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1. Background



(7-out-of-N) threshold signatures

What are they?

An Iinteractive protocol to distribute signature generation.

ﬁ t " ” = 1 verification key vk
ske sk; » 1 partial signing key sk; per party

= Given at least T-out-of-/V partial
signing keys, we can sign.



(7-out-of-N) threshold signatures

What are they?

An Iinteractive protocol to distribute signature generation.

O

—_— Signature 6 on msg

SKe (T.N) = (3.6)



Core security properties

o Correctness: Given at least 1-out-of-/V partial signing keys, we can sign.

o Unforgeability: The signature scheme remains unforgeable even if up to
T — 1 parties are corrupted.

It’s not possible to forge a
new signhature, even by
taking part in the signing
protocol.




More desirable properties

o Distributed Key Generation: Protocol allowing to distributively sample key
material.

o Abort identification (or robustness): In the presence of malicious users, the
signature protocol can identify misbehaving users (or guarantee a valid output).

o Small round complexity: Ideally can be as low as one round.

o Backward compatibility: Threshold schemes should ideally be compatible
with existing primitives.



Threshold Signatures based on Lattices

¢ MPC-based solutions [CS19], [TPCZ24]
¢ ?2-round TS via FHE: [BGG+18], [ASY22], [GKS23]

¢ TS with noise flooding (based on Raccoon): 3-round [dPKM+24], many
follow-ups in 2024

Threshold Raccoon: Practical Threshold Signatures
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Threshold Raccoon, a practical 3-round threshold signature

Total

K Number Signers | vk | | sig | communication

128 < 1024 4 kB 13 kB 40 kB

... but only considers core security properties: correctness and unforgeabillity.



Advanced properties for ThRaccoon

Small round complexity

Distributed Key Generation (DKG) + Robustness
2-round [EKT24], [BKLM+24]
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Advanced properties for ThRaccoon

Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature

Distributed Key Generation (DKG) + Robustness

from Lattices

Thomas Espitau! ®, Guilhem Niot!? @, and Thomas Prest’

K # rounds Slgner§ ber | vk | | sig | TOt?I .
session communication
128 4 3T 4 kB 13 kB 56T kB

¢ Question: can we avoid the cost of robustness when parties behave
honestly?

o Only identify aborts instead of correcting them?



Focus of this presentation

¢ Efficient Abort Identification
O Separate signing protocol and (costly) abort identification protocol

o Signing protocol in 3 rounds + small communication

¢ Overview of 3 techniques to achieve Abort |dentification
o Based on Non-Interactive ZK proofs (NIZK)
o Based on Verifiable Secret Sharing (VSS) [ENP24]

o Novel Short Secret Sharing technique (for small thresholds)



2. Sighing with (Threshold) Raccoon



Raccoon signature scheme

« vk =[A 1] - sk, for sk short

« Sample ashortr

- W=[A I]-r

e ¢ = H(W, msg)

e Z=c-Sk+r

» Output sig = (c, z)

e wW=|[A I]l-Z—c-Vk
» Assert c = H(w, msg)

e Assert Z short



Raccoon signature scheme

Unforgeable assuming
« vk =[A 1] - sk, for sk short ¢ Hint-MLWE
¢ SelfTargetMSIS

e Sample ashortr

Hint-MLWE assumption [KLSS23].

- w=I[A I]-r
. ¢ = H(w, msg) (A, vk) is pseudorandom even if given
+Zz=c-sk+r Q “hints”:

e Qutput SIg — (C, Z) (Cl’ Zl .= Cl ’ Sk + rl) for l S [Q]

e w=[A I]-Z—c-vk As hard as MLWE,; if

« Assertc = H(w, msg) O, > Q y Sl(C) O
e Assert Z short



Threshold Raccoon

« vk =[A 1] - sk, for sk short

e Sample ashortr

- W=[A I]-r

e ¢ = H(w, msg)

e Z=c-Sk+r

» Output sig = (c, z)

e W=[A I]-Z—c-vVk
» Assert c = H(w, msg)
e Assert Z short

Shamir sharing on secret

Sample polynomial f € %g[X] s.t.
e f(0)=skanddegf<T-1
» Partial signing keys sk; := [[sk]]; = f(i)

Properties:

