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1. Background



(7-out-of-N) threshold signatures

What are they?

An Iinteractive protocol to distribute signature generation.

ﬁ t " ” = 1 verification key vk
ske sk; » 1 partial signing key sk; per party

= Given at least T-out-of-/V partial
signing keys, we can sign.
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(7-out-of-N) threshold signatures

What are they?

Round-based communication model:

msg!

(msg].l ies
Party 1 Coordinator
msg>2

(msgcs



Core security properties

o Correctness: Given at least 1-out-of-/V partial signing keys, we can sign.

o Unforgeability: The signature scheme remains unforgeable even if up to
1" < T parties are corrupted. Often 7' =T — 1.

It’s not possible to forge a
new signhature, even by
taking part in the signing
protocol.




More desirable properties

o Adaptive security: (vs static security) Corrupted users can be chosen adaptively
over the lifetime of the signature scheme. More realistic than static security, I.e.
corrupted users chosen before setup.

o Distributed Key Generation: Protocol allowing to distributively sample key material.

o Robustness (resp. identifiable abort): In the presence of malicious users, signature
protocol is guaranteed to produce a valid signature (resp. to identify misbehaving
users)

o Small round complexity: |Ideally can be as low as one round.

o Backward compatibility: Threshold schemes should ideally be compatible with
existing primitives.



Pre-quantum solutions

o Mature solutions:

¢ EADSA: FROST [KG20]
ECDSA: [ANOS+21]
BLS: [BolO3]
RSA: [ShoQO0]

¢ o6 o

o Provide all desirable properties.



An active field of research for post-quantum security

o Aggregating hash-based signatures: [KCLM22]
o Sequential TS scheme based on isogenies: [DM20]

o Lattice-based threshold signatures:

¢ 2-round TS via FHE: [BGG+18], [ASY22], [GKS23]

¢ TS with noise flooding (based on Raccoon): 3-round [dPKM+23], 2-round
[EKT24], [BKLM+24], 5-round adaptively secure [KRT24]
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Threshold Raccoon, a practical 3-round threshold signature

Total

K Number Signers | vk | | sig | communication

128 < 1024 4 kB 13 kB 40 kB

... but only considers core security properties: correctness and unforgeabillity.



Advanced properties of lattice-based schemes

Active research since 2024.
o Adaptive security: 5-round [KRT24]
o Small round complexity: 2-round [EKT24], [BKLM+24]

o Backward compatibility: These schemes can be made compatible with the
NIST proposal Raccoon.

No efficient solution for:
o Distributed Key Generation (DKG)

o Robustness / identifiable abort



Focus of this presentation

* Distributed Key Generation (DKG)

 Robustness. Guarantee valid signature in the presence of malicious signers

Our techniques for DKG + robust signing are quite generic:
* in our paper, applied to Plover [EENP+24]|: hash-and-sign scheme

e can be applied to all 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]



Raccoon signature scheme

Lyubashevsky’s sighature scheme (without aborts)

vk = = n ' Eg?’; sk = 69?5 short
—
A
r <y
wW=A-r W
¢ = H(vk,msg,w) € &£ _“small”
Z=cC-S+r - Accept If

/ e Z IS short

Prove security via Hint-MLWE assumption « A.z=c-t+w



Hint-MLWE assumption [KLSS23]

Consider = - '

)
A

k .
€ #; andreveal hints (z;=¢;- s +1);p]

t is indistinguishable from uniform (as hard as MLWE) for some parameter regimes.

Rule of thumb: secure if 6, & /0 - s,(c) - O



Threshold Raccoon [dPKM+23]

Threshold signature: use (7, N)-Shamir sharing on secret
Sample polynomial f € g?g[X] s.t.
< ‘%5 short « f(0)=sanddegf=T-1
» Partial signing keys sk; := [[s]]. = f(7)

sk =

For any set S of T shares, reconstruct s:

S = ZLS,i' [s]];

< \

Lagrange coefficient



Threshold Raccoon [dPKM+23]

Threshold signature: use (7, N)-Shamir sharing on secret

S = ZLS,Z-- Is]l.

