ∑i∈S zi)

What can go wrong?

A malicious user uses a large

 is not consistent with

 is incorrectly computed

 is not the correct one

or incorrect computation of

The scheme is mostly linear: let’s try proving shortness of
 and correct computation of via NIZK!

Issue: is secretly sampled with a PRF… Costly to
prove.

Instead: Ensure that user and agree on

ri

ri wi

zi

Δi

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

ri zi

Δi

i j mi,j

Identify aborts via NIZK
𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi = ∑j mi,j − mj,i mod q

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi

(c, ∑i∈S zi)

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖨𝖽𝖠𝖻𝗈𝗋𝗍()
Round 1:

• Broadcast commitments on values

• Broadcast proving that:

• is small and

• where

Round 2:

• Check consistency of others’ commitment on

• If inconsistent, broadcast complaint against and

reveal

• Check proofs

Round 3:

• Review complaints: recompute from and
determine cheating user

• Mark users with invalid proofs as malicious

ri, (mi,j, mj,i)j

Πi

ri wi = [A I] ⋅ ri

zi = LS,i ⋅ c ⋅ [[𝗌k]]i + ri + Δi
Δi = ∑j mi,j − mj,i

mi,j, mj,i
j

Ki,j

Πi

mi,j Ki,j

Identify aborts via NIZK
Instantiating this scheme aiming for compactness.

• Use Ajtai commitments for the polynomials committed by each user: size does not increase with the size
of the witness.

• Perform the proof with the exact proof system LNP.

• Finally, compress proof with the SNARK Labrador .

T

Phase # rounds Signers per
session | vk | | sig | Total

communication

Signing 3 T
4 kB 13 kB

30 kB

Abort
Identification 3 T 60 + 6T kB

Identify aborts via NIZK
Instantiating this scheme aiming for compactness.

• Additional contributions

• First description and security analysis of NIZK based on Labrador

• Extraction from proofs at once without an exponential lossn = 𝗉𝗈𝗅𝗒(λ)

4. Abort identification without NIZK

Abort identification without NIZK
𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi = ∑j mi,j − mj,i mod q

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)

Why is it challenging to avoid a NIZK for aborts in ThRaccoon?

Incompatibility of the sharings of and , that prevent
a simple verification of computations.

Additional non-linearity introduced by

𝗌𝗄 ri

Δi

Start over!

Abort identification without NIZK
𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi = ∑j mi,j − mj,i mod q

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)

Why is it challenging to avoid a NIZK for aborts in ThRaccoon?

Incompatibility of the sharings of and , that prevent
a simple verification of computations.

Additional non-linearity introduced by

Let’s use compatible sharings for and !

Shamir sharing [ENP24]

Novel short secret sharing

𝗌𝗄 ri

Δi

𝗌𝗄 ri

Start over!

Abort identification by Shamir-Sharing ri

𝖳𝗁𝖱𝖺𝖼𝖼𝗈𝗈𝗇 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀
Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
Δi = ∑j mi,j − mj,i mod q

zi = LS,i ⋅ c ⋅ [[𝗌𝗄]]i + ri + Δi

(c, ∑i∈S zi)

[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)

Abort identification by Shamir-Sharing ri
[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)

What can go wrong?

A malicious user uses a large , inconsistent with

 is invalid

 is incorrectly computed

incorrect computation of

ri wi

[[ri]]

zi

[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

Abort identification by Shamir-Sharing ri
[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)

What can go wrong?

A malicious user uses a large , inconsistent with

 is invalid

 is incorrectly computed

incorrect computation of

ri wi

[[ri]]

zi

[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

Abort identification by Shamir-Sharing ri
[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)

What can go wrong?

A malicious user uses a large , inconsistent with

 is invalid

 is incorrectly computed

incorrect computation of

ri wi

[[ri]]

zi

[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

Abort identification by Shamir-Sharing ri
[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)

What can go wrong?

A malicious user uses a large , inconsistent with

 is invalid

 is incorrectly computed

incorrect computation of

ri wi

[[ri]]

zi

[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

Abort identification by Shamir-Sharing ri
[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

What can go wrong?