« with < T shares, sk is perfectly hidden

« with a set .S of > T shares, reconstruct sk via Lagrange

interpolation

sk = ) L, - [skI,

€5



Threshold Raccoon

« vk =[A 1] - sk, for sk short

« Sample ashortr

- W=[A I]-r

e ¢ = H(W, msg)

e Z=c-Sk+r

» Output sig = (c, z)

e wW=|[A I]l-Z—c-Vk
» Assert c = H(w, msg)

e Assert Z short

First (insecure) attempt

ThRaccoon . Sign(sk, msg) — sig
Round 1:
« Sample a short r;
e W, =[A 1I]-r1
 Broadcastcmt; = H_ (W)

Round 2:
» Broadcast w;

Round 3:

« W= Ziwi

e ¢ = H(w, msg)
» Broadcast z; = Lg; - ¢ - [sk]|; + r;

l

Combine: the final signature is

(c, ZieS Z;)



Threshold Raccoon

First (insecure) attempt

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ BUt, I'l iS Sma” VS LS,Z - C [[Sk]]l iS Iarge . Sampe a short I;

— Leaks [[sk]|. I
« Broadcastcmt; = H__ (W)

Round 2:
« Broadcast w;

Round 3:

« W= Ziwi
e ¢ = H(w, msg)
» Broadcast z; = Lg; - ¢ - [sk]|; + r;

Combine: the final signature is

(c, ZieS Z;)




Threshold Raccoon
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Threshold Raccoon

* Prevent ROS attack with commit-reveal of w; ThRaccoon . Sign(sk, msg) — sig
Round 1:
¢ BUt, I'l iS Sma” VS LS,Z - C - [[Sk]]l iS Iarge o Sampe a short rl.
— Leaks [[sk]]. cwi=lA Ik
 Broadcastcmt; = H,_ (W,
Round 2:
* Solution: add a zero-share A : * Broadcast W,
_ _ Round 3:
© Any set of < T values A, is uniformly random w=Y w
° — ; j
© zieSAi: 0 e ¢ = H(w, msg)

» Broadcastz; = Lg; - ¢ - [[sk]]; + r; +A,

Combine: the final signature is

(c, ZieS Z;)




Building a zero-share

O @, O O

D P D3 Dy
%1 0 mi - m;i ; m, 4
%2 m, 0 m, 3 m; 4
%3 msj m;j 0 m; ,

O Users 1 and J share a symmetric key Ki,j and generate

a fresh m, ; = PRF(K ;, sid) during each session

b

© User i knows all the m; ; in its row and column



Building a zero-share

O @, O O

D P D3 Dy
%1 0 mi - m;j 3 m; 4
%2 m, ; 0 m, 3 m; 4
%3 mj m;j 0 m; ,

O Users 1 and J share a symmetric key Ki,j and generate

a fresh m, ; = PRF(K ;, sid) during each session

b

© User i knows all the m; ; in its row and column



Building a zero-share

O @, O O

D P D5 Dy
%1 0 mi - m;j 3 m; 4
%2 m, ; 0 m, 3 m, 4
%3 msj m;j , 0 m; ,

O Users 1 and J share a symmetric key Ki,j and generate

a fresh m, ; = PRF(K ;, sid) during each session

b

© User i knows all the m; ; in its row and column



Building a zero-share

O @, O O

D P D3 Dy
%1 0 mi - m;i ; m, 4
%2 m, 0 m, 3 m; 4
%3 msj m;j 0 m; ,

Users i and j share a symmetric key K; jand generate

a fresh m, ; = PRF(K ;, sid) during each session

b

User i knows all the m,

We take A; = iz M

— valid sharing of O

. 1n Its row and column

J

—m;, mod g

J



Building a zero-share

O O O O

D P D3 Dy
%1 0 mi - m;j 3 m; 4
%2 m, ; 0 m, ; m, 4
2 3 mj m;j , 0 m; ,
%4 My mg, my 3 0

Users i and j share a symmetric key K; jand generate

a fresh m; ; = PRF(K;

. j» sid) during each session

User i knows all the m, ; in its row and column

We take A, = —m;; mod ¢

i T J

— valid sharing of O

If < 1 users are corrupted, nothing more than the
zero-sum with the remaining shares leaks



3. Abort identification




Identify aborts via NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

« Sample a short r;
® Wi — :A I] ’ ri
» Broadcast cmt; = H_, (W)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

. A

l

» Broadcast z; = Lg; - ¢ - [[sk]l; + I; + A,

Combine: the final signature is

(c. ZieS Z)

What can go wrong?

