Flood and Submerse: **Distributed Key Generation and Robust Threshold Signature** from Lattices

Thomas Espitau

Guilhem Niot

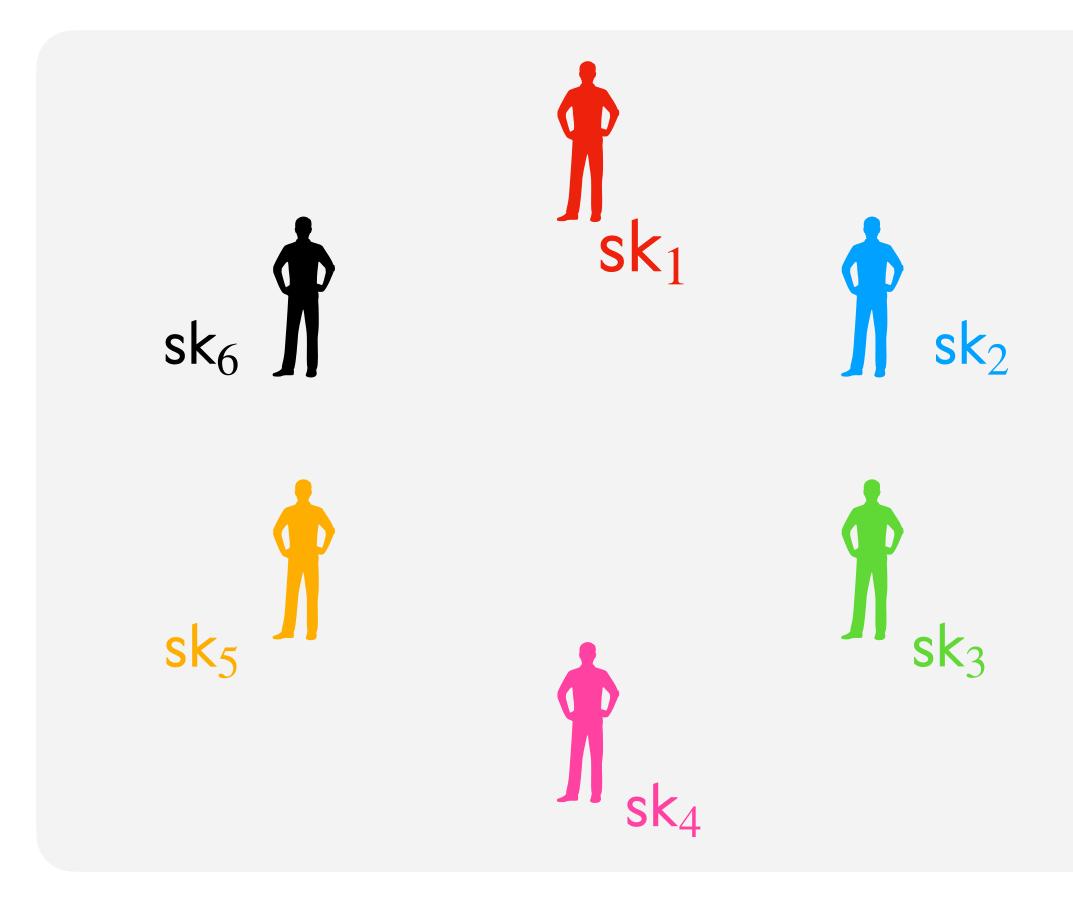
ENSL/CWI/KCL/IRISA Joint Seminar - 30 Sept. 2024

Thomas Prest

1. Background

(*T*-out-of-*N*) threshold signatures What are they?

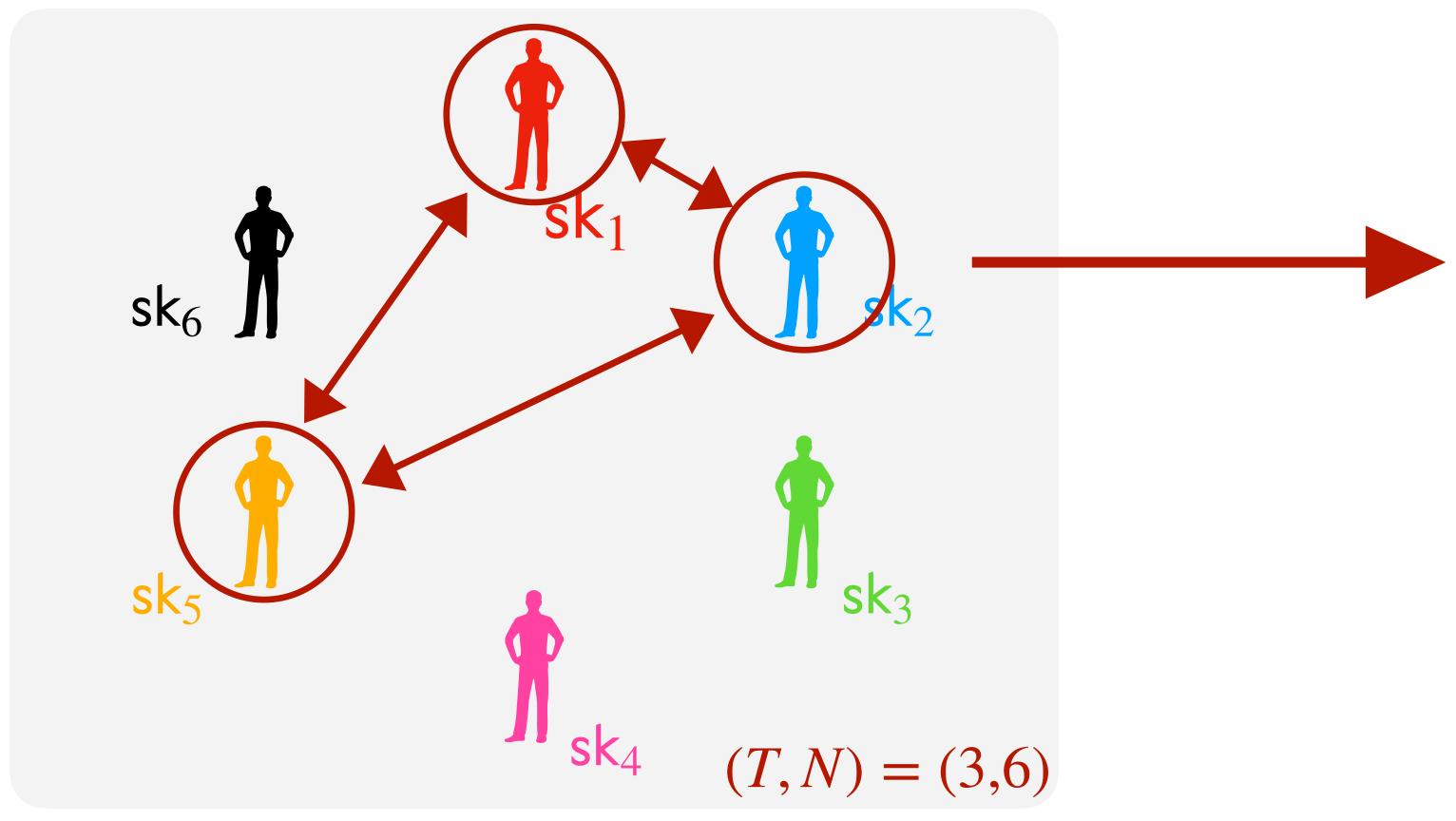
An interactive protocol to distribute signature generation.



- I verification key vk
- I partial signing key sk_i per party
- Given at least *T*-out-of-*N* partial signing keys, we can sign.

(*T*-out-of-*N*) threshold signatures What are they?

An interactive protocol to distribute signature generation.

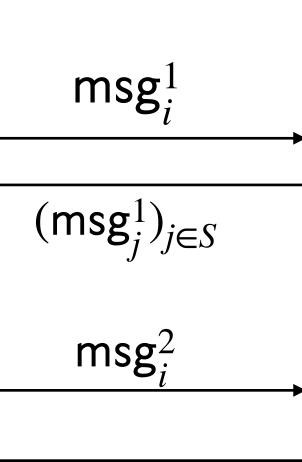


Signature σ on msg

(*T*-out-of-*N*) threshold signatures What are they?

Round-based communication model:

Party *i*

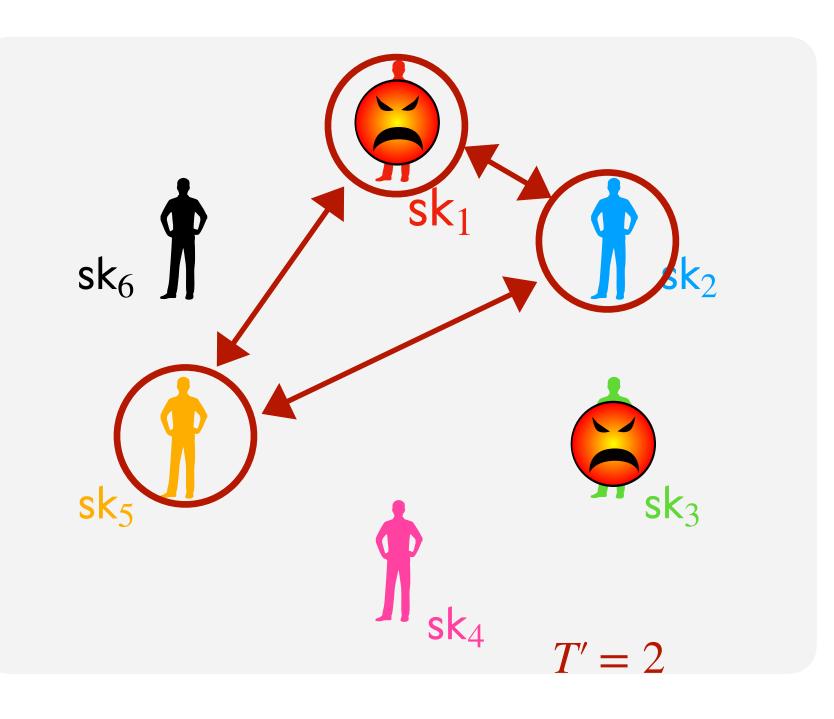


 $(\mathsf{msg}_j^2)_{j\in S}$

Coordinator

Core security properties

- **Correctness:** Given at least T-out-of-N partial signing keys, we can sign.
- o Unforgeability: The signature scheme remains unforgeable even if up to T' < T parties are corrupted. Often T' = T - 1.



It's not possible to forge a new signature, even by taking part in the signing protocol.