A malicious user uses a large , inconsistent with

 is invalid

 is incorrectly computed

incorrect computation of

[ENP24] introduced a Verifiable Secret Sharing (VSS)
allowing to prove the (approximate) shortness of and
consistency of the sharing

Assuming the presence of users during abort
identification, Shamir-sharing allows error correction, and
re-computation of to detect malicious users

ri wi

[[ri]]

zi

[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

ri
[[ri]]

3T

[[z]]

Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)

Abort identification by Shamir-Sharing ri
[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Verifiable Secret Sharing:

For user ,

Guarantee: if honest users verify VSS proofs, then is small
and consistently shared.

𝖵𝖲𝖲 . 𝖯𝗋𝗈𝗏𝖾([[r]]) → π, (πj)j

i 𝖵𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒([[r]]i, π, πi) → 0 |1
T r

Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)

Abort identification by Shamir-Sharing ri
[ENP24] . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀 𝖨𝖽𝖠𝖻𝗈𝗋𝗍()

Round 1:

• Run

• Privately send to user

• Broadcast

Round 2:

• Check and for

• If invalid, broadcast complaint and reveal and .

• Broadcast

Round 3:
• Mark as malicious users that sent invalid proofs or inconsistent

• Mark as malicious users that sent different from
 used during signing

• Recover from the using Reed-Solomon error-correction

• Mark as malicious users that sent a different during signing

π, π j
i = 𝖵𝖲𝖲 . 𝖯𝗋𝗈𝗏𝖾([[ri]])

[[ri]]j, π j
i j

π, [[wi]] = [A I] ⋅ [[ri]]

𝖵𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒([[rj]]i, π, πi
j) [[wj]]i = [A I] ⋅ [[rj]]i

j ≠ i
[[rj]]i πi

j

[[z]]i = c ⋅ [[𝗌k]]i + ∑j [[rj]]i

[[wi]]
𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍([[wi]])

wi

[[z]] [[z]]i

[[z]]i

with 3T userswith T users

Round 1:
• Sample a short , and Shamir sharing

•

• Broadcast

• Privately send to user

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri [[ri]]
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)
[[ri]]j j

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
[[z]]i = c ⋅ [[𝗌𝗄]]i + ∑j [[rj]]i

(c, ∑i∈S Ls,i ⋅ [[z]]i)

Abort identification by Shamir-Sharing ri
Instantiating this scheme.

• We can use the VSS from [ENP24] to instantiate this scheme, that relies on Hint-MLWE to prove security.

• Additional optimizations:

• Adaptive variant of Hint-MLWE to leverage that only VSS proofs are produced in this scheme.

• Compress proof of correct computation of

≪ Q

wi

Phase # rounds Signers per
session | vk | | sig | Total

communication

Signing 3 T
4 kB 13 kB

30 + 0.032T kB

Abort
Identification 3 3T 13 + 70T kB

• Successfully defers all the expensive parts of [ENP24] to the abort identification protocol (more users, larger
communication)

Another approach with a novel short sharing
• How about using another sharing for instead?

 The core issue in ThRaccoon was that the reconstruction coefficients and shares of were large, and
could not hide them: let’s make them small!

𝗌𝗄
→ 𝗌𝗄 ri

Sharex

x2

x3

x4

x∑i∈S LS,i ⋅ xi

Another approach with a novel short sharing

Short sharing requires:

• Short shares

• Small reconstruction coefficients
xi

LS,i

x1

• How about using another sharing for instead?

 The core issue in ThRaccoon was that the reconstruction coefficients and shares of were large, and
could not hide them: let’s make them small!

𝗌𝗄
→ 𝗌𝗄 ri

Another approach with a novel short sharing
• How about using another sharing for instead?

 The core issue in ThRaccoon was that the reconstruction coefficients and shares of were large, and
could not hide them: let’s make them small!

𝗌𝗄
→ 𝗌𝗄 ri

Sharex

x2

x3

x4

x∑i∈S LS,i ⋅ xi

Short sharing requires:

• Short shares

• Small reconstruction coefficients
xi

LS,i

x1

Example: -out-of- sharing with

• and

•

Extends to -out-of- with replicated secret sharing and

 shares per party.

N N
x1, …, xN−1 ← 𝒟N−1

σ xn = x − ∑j<N xi

LS,i = 1
T N

(N
T − 1)

Another approach with a novel short sharing

For simplicity, we consider and .