* A malicious user uses a large r;
* r,;is not consistent with w;
* Z;is incorrectly computed

© A, is not the correct one

© orincorrect computation of z; = Ly ; - ¢ - [[sk]];
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Combine: the final signature is

(c. ZieS Z)

What can go wrong?

* A malicious user uses a large r;
* r,;is not consistent with w;
* Z;is incorrectly computed

© A, is not the correct one
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Round 2:
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. A

l
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Combine: the final signature is
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Identify aborts via NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

« Sample a short r;
® Wi — :A I] ’ ri
» Broadcastcmt; = H__ (W)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

. A

l

» Broadcastz; = Lg; - ¢ - [sk]l; + r; + A,

Combine: the final signature is

(c. ZieS Z)

What can go wrong?

* A malicious user uses a large r;
* r,;is not consistent with w;
* Z;is incorrectly computed

© A, is not the correct one

© orincorrect computation of z; = Ly ; - ¢ - [[sk]];




Identify aborts via NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

e Samp
° Wl p—

e ashort r;

A I]-r;

» Broadcastcmt; = H__.(W,)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

» Broadcast z; = Lg; - ¢ - [[sk]l; + I; + A,

Combine: the final signature is

(c. ZieS Z)

What can go wrong?

* A malicious user uses a large r;
* r,;is not consistent with w;
* Z;is incorrectly computed

© A, is not the correct one

© orincorrect computation of z; = Lg; - ¢ - [sk]l; + r; + A,

¢ The scheme is mostly linear: let’s try proving shortness of
I'; and correct computation of z; via NIZK!

O |[ssue: A, is secretly sampled with a PRF... Costly to
prove.

© Instead: Ensure that user 1 and j agree on m, j



Identify aborts via NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

e Samp
° Wl p—

e ashort r;

A I]-r;

» Broadcast cmt; = H_ (W)

Round 2:
» Broadcast w;

Round 3:

» Broadcast z; = Lg; - ¢ - [[sk]l; + I; + A,

Combine: the final signature is

(c. ZieS Z)

ThRaccoon . IdAbort()

Round 1:

- Broadcast commitments on values r;, (m; ;, m; ;);

e Broadcast 11; proving that:
e T;issmallandw, = [A 1] -

A; = ZJ- m;,;,—Im;;

Round 2:

« Check consistency of others’ commitmenton m. .. m. .

1,]° "),1
« If inconsistent, broadcast complaint against j and
reveal K; ;

e Check proofs 11,

Round 3:

- Review complaints: recompute m; ; from K; ; and
determine cheating user

 Mark users with invalid proofs as malicious



Identify aborts via NIZK

Instantiating this scheme aiming for compactness.

* Perform the proof with the exact proof system LNP.

* Finally, compress proof with the SNARK Labrador .

« Use Ajtai commitments for the 1" polynomials committed by each user: size does not increase with the size
of the witness.

Phase # rounds Slgner:‘; ber | vk | | sig | TOtaf“ .
session communication
Signing 3 T 30 kB
4 kB 13 kB
Abort 3 T 60 + 6T kB

|dentification




Identify aborts via NIZK

Instantiating this scheme aiming for compactness.

 Additional contributions

* First description and security analysis of NIZK based on Labrador

« Extraction from n = poly(A) proofs at once without an exponential loss



thout NIZK

10N W

4. Abort identificat




Abort identification without NIZK

ThRaccoon . Sign(sk, msg) — sig Start over!
Round 1:

« Sample a short r; Why is it challenging to avoid a NIZK for aborts in ThRaccoon?

W, =[A I]-T ©  Incompatibility of the sharings of sk and r,, that prevent
» Broadcastcmt; = H_(W;) a simple verification of computations.

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

©  Additional non-linearity introduced by A,

- Broadcast z; = Lg; - ¢ - [[sk]l; + I; + A,

Combine: the final signature is

(c. ZieS Z)




Abort identification without NIZK

ThRaccoon . Sign(sk, msg) — sig
Round 1:

e Samp
° Wl p—

e ashort r;

A I]-r;

» Broadcastcmt; = H__.(W,)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

» Broadcast z; = Lg; - ¢ - [[sk]l; + r; + A,

Combine: the final signature is

(c, ZieS ;)

Start over!

Why is it challenging to avoid a NIZK for aborts in ThRaccoon?