More desirable properties

- corrupted users chosen before setup.
- users)
- o Small round complexity: Ideally can be as low as one round.
- existing primitives.

o Adaptive security: (vs static security) Corrupted users can be chosen adaptively over the lifetime of the signature scheme. More realistic than static security, i.e.

o **Distributed Key Generation:** Protocol allowing to distributively sample key material.

o Robustness (resp. identifiable abort): In the presence of malicious users, signature protocol is guaranteed to produce a valid signature (resp. to identify misbehaving)

o **Backward compatibility:** Threshold schemes should ideally be compatible with

Pre-quantum solutions

- Mature solutions:
 - EdDSA: FROST [KG20]
 - ECDSA: [ANOS+21]
 - BLS: [Bol03]
 - RSA: [Sho00]
- Provide all desirable properties.

An active field of research for post-quantum security

- Aggregating hash-based signatures: [KCLM22] Ο
- Sequential TS scheme based on isogenies: [DM20]
- Lattice-based threshold signatures: Ο
 - 2-round TS via FHE: [BGG+18], [ASY22], [GKS23]
 - [EKT24], [BKLM+24], 5-round adaptively secure [KRT24]

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

> **Two-Round Threshold Signature from Algebraic One-More Learning with Errors**

Thomas Espitau¹, Shuichi Katsumata^{1,2}, Kaoru Takemure^{* 1,2}

TS with noise flooding (based on Raccoon): 3-round [dPKM+23], 2-round

Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding

Shuichi Katsumata^{1,2}, Michael Reichle³, Kaoru Takemure^{*1,2}

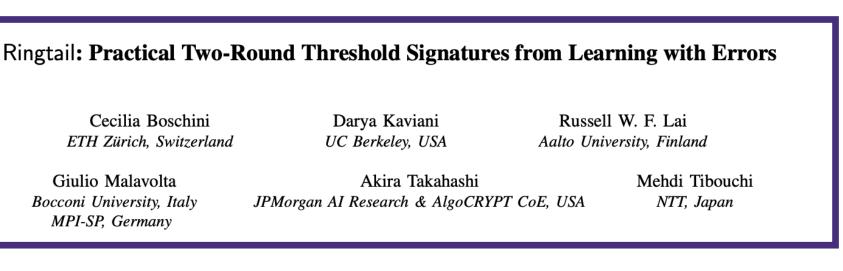
Cecilia Boschini ETH Zürich, Switzerland

Darva Kaviani UC Berkeley, USA

Russell W. F. Lai Aalto University, Finland

Giulio Malavolta Bocconi University, Italy MPI-SP, Germany

Akira Takahashi JPMorgan AI Research & AlgoCRYPT CoE, USA Mehdi Tibouchi NTT, Japan



An active field of research for post-quantum security

- Aggregating hash-based signatures: [KCLM22] Ο
- Sequential TS scheme based on isogenies: [DM20]
- Lattice-based threshold signatures: Ο
 - 2-round TS via FHE: [BGG+18], [ASY22], [GKS23]
 - [EKT24], [BKLM+24], 5-round adaptively secure [KRT24]

Threshold Raccoon: Practical Threshold Signatures from Standard Lattice Assumptions

Rafael del Pino¹, Shuichi Katsumata^{1,2}, Mary Maller^{1,3}, Fabrice Mouhartem⁴, Thomas Prest¹, Markku-Juhani Saarinen^{1,5}

> **Two-Round Threshold Signature from Algebraic One-More Learning with Errors**

Thomas Espitau¹, Shuichi Katsumata^{1,2}, Kaoru Takemure^{* 1,2}

TS with noise flooding (based on Raccoon): 3-round [dPKM+23], 2-round

Adaptively Secure 5 Round Threshold Signatures from MLWE/MSIS and DL with Rewinding

Shuichi Katsumata^{1,2}, Michael Reichle³, Kaoru Takemure^{*1,2}

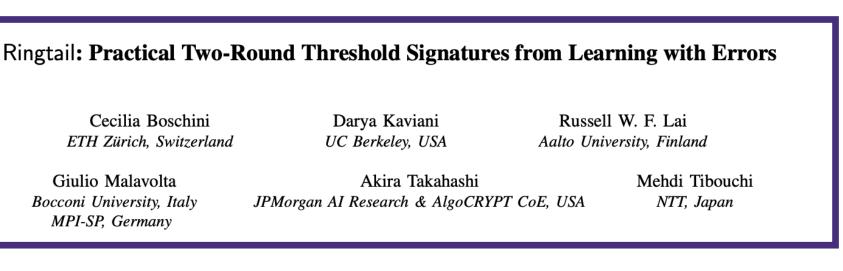
Cecilia Boschini ETH Zürich, Switzerland

Darva Kaviani UC Berkeley, USA

Russell W. F. Lai Aalto University, Finland

Giulio Malavolta Bocconi University, Italy MPI-SP, Germany

Akira Takahashi JPMorgan AI Research & AlgoCRYPT CoE, USA Mehdi Tibouchi NTT, Japan



Threshold Raccoon, a practical 3-round threshold signature

K	Number Signers	 vk 	sig	Total communication
128	≤ 1024	4 kB	13 kB	40 kB

... but only considers core security properties: correctness and unforgeability.

Advanced properties of lattice-based schemes

Active research since 2024.

- Adaptive security: 5-round [KRT24]
- o Small round complexity: 2-round [EKT24], [BKLM+24]
- o **Backward compatibility:** These schemes can be made compatible with the NIST proposal Raccoon.

No efficient solution for:

- **Distributed Key Generation (DKG)** \mathbf{O}
- Robustness / identifiable abort

Focus of this presentation

- **Distributed Key Generation** (DKG)

Our techniques for DKG + robust signing are quite generic:

- in our paper, applied to Plover [EENP+24]: hash-and-sign scheme

• Robustness: Guarantee valid signature in the presence of malicious signers

can be applied to all 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]

Raccoon signature scheme

Lyubashevsky's signature scheme (without aborts)

$$\mathbf{v}\mathbf{k} = \begin{bmatrix} \mathbf{t} \end{bmatrix} = \begin{bmatrix} \mathbf{A}' & \mathbf{I} \\ & & \\ &$$

$$\mathbf{r} \leftarrow \chi \\ \mathbf{w} = \mathbf{A} \cdot \mathbf{r} \qquad -\mathbf{W}$$

 $\mathbf{Z} = c \cdot \mathbf{S} + \mathbf{r}$

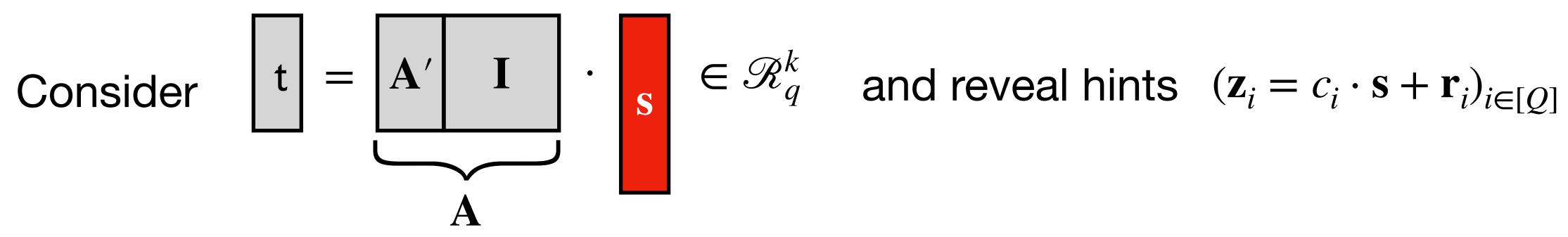
Prove security via Hint-MLWE assumption

$$\mathsf{sk} = \mathsf{sk} \in \mathscr{R}_q^{\mathscr{C}}$$
 short

- $c = H(vk, msg, w) \in \mathscr{R}_q$ "small"
 - Accept if
 - z is short

• $\mathbf{A} \cdot \mathbf{z} = c \cdot \mathbf{t} + \mathbf{w}$

Hint-MLWE assumption [KLSS23]



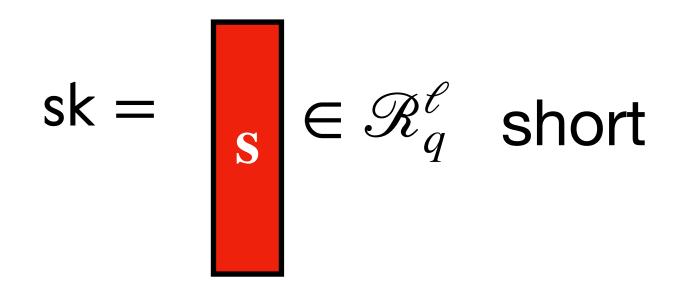
t is indistinguishable from uniform (as hard as MLWE) for some parameter regimes.

Rule of thumb:

secure if σ_r

$$\approx \sqrt{Q} \cdot s_1(c) \cdot \sigma_s$$

Threshold signature: use (T, N)-Shamir sharing on secret



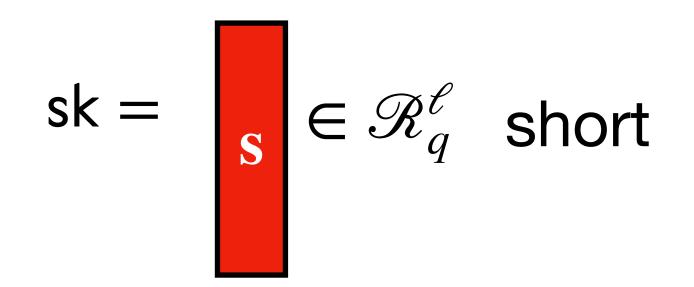
Sample polynomial $f \in \mathscr{R}_q^{\ell}[X]$ s.t.