Security.

• Everything is short in and hides .

• Prove security with Hint-MLWE

T = N LS,i = 1

zi ri c ⋅ 𝗌𝗄i

𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ 𝗌𝗄i + ri

(c, ∑i∈S zi)

Another approach with a novel short sharing
𝖲𝗁𝗈𝗋𝗍𝖲𝖲 . 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) → 𝗌𝗂𝗀

Round 1:
• Sample a short

•

• Broadcast

Round 2:
• Broadcast

Round 3:

•

•

• Broadcast

Combine: the final signature is

ri
wi = [A I] ⋅ ri

𝖼𝗆𝗍i = H𝖼𝗆𝗍(wi)

wi

w = ∑i wi

c = H(w, 𝗆𝗌𝗀)
zi = c ⋅ 𝗌𝗄i + ri

(c, ∑i∈S zi)

For simplicity, we consider and .

Security.

• Everything is short in and hides .

• Prove security with Hint-MLWE

Identifiable aborts.

• Each is a valid public key (is
short)

 Each is a valid signature for

• Identifiable abort is as easy as verifying partial
signatures!

T = N LS,i = 1

zi ri c ⋅ 𝗌𝗄i

𝗏𝗄i = [A I] ⋅ 𝗌𝗄i 𝗌𝗄i

→ (c, zi) 𝗏𝗄i

Instantiating this scheme.

• In the -out-of- setting, the number of shares grows with , this scheme thus only supports a small

number of parties.

For ,

T N (N
T − 1)

N ≤ 16

Phase # rounds Signers per
session | vk | | sig | Total

communication

Signing 3 T
4 kB 11 kB

25 kB

Abort
Identification 0 T

Another approach with a novel short sharing

4. How large is the sum of vectors?T

Taking a step back, all the presented schemes prove the shortness of and deduce the shortness of .

Consider vectors .

What can we say about the norm of their sum?

ri ∑i ri

ri ← 𝒟σ

How large is the sum of vectors?T

Average-case: O(T) Worst-case: O(T)

• When users are honest: average-case.

• Colliding malicious users can force worst-case.

In our two first schemes, no direct access to (use of uniform-looking sharings) bound in that
reduces security 😞

ri → O(T)

How large is the sum of vectors?T

Average-case: O(T) Worst-case: O(T)

In our two first schemes, no direct access to (use of uniform-looking sharings) bound in that
reduces security 😞

Can we do better with short secret sharing?

ri → O(T)

How large is the sum of vectors?T

Average-case: O(T) Worst-case: O(T)

The Death Star Algorithm

If ,

• is concentrated around its expected value

• For any vector ,

except with probability .

x ← 𝒟σ

∥x∥ nσ

y
⟨x, y⟩ < σ O(λ) ⋅ ∥y∥

2−λ

The Death Star Algorithm

 The Death Star Algorithm

For each signer ,

• If , reject

• If , where , reject

i
∥xi∥ ≥ (1 + o(1)) nσ i
⟨xi, yi⟩ ≥ σ O(λ)∥yi∥ yi = ∑j≠i xj i

When no signer is rejected, the sum verifies
x = ∑i xi

∥x∥ ≤ σ ⋅ T ⋅ 2 log 2 ⋅ λ

+σ ⋅ T ⋅ n ⋅ (1 + ε)

The Death Star Algorithm

Norm of for , , 128 bits of security, and x = ∑i xi σ = 1 n = 4096 T ≤ 1000

Conclusion

Conclusion

We proposed 3 lattice-based threshold signature schemes with efficient identifiable
abort.

Fundamental difference in the secret sharings used for

(Shamir, Additive) NIZK scheme

(Shamir, Shamir) VSS scheme

(Short, Short) Partial verifications + Death Star Algorithm

Other contributions

Death Star algorithm

Security analysis of NIZK based on Labrador

Adaptive Hint-MLWE

(𝗌𝗄, ri)
→

→
→

Conclusion

Scheme
Signing Abort Identification max N

Communication # parties Communication

NIZK-based 30 kB T 60 + 6T kB 1024

VSS-based 30 kB 3T 13 + 70T kB 1024

Short SS + partial
verifications 25kB 16

Questions?