©  Incompatibility of the sharings of sk and r;, that prevent
a simple verification of computations.

©  Additional non-linearity introduced by A,

Let’s use compatible sharings for sk and r}!

o Shamir sharing [ENP24]

O Novel short secret sharing



Abort identification by Shamir-Sharing r,

[ENP24] . Sign(sk, msg) — si
ThRaccoon . Sign(sk, msg) — sig g : :

Round 1: Round 1:
« Sample a short r; « Sample a short r;, and Shamir sharing [[1;]]

e Ww.=[A 1I]-T1 e W.=[A I]-r1
» Broadcastcmt; = H_ (W) » Broadcast cmt; = H, (W)

Round 2: « Privately send [[r,]] ; to user ]

» Broadcast w; Round 2:
Round 3: » Broadcast w;
« W=) W, Round 3:
« W=D W,
e ¢ = H(w, msg)
» Broadcast z; = Lg; - ¢ - [[sk]l; + r; + A, . Broadcast [[z]|; = ¢ - [[sk]l; + ZJ- [[x;1I;

Combine: the final signature is Combine: the final signature is

(C9 ZiES Zi) (Cﬂ ZiES Ls,i ' [[Z]]i)




Abort identification by Shamir-Sharing r,

ENP24] . Si K, '
| ].Sign(sk, msg) — sig What can go wrong?

Round 1:

« Sample a short r;, and Shamir sharing [[1;]]
R T e imual
- w.=[A I]-T, [r;] is invalid

* A malicious user uses a large r;, inconsistent with w;

 Broadcast cmt; = H_ (W) * Z,is incorrectly computed

« Privately send [[ri]]j to user o incorrect computation of [[z]], = ¢ - [sk]. + Z]. [[I‘]-]]l-

Round 2:
» Broadcast w;

. Broadcast [[z]]; = ¢ - [[sk]]; + Zj [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i ) [[Z]]i)




Abort identification by Shamir-Sharing r,

ENP24] . Si K, '
| ].Sign(sk, msg) — sig What can go wrong?

Round 1:
« Sample a short I;, and Shamir sharing [[r;]]

- W, =[A 1] 1
 Broadcast cmt; = H_ (W) * Z,is incorrectly computed

* A malicious user uses a large r;, inconsistent with w;

¢ [[r] isinvalid

« Privately send [[ri]]j to user o incorrect computation of [[z]], = ¢ - [sk]. + Z]. [[I‘]-]]l-

Round 2:
» Broadcast w;

. Broadcast [[z]]; = ¢ - [[sk]]; + Zj [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i ) [[Z]]i)




Abort identification by Shamir-Sharing r,

ENP24] . Si K, '
| ].Sign(sk, msg) — sig What can go wrong?

Round 1:
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. T e inual
- w.=[A I]-T, [r;] is invalid

* A malicious user uses a large r;, inconsistent with w;

 Broadcast cmt; = H_ (W) * Z,is incorrectly computed

« Privately send [[ri]]j to user o incorrect computation of [[z]], = ¢ - [sk]. + Z]. [[I‘]-]]l-

Round 2:
» Broadcast w;

. Broadcast [[z]]; = ¢ - [[sk]]; + Zj [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i ) [[Z]]i)




Abort identification by Shamir-Sharing r,

ENP24] . Si K, '
| ].Sign(sk, msg) — sig What can go wrong?

Round 1:

« Sample a short r;, and Shamir sharing [[1;]]
R T e imual
- w.=[A I]-T, [r;] is invalid

* A malicious user uses a large r;, inconsistent with w;

 Broadcast cmt; = H_ (W) * Z,is incorrectly computed

« Privately send [[ri]]j to user o incorrect computation of [[z]], = ¢ - [sk]. + Z]. [[I‘]-]]l-

Round 2:
» Broadcast w;

. Broadcast [[Z]]; = ¢ - [sk]l; + 2,- [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i ) [[Z]]i)




Abort identification by Shamir-Sharing r,

[ENP24] . Sign(sk, msg) — sig

Round 1:

 Sample a short r;, and Shamir sharing [[r,]]

® Wi — [A I] ) ri
» Broadcast cmt; = H_ (W)

« Privately send [[rl-]]j to user j

Round 2:
» Broadcast w;

. Broadcast [[z]]; = ¢ - [[sk]]; + Zj [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i ) [[Z]]i)

l

What can go wrong?