- f(0) = s and $\deg f = T 1$
- Partial signing keys $\mathbf{sk}_i := [[\mathbf{s}]]_i = f(i)$

For any set S of T shares, reconstruct s:

$$\mathbf{s} = \sum_{i \in S} L_{S,i} \cdot [\mathbf{s}]_i$$
Lagrange coef

Threshold signature: use (T, N)-Shamir sharing on secret



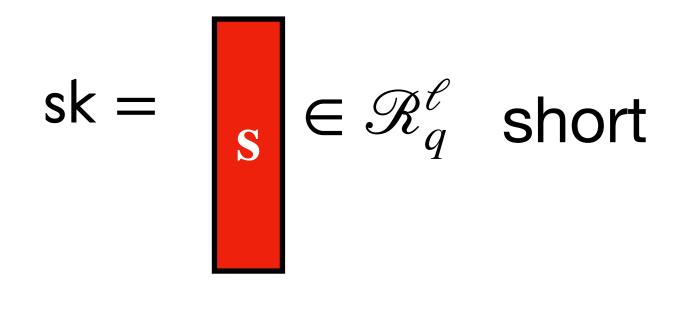
$$\mathbf{r} \leftarrow \chi$$
$$\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$$

c = H(vk, msg, w) $\mathbf{Z} = \mathbf{C} \cdot \mathbf{S} + \mathbf{r}$

For any set S of T shares, reconstruct s:

$$\mathbf{s} = \sum_{i \in S} L_{S,i} \cdot [\![\mathbf{s}]\!]_i$$

Threshold signature: use (T, N)-Shamir sharing on secret



 $\mathbf{r_i} \leftarrow \chi$ $\mathbf{w_i} = \mathbf{A} \cdot \mathbf{r_i}$

$$\mathbf{r} \leftarrow \chi$$
$$\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$$

c = H(vk, msg, w) $\mathbf{Z} = c \cdot \mathbf{S} + \mathbf{r}$

For any set S of T shares, reconstruct s:

$$\mathbf{s} = \sum_{i \in S} L_{S,i} \cdot [[\mathbf{s}]]_i$$

$$cmt_{i} = H(\mathbf{w}_{i})$$

$$(cmt_{j})_{j \in S}$$

$$\mathbf{w}_{i}$$

$$(\mathbf{w}_{j})_{j \in S}$$

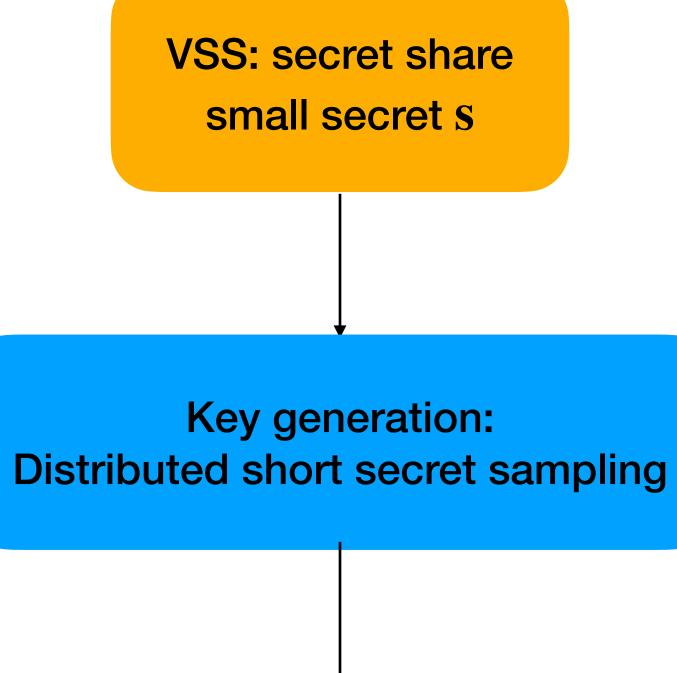
Threshold signature: use (T, N)-Shamir sharing on secret



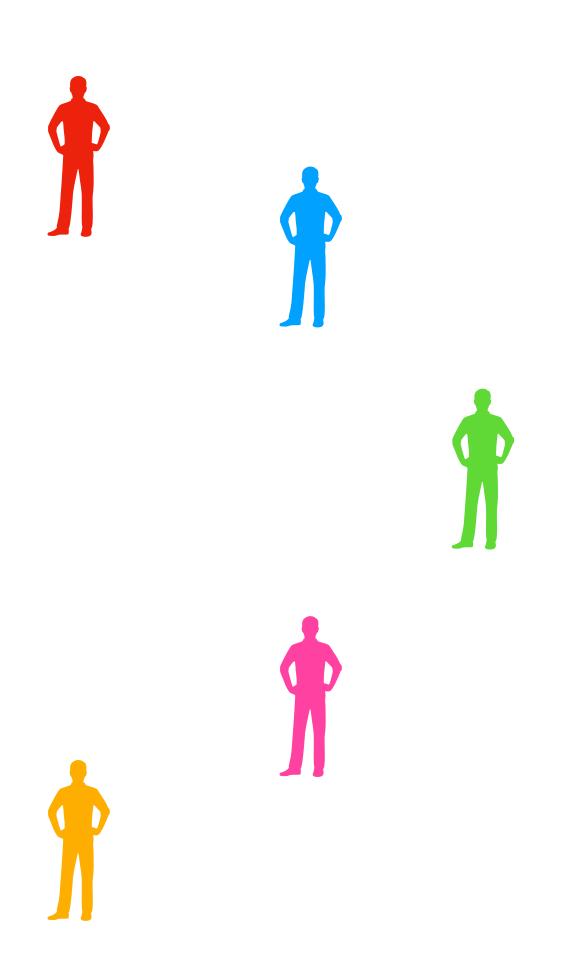
2. Achieving additional threshold properties with Verifiable Secret Sharing

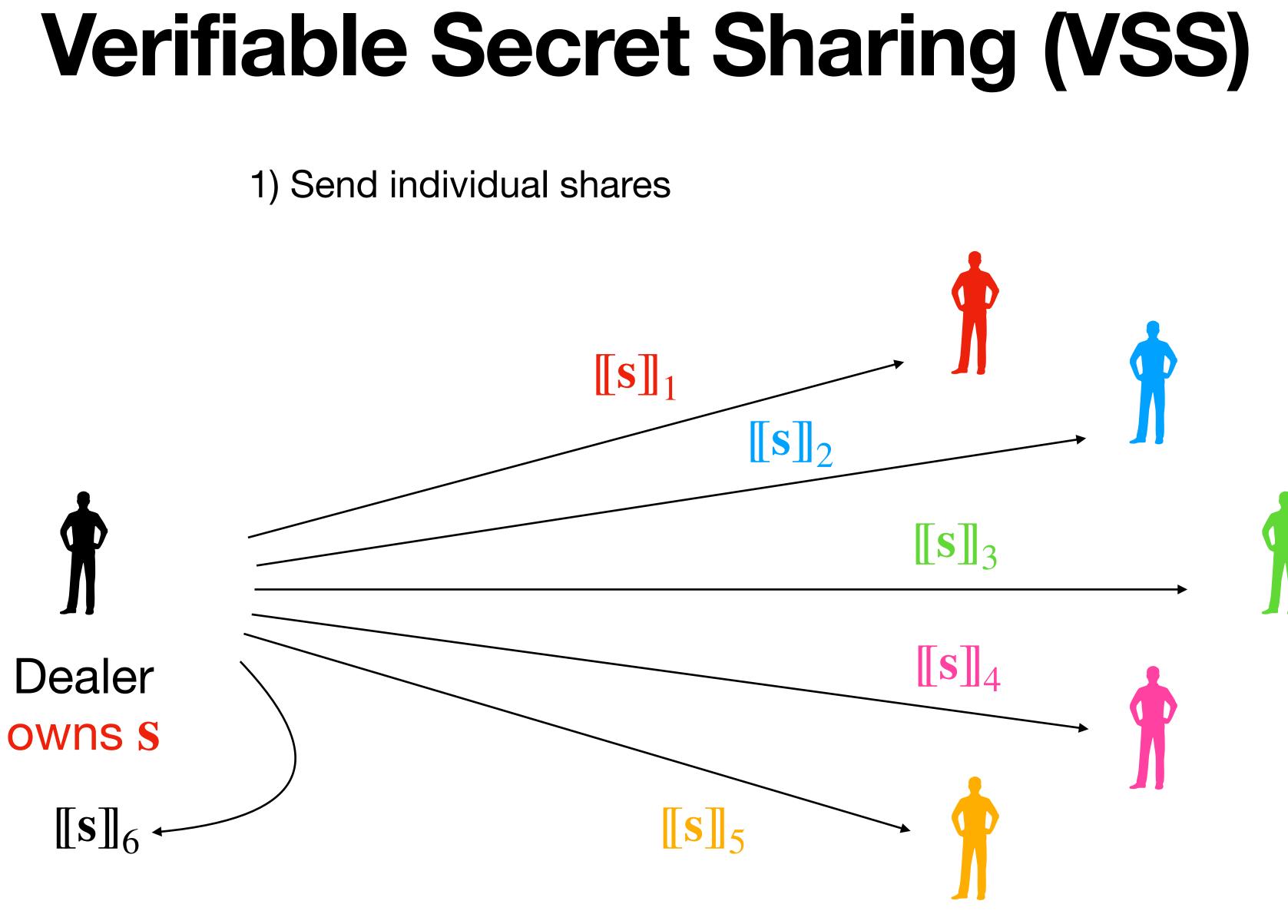
Achieving additional threshold properties with Verifiable Secret Sharing

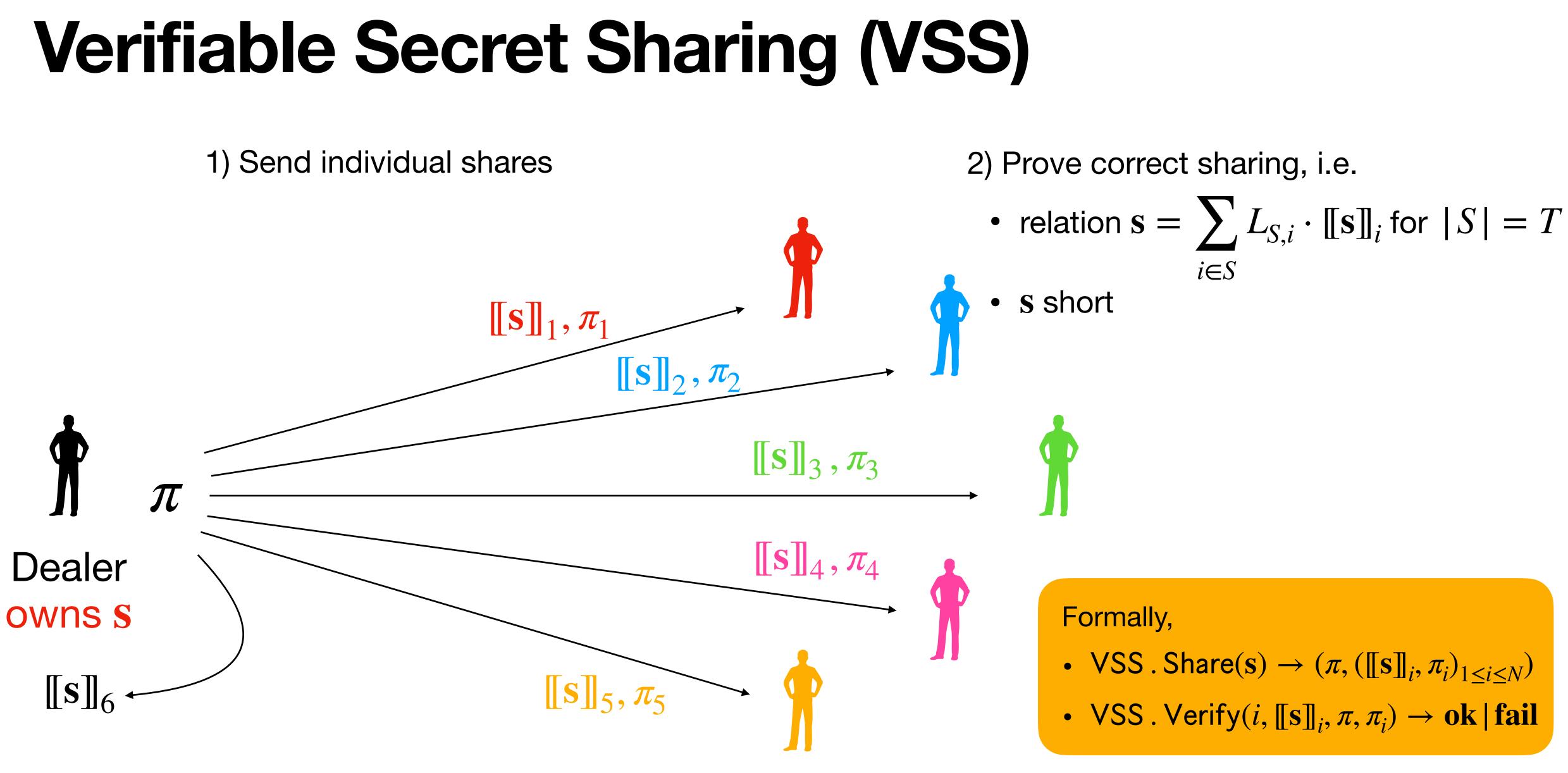
Robust signing: Distributed short noise sampling