L 4

\ 4

¢

A malicious user uses a large r;, inconsistent with w.
[r;] is invalid
Z; is incorrectly computed

o incorrect computation of [[z]], = ¢ - [sk]. + Z]. [x;]l;

[ENP24] introduced a Verifiable Secret Sharing (VSS)
allowing to prove the (approximate) shortness of r; and

consistency of the sharing [[1;]]

Assuming the presence of 37 users during abort
identification, Shamir-sharing allows error correction, and

re-computation of [|z]] to detect malicious users



Abort identification by Shamir-Sharing r,

ENP24] . Sign(sk, |
| ].Sign(sk, msg) — sig Verifiable Secret Sharing:

Round 1: * VSS.Prove([r]) — =, (),

« Sample a short r;, and Shamir sharing [[r:]| . -
WA Il ¢ Foruseri, VSS. Verify([[r],n,z;) — 0|1

. Broadcastcmt; = H__(W,) Guarantee: if 1" honest users verify VSS proofs, then r is small

. and consistently shared.
« Privately send [[rl-]]j to user j y

Round 2:
» Broadcast w;

. Broadcast [[z]]; = ¢ - [[sk]]; + Zj [[x;1I;

Combine: the final signature is

(Ca ziES Ls,i ) [[Z]]i)




Abort identification by Shamir-Sharing r,

[ENP24] . Sign(sk, msg) — sig with T users IdAbort() with 3T users

Round 1: Round 1:
« Sample a short r;, and Shamir sharing [[1;]] + Runz, 7} = VSS . Prove([[r;]})
- w,=[A I]-T, . Privately send [[r/], 7Z'l] to user j
» Broadcast cmt; = H_ (W) » Broadcast z, [w;]| = [A 1] - [Ir;]
« Privately send [[r,]] i to user Round 2: |
« Check VSS. Verify([[rj i» TT, 7rjl) and [[W]-]]i =[A I]- [[rj]]l- for
JF
. If invalid, broadcast complaint and reveal [[rj]]l- and Jr]l

. Broadcast [[z]]; = ¢ - [sk]l; + ZJ. [[r;1I;

Round 2:
» Broadcast w;

Round 3:

Broad [z]] Tsk]l Z (]  Mark as malicious users that sent invalid proofs or inconsistent [[w;]]
« Broadcast ||Z]|; = ¢ - [Isk]|: + ) .[r;ll:
| l ;I  Mark as malicious users that sent Reconstruct([[w;]]) different from

Combine: the final signature is W; used during signing

e Recover [[Z]] from the [[Z]]; using Reed-Solomon error-correction
(Ca ZIES Ls,i ) [[Z]]l) l

« Mark as malicious users that sent a different [z]]; during signing




Instantiating this scheme.

Abort identification by Shamir-Sharing r,

 We can use the VSS from [ENP24] to instantiate this scheme, that relies on Hint-MLWE to prove secuirity.

« Additional optimizations:

« Adaptive variant of Hint-MLWE to leverage that only << Q) VSS proofs are produced in this scheme.

« Compress proof of correct computation of w;

Phase # rounds Slgner_s per | vk | | sig | TOt?I .
session communication
Signing 3 T 30 + 0.032T kB
A 4 kB 13 kB
bort 3 3T 13 + 70T kB
|dentification

« Successfully defers all the expensive parts of [ENP24] to the abort identification protocol (more users, larger

communication)




Another approach with a novel short sharing

» How about using another sharing for sk instead?

— The core issue in ThRaccoon was that the reconstruction coefficients and shares of sk were large, and r;
could not hide them: let’s make them small!



Another approach with a novel short sharing

» How about using another sharing for sk instead?

— The core issue in ThRaccoon was that the reconstruction coefficients and shares of sk were large, and r;

could not hide them: let’s make them small!

O—

Short sharing requires:
 Short shares X

« Small reconstruction coefficients LSl-



Another approach with a novel short sharing

» How about using another sharing for sk instead?

— The core issue in ThRaccoon was that the reconstruction coefficients and shares of sk were large, and r;

could not hide them: let’s make them small!

O—

Example: N-out-of-N sharing with
N-1 e |
Short sharing requires: o Xpp o Xy < DT and X, =X =2, X,

 Short shares X; o« Lg; =1

. . Extends to 7-out-of-/N with replicated secret sharing and
« Small reconstruction coefficients Lg ; P g

<TN 1) shares per party.