Verifiable Secret Sharing (VSS)

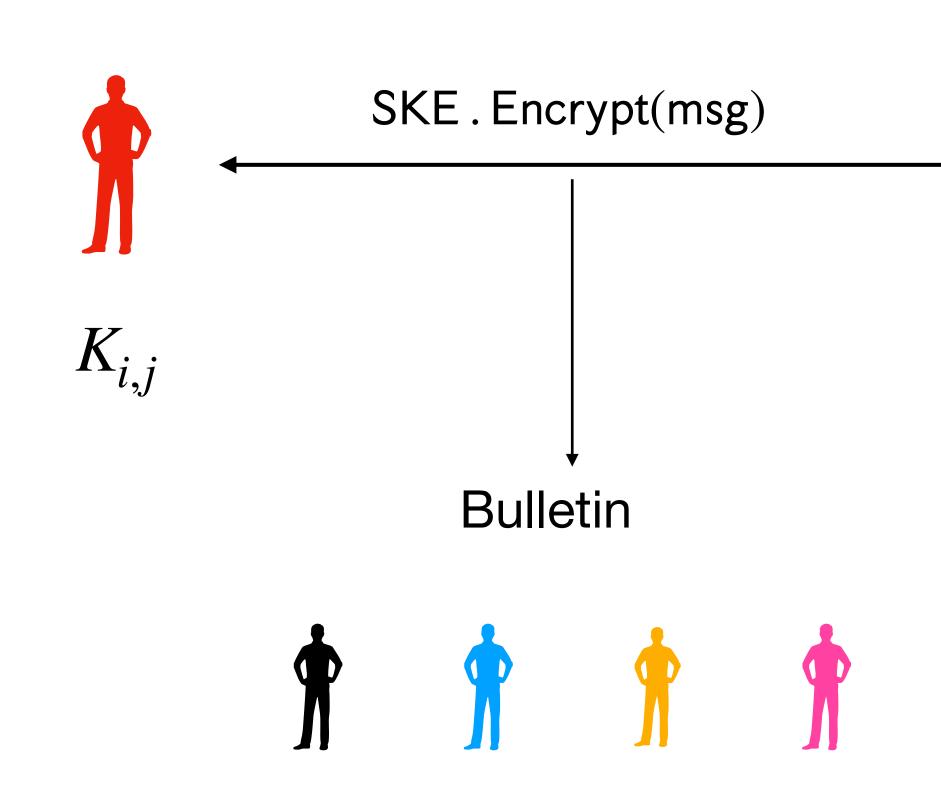


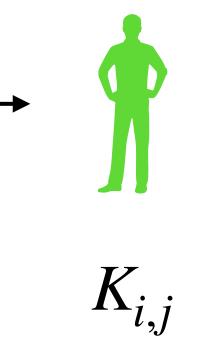




Distributed Key Generation (DKG) from VSS

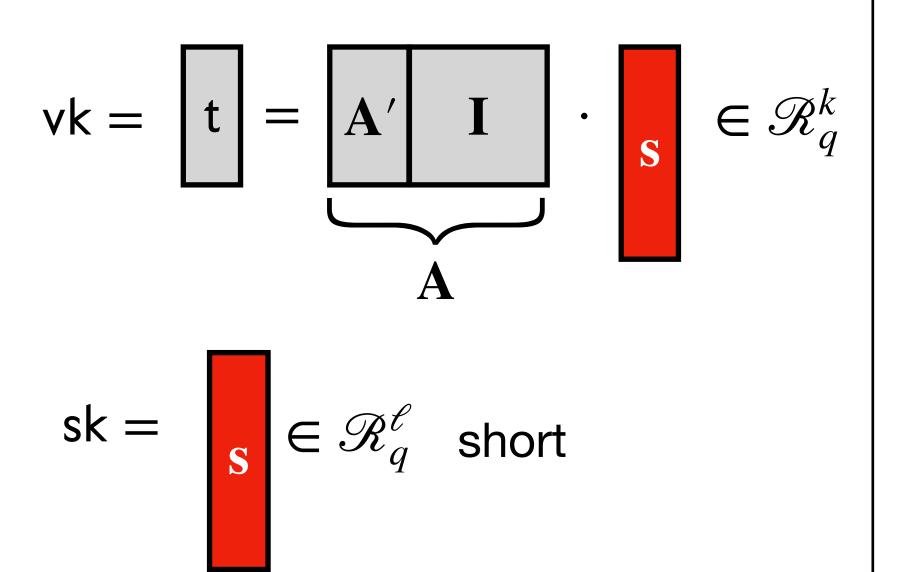
- Assume the existence of a broadcast or bulletin board.
- Assume the existence of non-repudiable pairwise channels.

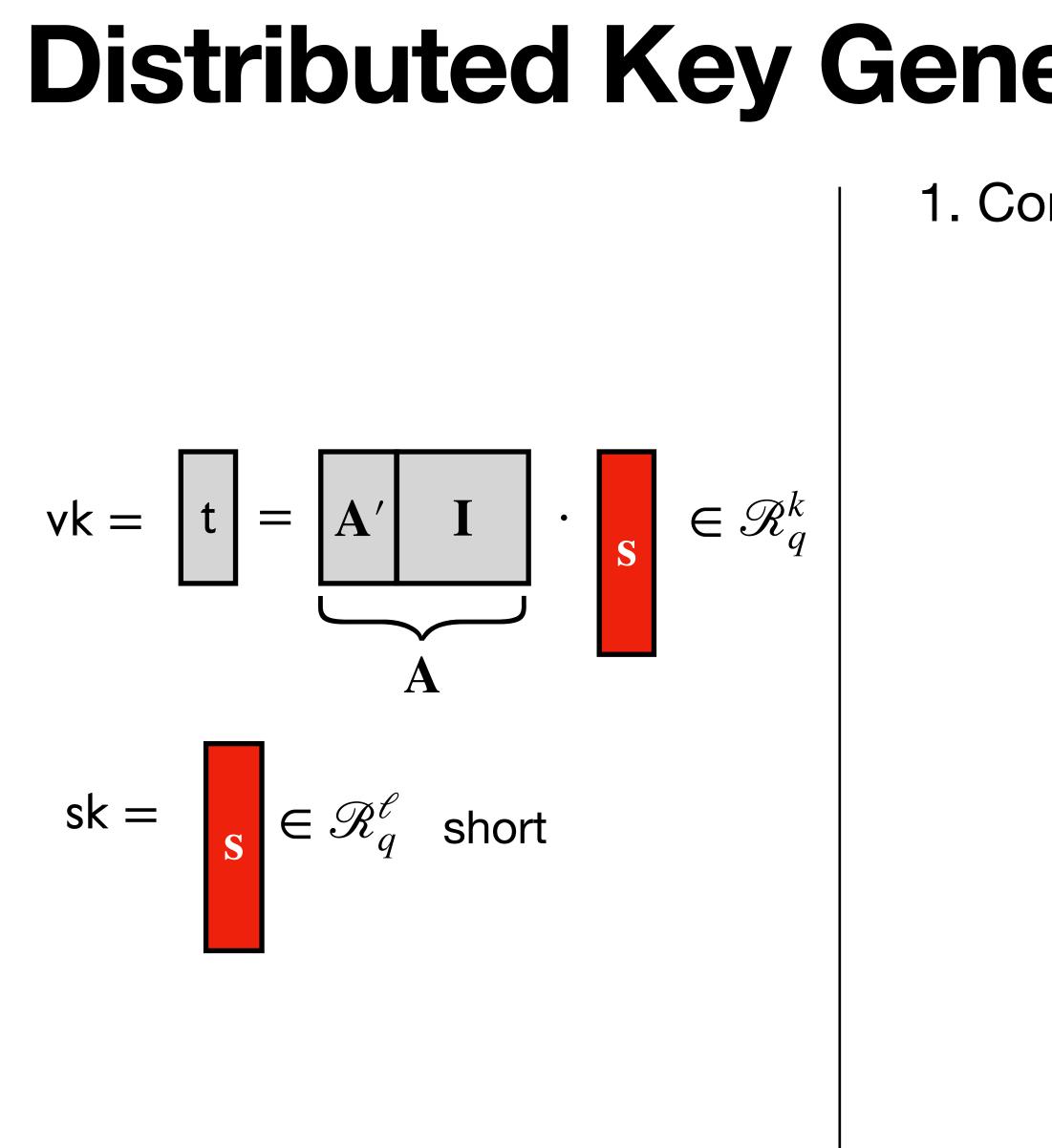




Allows to prove that a message was sent.

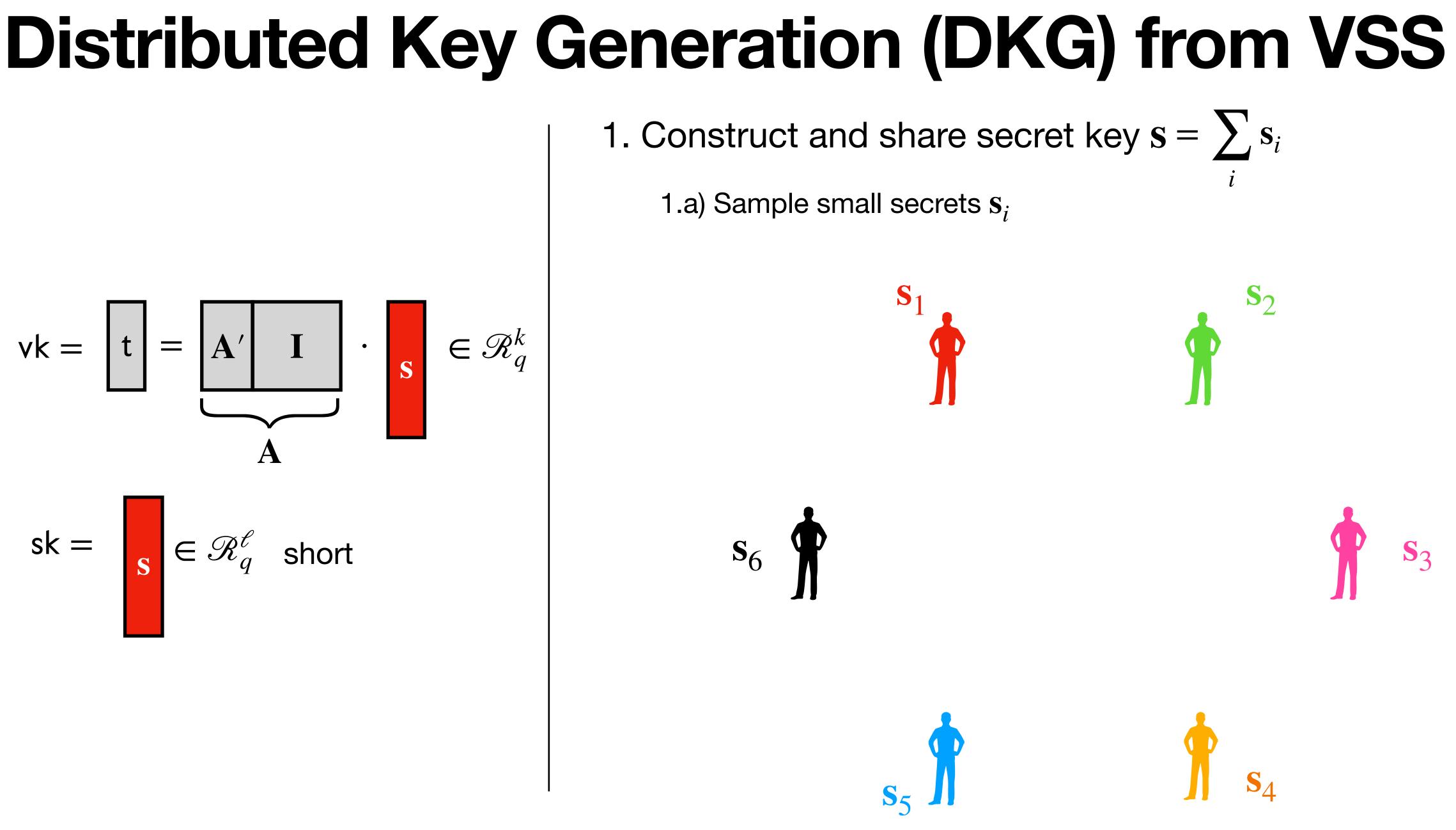
Distributed Key Generation (DKG) from VSS

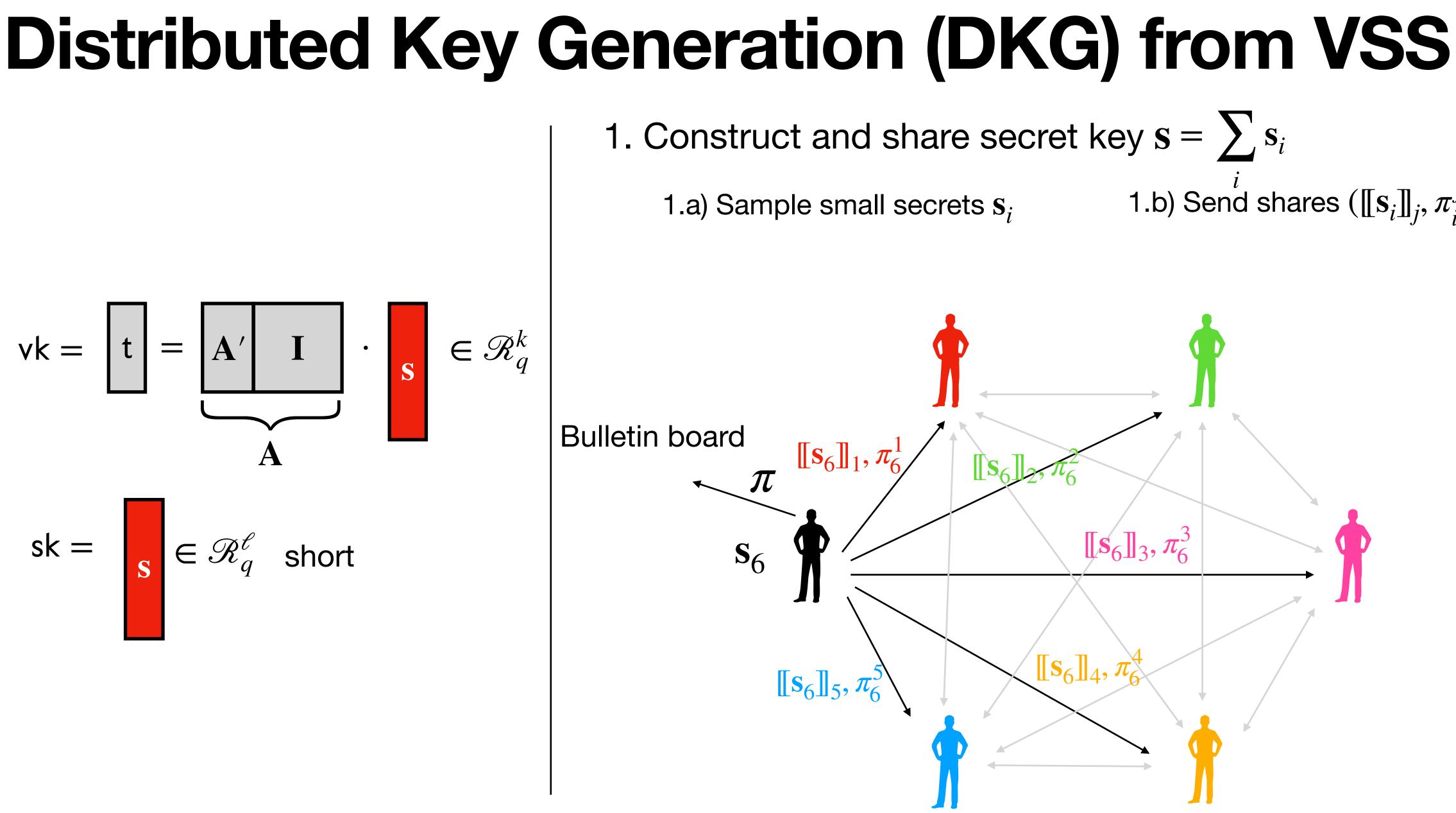




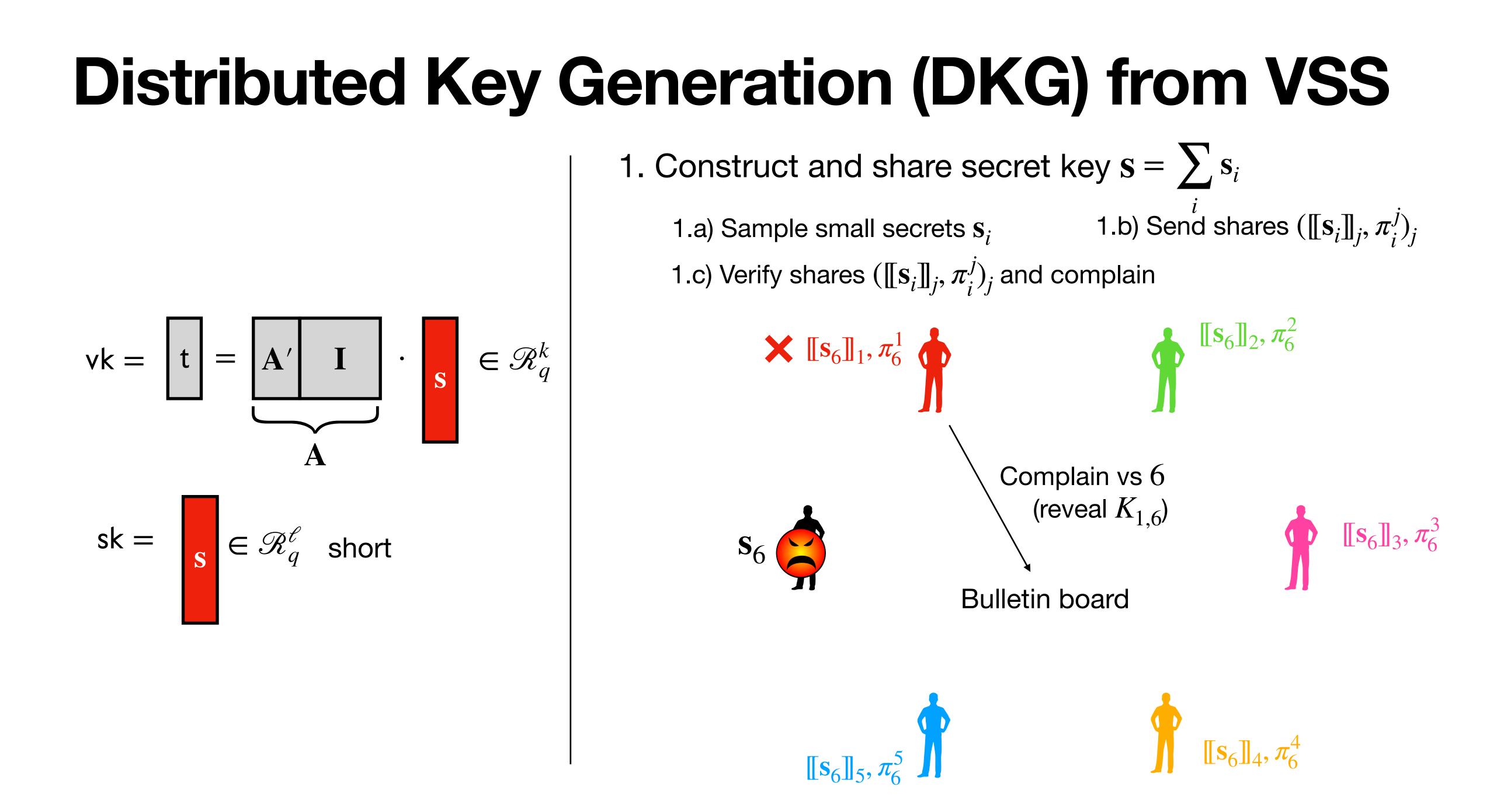
Distributed Key Generation (DKG) from VSS