Another approach with a novel short sharing

ShortSS . Sign(sk, msg) — sig
Round 1: For simplicity, we consider 7' = N and LS,i = 1.

« Sample a shortr, Security.
e W, =[A I]- T
 Broadcast cmt; = H_ (W)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

e ¢ = H(w, msg)

» Everything is short in Z; and r; hides ¢ - sk;.

* Prove security with Hint-MLWE

 Broadcastz; = c - sk; + T,

Combine: the final signature is

(c, z:ieS Z;)




Another approach with a novel short sharing

ShortSS . Sign(sk, msg) — sig

Round 1:
« Sample a short r;

o Wi — :A I] ) ri
» Broadcast cmt; = H_, (W)

Round 2:
» Broadcast w;

Round 3:

° W:ziwi

e ¢ = H(w, msg)

 Broadcastz; = c - sk; + T,

Combine: the final signature is

(c, z:ieS Z;)

For simplicity, we consider T'= Nand Lg; = 1.
Security.
» Everything is short in Z; and r; hides ¢ - sk;.

* Prove security with Hint-MLWE

Identifiable aborts.

« Each vk; = [A 1] - sk; is a valid public key (sk; is
short)

— Each (¢, z)) is a valid signature for vk;

 |dentifiable abort is as easy as verifying partial
signatures!



Another approach with a novel short sharing

Instantiating this scheme.

N

. In the T-out-of-N setting, the number of shares grows with (T |

>, this scheme thus only supports a small

number of parties.

For N < 16,
Phase # rounds Slgner:s ber | vk | | sig | TOt?I .
session communication
Signing 3 T 25 kB
Noort 4 kB 11 kB
or
|dentification 0 T




4. How large is the sum of / vectors?



How large is the sum of 7' vectors?

Taking a step back, all the presented schemes prove the shortness of r; and deduce the shortness of Zi I;.

Consider vectors r; < < _.

What can we say about the norm of their sum?

Average-case: O(ﬁ ) Worst-case: O(T)

 When users are honest: average-case.

* Colliding malicious users can force worst-case.



How large is the sum of 7' vectors?

Average-case: O(ﬁ ) Worst-case: O(T)

In our two first schemes, no direct access to r, (use of uniform-looking sharings) = bound in O(T’) that
reduces security



How large is the sum of 7' vectors?

Average-case: O(ﬁ ) Worst-case: O(T)

In our two first schemes, no direct access to r, (use of uniform-looking sharings) = bound in O(T’) that
reduces security

Can we do better with short secret sharing?



The Death Star Algorithm

f X <« 9,
/ « ||x|| is concentrated around its expected value \/Za
¥
Iyl « For any vectory,

(X,y) < oy/OW) - Iyl
except with probability 277,



The Death Star Algorithm

The Death Star Algorithm

For each signer i,

o 1 Ix;]] > (1 4 o(1))\/ no, reject i

/ . f(x,y) >0/ OW|ly;l|, where y. = Z#i X;, reject I
Y

When no signer is rejected, the sum x = )’ X; verifies
Ix|| <o-T-4/2log2- A
+0-\/T-n-(1 + €)




The Death Star Algorithm

60,000

40,000

20,000

T
Norm of X = Zixi foroc = 1, n = 4096, 128 bits of security, and 7" < 1000

- Honest setting (~ 04/ n) _,.—/"
e Malicious, with Death Star o
—= Malicious, no Death Star (~ 0 T/n) | ™
&
— A A A A A A A A A A A A A A A
200 400 600 300 1,000




Conclusion



Conclusion

¢ We proposed 3 lattice-based threshold signature schemes with efficient identifiable
abort.

* Fundamental difference in the secret sharings used for (sk, r;
o (Shamir, Additive) = NIZK scheme

o (Shamir, Shamir) = VSS scheme

o (Short, Short) — Partial verifications + Death Star Algorithm

o Other contributions
o Death Star algorithm

o Security analysis of NIZK based on Labrador
+ Adaptive Hint-MLWE



Conclusion

verifications

Signing Abort Identification max N
Scheme
Communication # parties Communication
NIZK-based 30 kB T 60 + 6T kB 1024
VSS-based 30 kB 3T 13 + 70T kB 1024
Short SS + partial O5KR 16




Questions?