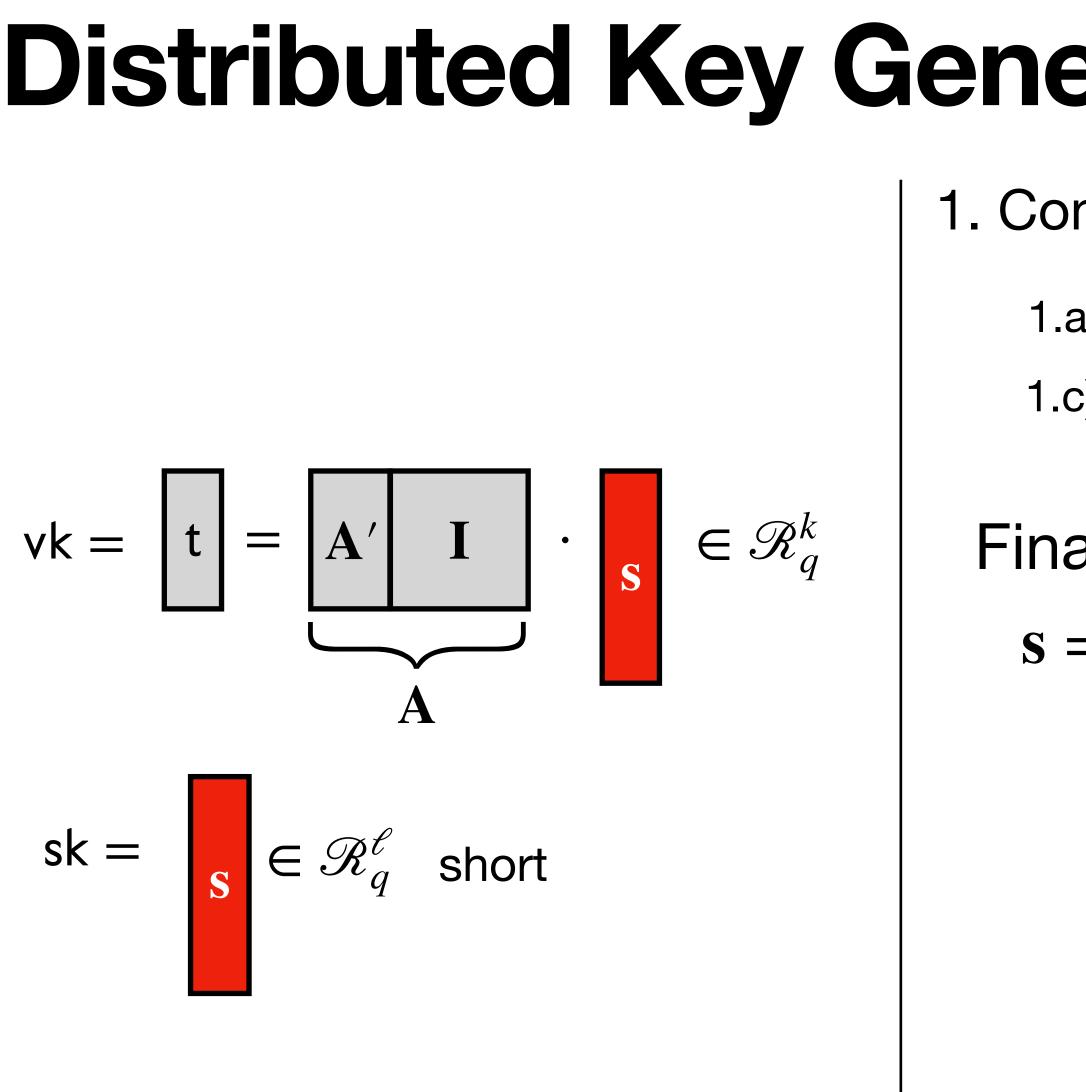
1. Construct and share secret key s



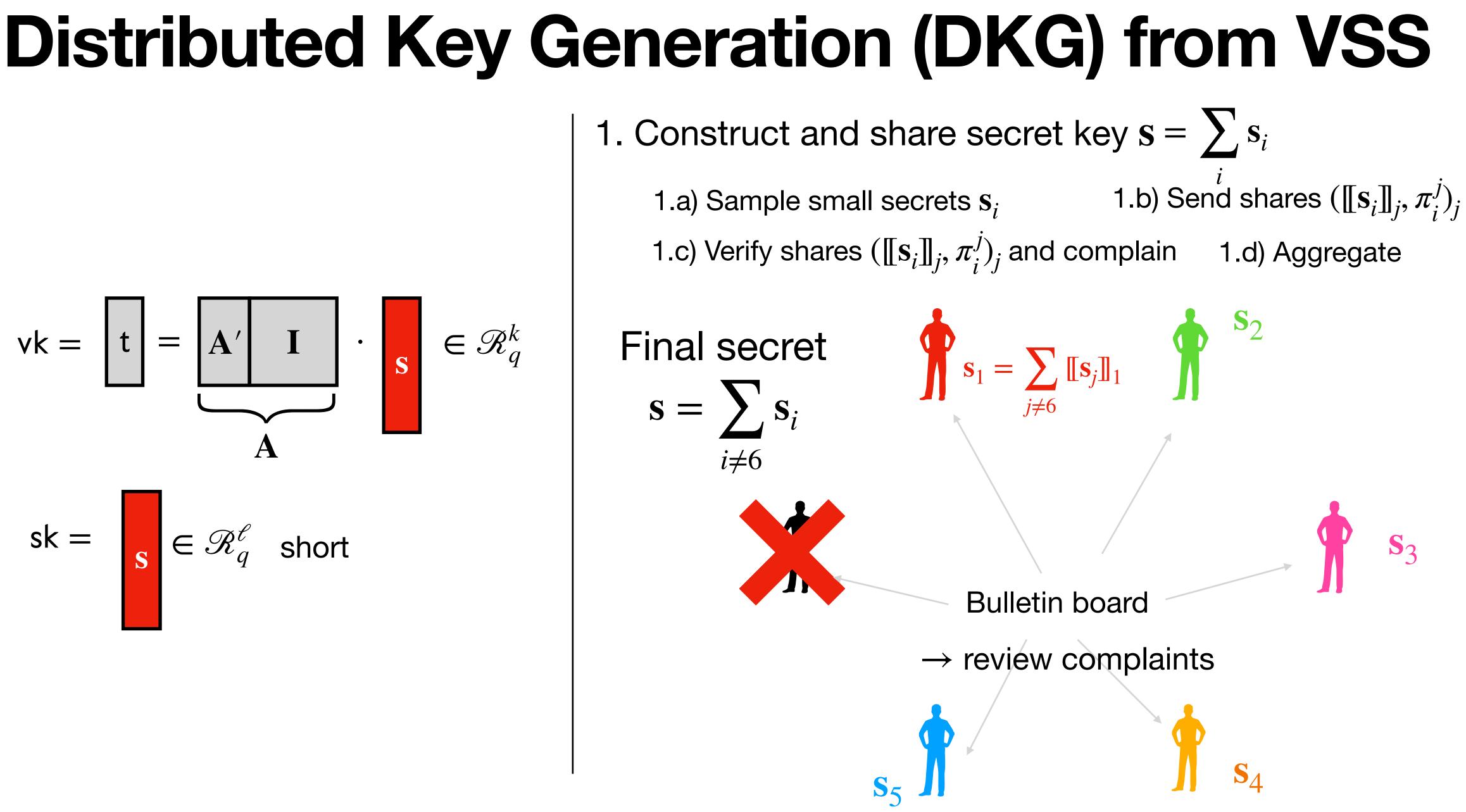


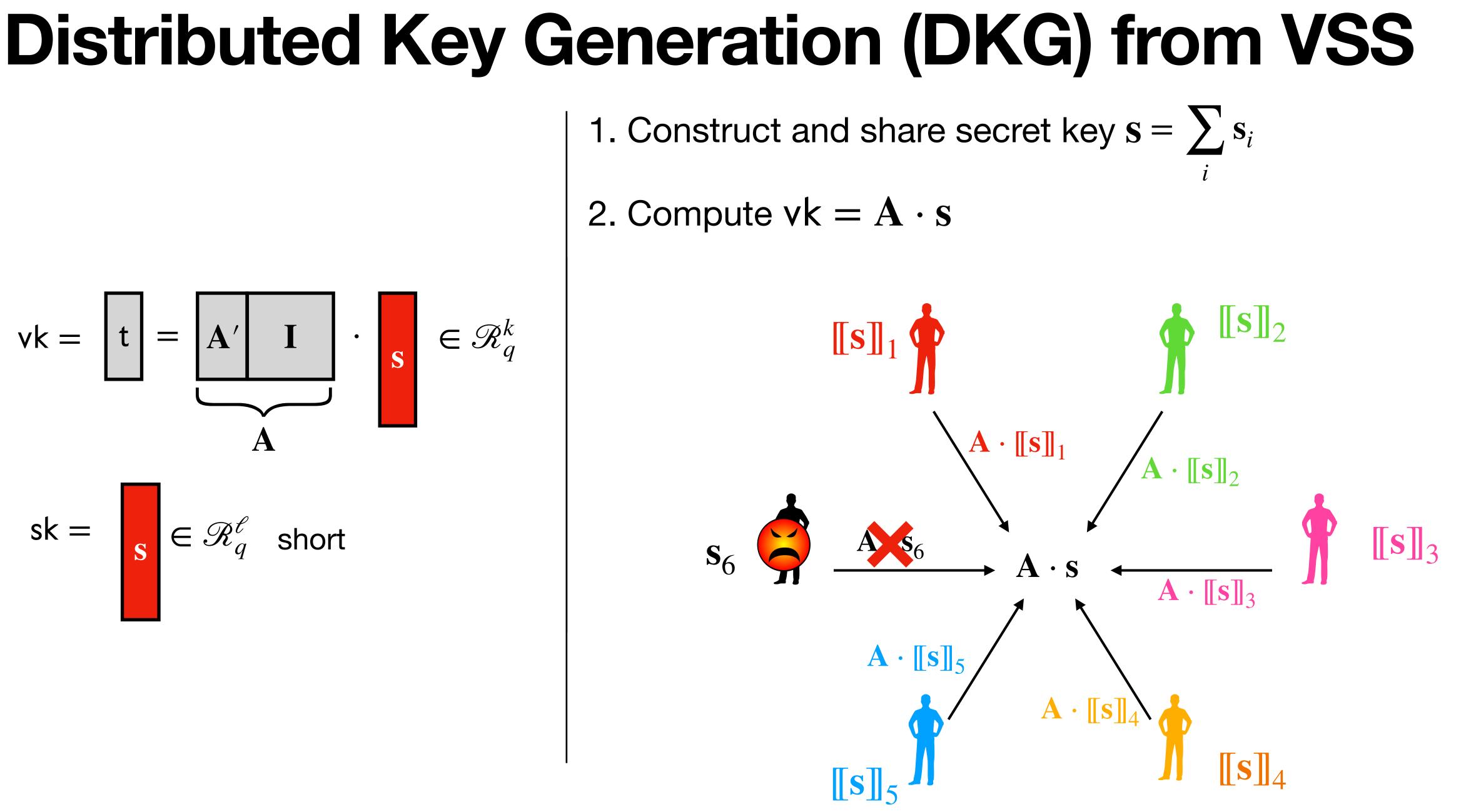
1.b) Send shares $(\llbracket \mathbf{s}_i \rrbracket_i, \pi_i^j)_i$

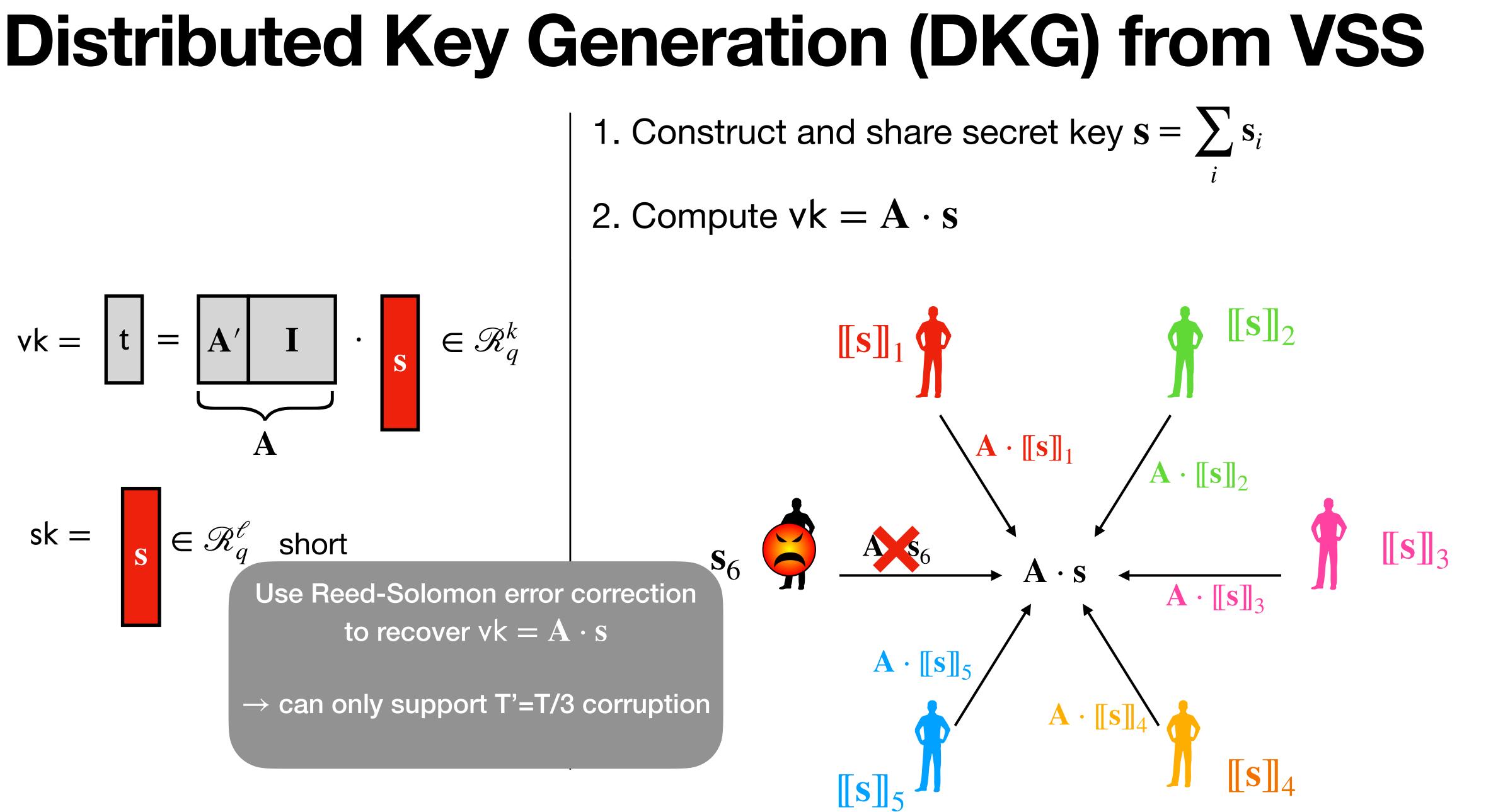




Distributed Key Generation (DKG) from VSS 1. Construct and share secret key $s = \sum s_i$ 1.a) Sample small secrets \mathbf{s}_i 1.b) Send shares $(\llbracket \mathbf{s}_i \rrbracket_i, \pi_i^j)_i$ 1.c) Verify shares ($[[\mathbf{s}_i]]_j, \pi_i^j$) and complain 1.d) Aggregate Final secret $\mathbf{s} = \sum \mathbf{s}_i$ *i*≠6 **Bulletin board** \rightarrow review complaints







Robust Signing with VSS

Threshold Raccoon

 $\mathbf{r_i} \leftarrow \chi$ $cmt_i = H(w_i)$ $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i$ $(\mathsf{cmt}_j)_{j\in S}$ **W**_i $(\mathbf{w}_j)_{j\in S}$ $\mathbf{w} = \sum \mathbf{w}_{j}$ j∈S c = H(vk, msg, w) $\llbracket \mathbf{z} \rrbracket_i = c \cdot L_{S,i} \cdot \llbracket \mathbf{s} \rrbracket_i + \mathbf{r}_i + \Delta_i \qquad \mathbf{z}_i$

Robust Signing with VSS

Threshold Raccoon

 $\mathbf{r_i} \leftarrow \chi$ $\operatorname{cmt}_{\mathbf{i}} = H(\mathbf{w}_{\mathbf{i}})$ $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i$ $(\mathsf{cmt}_j)_{j\in S}$ \mathbf{W}_i $(\mathbf{W}_j)_{j \in S}$ $w = \sum w_j$ j∈S c = H(vk, msg, w) $\llbracket \mathbf{z} \rrbracket_i = c \cdot L_{S,i} \cdot \llbracket \mathbf{s} \rrbracket_i + \mathbf{r}_i + \Delta_i \qquad \mathbf{z}_i$

Robust ThRaccoon

1) Use DKG to sample secret $\mathbf{r} = \sum \mathbf{r}_i$ and compute $\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$: 3 rounds

Robust Signing with VSS

Threshold Raccoon

 $\mathbf{r_i} \leftarrow \chi$ $\operatorname{cmt}_{\mathbf{i}} = H(\mathbf{w}_{\mathbf{i}})$ $\mathbf{w}_i = \mathbf{A} \cdot \mathbf{r}_i$ $(\operatorname{cmt}_j)_{j \in S}$ \mathbf{W}_i $(\mathbf{W}_i)_{i \in S}$ $w = \sum w_j$ j∈S c = H(vk, msg, w) $\llbracket \mathbf{z} \rrbracket_i = c \cdot L_{S,i} \cdot \llbracket \mathbf{s} \rrbracket_i + \mathbf{r}_i + \Delta_i \qquad \mathbf{z}_i$

Robust ThRaccoon

1) Use DKG to sample secret $\mathbf{r} = \sum_{i=1}^{n} \mathbf{r}_{i}$ and compute $\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$: 3 rounds

Compute signature shares: 1 round

c = H(vk, msg, w) $\llbracket \mathbf{z} \rrbracket_i = c \cdot \llbracket \mathbf{s} \rrbracket_i + \llbracket \mathbf{r} \rrbracket_i$

If corruption threshold $T' \leq T/3$, Reed-Solomon error correction guarantees signature output.

3. A practical VSS with approximate shortness proof

Prior work on VSS

- Classical setting (uniform secret)
 - BGW VSS [BGW88]: IT security
 - Pedersen VSS [Ped92]: relies on DL
 - [ABCP23] based on hash functions
- VSS with shortness proof [GHL21]: quite large and DL aggregation

How to prove shortness of a vector s without revealing it?

proba $\frac{1}{4}$, and 0 with proba $\frac{1}{2}$.

- Use a random projection to a smaller space!
- Modular Johnson-Lindenstrauss lemma with offset [Ngu22]: Take a vector y. If a matrix \mathbf{R} is sampled from a discrete distribution with coefficients ± 1 with

Then, $\|\mathbf{R} \cdot \mathbf{s} + \mathbf{y} \mod q\|_2$ is at least as large as $C \cdot \|\mathbf{s}\|_2$ for some $C = \omega(1)$.

How to prove shortness of a vector s without revealing it?

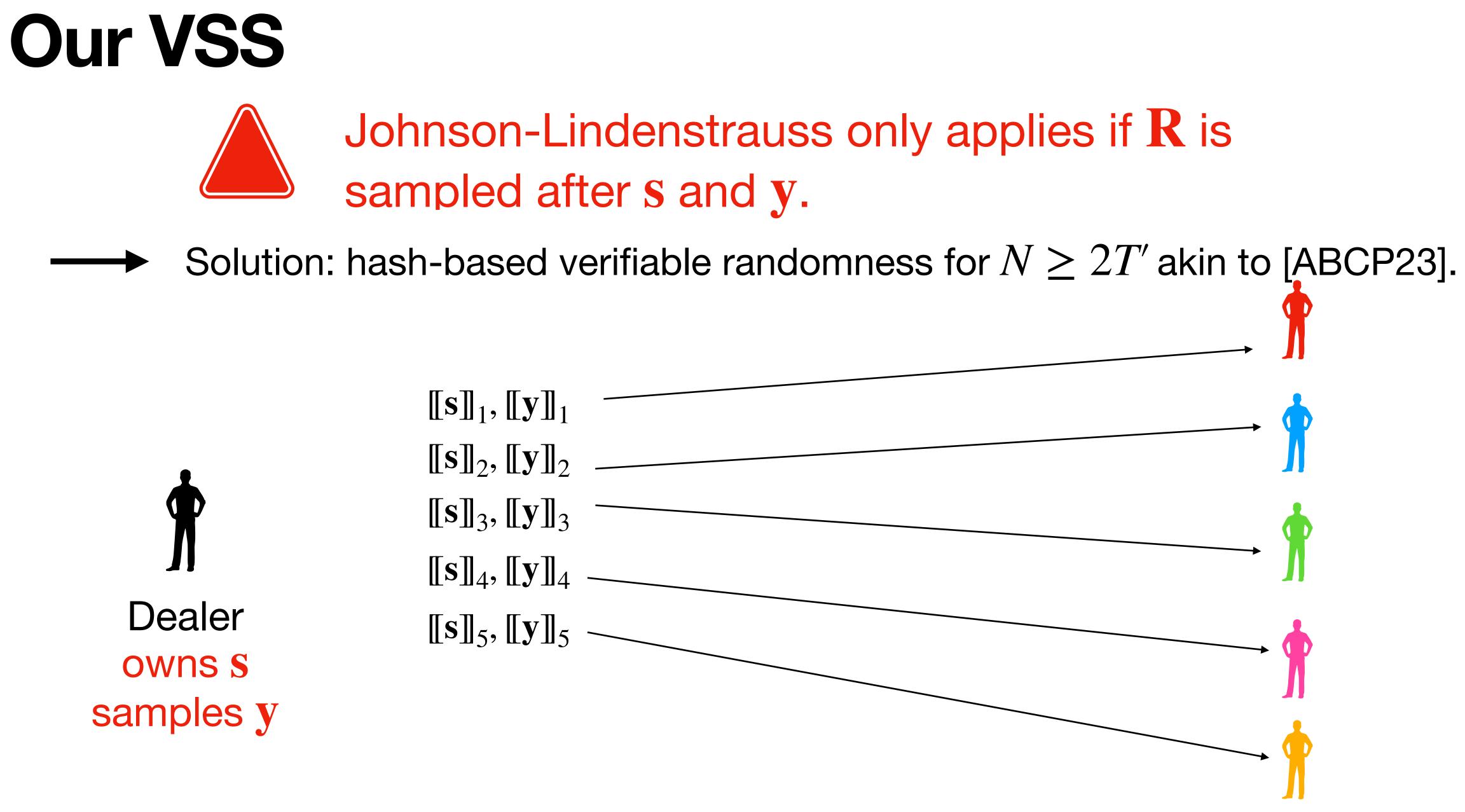
proba $\frac{1}{4}$, and 0 with proba $\frac{1}{2}$.

- Use a random projection to a smaller space!
- Modular Johnson-Lindenstrauss lemma with offset [Ngu22]: Take a vector y.
 - If a matrix \mathbf{R} is sampled from a discrete distribution with coefficients ± 1 with

- Then, $\|\mathbf{R} \cdot \mathbf{s} + \mathbf{y} \mod q\|_2$ is at least as large as $C \cdot \|\mathbf{s}\|_2$ for some $C = \omega(1)$.
 - Use small Gaussian noise keeping enough entropy in s instead of information theoretic.

Solution: hash-based verifiable randomness for $N \ge 2T'$ akin to [ABCP23].

Johnson-Lindenstrauss only applies if **R** is



Dealer owns S samples y

 $[[s]]_1, [[y]]_1$ $[[s]]_2, [[y]]_2$ $[[s]]_3, [[y]]_3$ $[[s]]_4, [[y]]_4$ $[[s]]_5, [[y]]_5$

Broadcast h = root Merkle tree containing $(\llbracket \mathbf{s} \rrbracket_i, \llbracket \mathbf{y} \rrbracket_i)_i$

Johnson-Lindenstrauss only applies if **R** is Solution: hash-based verifiable randomness for $N \ge 2T'$ akin to [ABCP23]. + individual proof membership in h $\mathbf{R} = H(h)$ Broadcast $\mathbf{R} \cdot [[\mathbf{s}]] + [[\mathbf{y}]]$

- $\circ~$ Our VSS reveals $R\cdot s+y$ where y is (rejection sampling.
 - Not purely ZK

Zero-knowledge: π , ($[[x]]_i$, π_i)_{i=1,...,N} = VSS . Share(**x**) π , ($[[x]]_i$, π_i)_{i=1,...,T-1} = SimShare()

• Our VSS reveals $\mathbf{R} \cdot \mathbf{s} + \mathbf{y}$ where \mathbf{y} is Gaussian: smaller shortness gap compared to

π , $(\llbracket x \rrbracket_i, \pi_i)_{i=1,...,T-1}$ is indistinguishable

- rejection sampling.
 - Not purely ZK : reduce security to Hint-MLWE with matrix hints

Zero-knowledge: $\pi, ([[x]]_i, \pi_i)_{i=1,...,N} = VSS . Share(\mathbf{x})$ $\pi, ([x]]_i, \pi_i)_{i=1,...,T-1} = \text{SimShare}()$

Fragmentary knowledge: $\pi, ([[x]]_i, \pi_i)_{i=1,...,N} = VSS . Share(\mathbf{x})$ $\pi, (\llbracket x \rrbracket_i, \pi_i)_{i=1,\dots,T-1} = \mathsf{SimShare}(\mathbf{R} \cdot \mathbf{x} + \mathbf{y})$

• Our VSS reveals $\mathbf{R} \cdot \mathbf{s} + \mathbf{y}$ where y is Gaussian: smaller shortness gap compared to

π , $(\llbracket x \rrbracket_i, \pi_i)_{i=1,...,T-1}$ is indistinguishable

- rejection sampling.
 - Not purely ZK : reduce security to Hint-MLWE with matrix hints
- Approximation gap ~70, vs $\gg 2500$ in [GHL21] using JL lemma

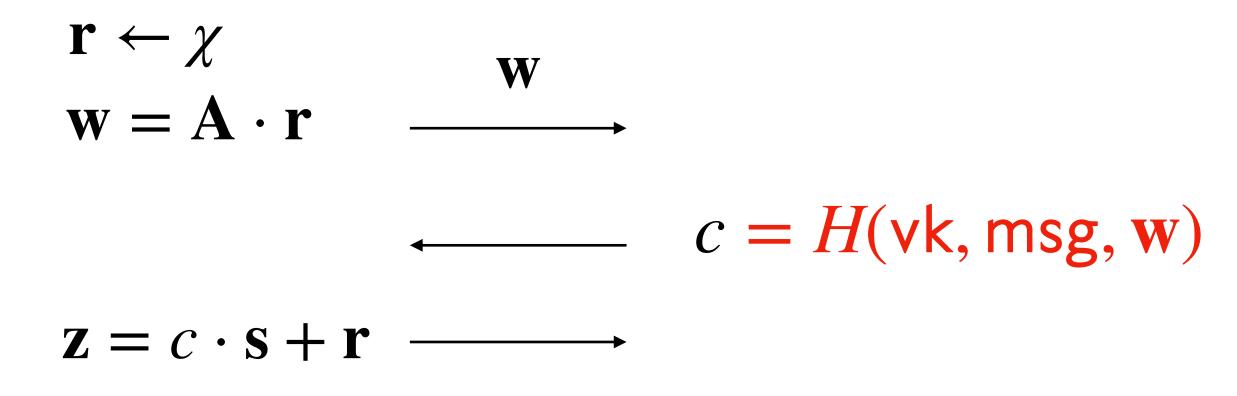
• Our VSS reveals $\mathbf{R} \cdot \mathbf{s} + \mathbf{y}$ where y is Gaussian: smaller shortness gap compared to

4. Bonus: application to hash-and-sign

Fiat-Shamir vs Hash-and-Sign signatures

Fiat-Shamir

... Dilithium, Raccoon



Accept if

- z is short
- $\mathbf{A} \cdot \mathbf{z} = c \cdot \mathbf{t} + \mathbf{w}$

Hash-and-Sign ... Falcon, Plover

 $\mathbf{u} = H(\mathbf{vk}, \mathbf{msg})$

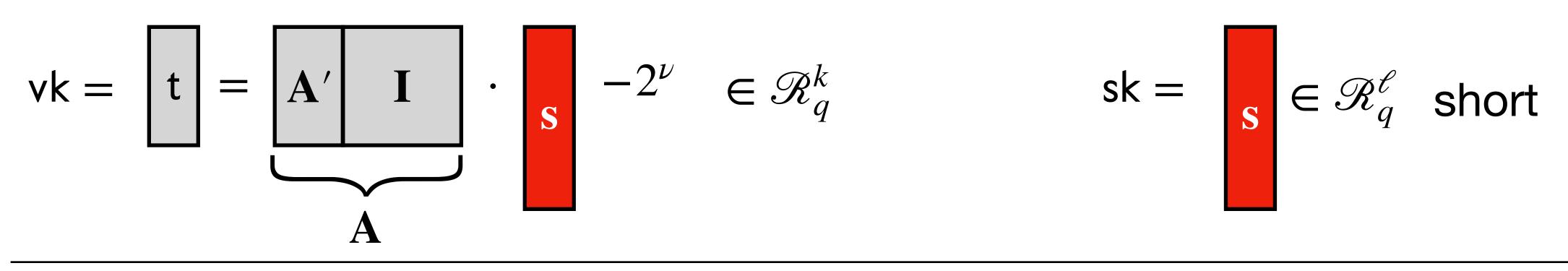
z = Inv(sk, u)

Accept if

- z is short
- $\mathbf{A} \cdot \mathbf{z} = \mathbf{u}$ (= H(vk, msg))

Plover signature scheme

Based on Eagle [YJW23]



 $\mathbf{u} = H(\mathbf{vk}, \mathbf{msg})$

$$\mathbf{r} \leftarrow \chi$$

$$\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$$

$$\mathbf{u}' = \mathbf{u} - \mathbf{w} = 2^{\nu} \cdot c_1 + c_2$$

$$\mathbf{z} = \begin{bmatrix} c_1 \cdot \mathbf{s} + \mathbf{r} \\ c_1 \end{bmatrix}$$

Accept if

- z is short
- $[\mathbf{A} \ \mathbf{t}] \cdot \mathbf{z} = \mathbf{u} \ (= H(vk, msg))$

Conclusion

Conclusion

- corruption threshold T' = T/3.
- **Pelican:** first lattice hash-and-sign threshold signature + DKG + robustness

Pelican = application to Plover, in this presentation applied to Raccoon

Practical VSS scheme with approximate shortness proof: slack ~70

K	max T'	vk	sig	Communication
128	16	12.8kB	12.3kB	26.8 + 19N kB
196	1024	25.6kB	26.4kB	53.8 + 38N kB

Proposed parameter sets for Pelican

Framework relying on VSS to achieve robust DKG and robust signature scheme with