€S

_ For any set S of T shares, reconstruct s:
sk = H e R short g

r < y
W=A-r

c = H(vk, msg, w)

Z=¢C*S+T7r




Threshold Raccoon [dPKM+23]

Threshold signature: use (7, N)-Shamir sharing on secret

For any set S of T shares, reconstruct s:

sk = e R short 3
€S
ri (_)(A Cmti — H(Wl)
W. = - I P >
r—=x | 1 (emt;)ies
wW=A-r W;

c = H(vk, msg, w)

Z=¢C*S+T7r




Threshold Raccoon [dPKM+23]

Threshold signature: use (7, N)-Shamir sharing on secret

For any set S of T shares, reconstruct s:

sk = e %, short 5
€S
ri (_)(A Cmti — H(Wl)
W. = . P >
ik | | emies Accept If
w=A-r W,
« " . Z=Z[[Z]]j=c-s+2rjisshort
Z (W])]ES JES JES
C:H(vk,ms ,W) W= ) W, « Az=c-t+w
. JES e :
Z=C-S+T7T ¢ = H(vk, msg, w) Additive sharing of 0

[z]l; = c - LS,,' - Isll; + 1',-‘|‘Ai Z



2. Achieving additional threshold
properties with Verifiable Secret Sharing



Achieving additional threshold properties with Verifiable Secret Sharing

v




Verifiable Secret Sharing (VSS)

b

i

Dealer
OWNS S




Verifiable Secret Sharing (VSS)

1) Send individual shares
Isl, ” ﬁ
///@///

Dealer N
=3 }
[SH6

>




Verifiable Secret Sharing (VSS)

1) Send individual shares 2) Prove correct sharing, i.e.
* relation s = ZLSJ" [s]l. for [ S| =T
e S short
Is]] 15 701 ﬁ

- »
Dealer w‘ ”

OWwWnsS S Formally,

« VSS. Verify(i, [sll;, =, ;) — ok |fail

[SH6



Distributed Key Generation (DKG) from VSS

O Assume the existence of a broadcast or bulletin board.

o Assume the existence of non-repudiable pairwise channels.

ﬁ SKE . Encrypt(msg)
Allows to prove that a

K;; K; ; message was sent.

Bulletin

P



Distributed Key Generation (DKG) from VSS




Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S

)
A

sk = I = 9535 short




Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

1.a) Sample small secrets S;

)
A

sk = IEQ?g short S6 ﬁ




Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

I :
1.a) Sample small secrets s, 1.b) Send shares ([[s;]];, 7/);

A“ Bulletin board

. [[S6ﬂ1=”61 | /
\ //
sk = Ie%? short S¢ ﬁ / _[[56]]3’71'63
[[56]]5»>6\

I
oo




Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

1
1.c) Verify shares ([[S.]l, JZ'{)J- and complain

= 9?]‘ x [[86]]1 71'6

q

Vk:z.

)

Complain vs 6

A
(reveal K )
S 95?5 short S [s6ll5,
Bulletin board

[se1ls. 7T65 ﬁ

sk =

i .
.a) Sample small secrets §; 1.b) Send shares ([[s;]];, 7/);



Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

i .
1.a) Sample small secrets s; 1.b) Send shares ([[s;]l, 771] );

1.c) Verify shares ([[S.]l, JZ'{)J- and complain  1.d) Aggregate

Vk:z.

)
A

c R, Final secret ﬁ

176

= 9535 short x
Bulletin board

— review complaints

1

sk =




Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

i .
1.a) Sample small secrets s; 1.b) Send shares ([[s;]l, 771] );

1.c) Verify shares ([[S.]l, JZ'{)J- and complain  1.d) Aggregate

k= [t|=|A’ - c KX i
v g Final secret o =Y s,
- ___— S = Z S Jj#6
A i£6

sk =

69535 short x ﬂ 53
Bulletin board

— review complaints

S- ” 34




Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

2. Compute vk = A - S




Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

l

2. Compute vk = A - S

Use Reed-Solomon error correction
to recover vk = A - s

— can only support T’=T/3 corruption




Robust Signing with VSS

Threshold Raccoon

(c:mtj)jE g

W;

(Wj) ies

ies

¢ = H(vk, msg, w)




Robust Signing with VSS

Threshold Raccoon

(c:mtj)jE g

W;

(Wj) ies

ies

¢ = H(vk, msg, w)
[z]l; = c - LS,i Isll; + r; + A,

Robust ThRaccoon

1) Use DKG to sample secretr = Z I

l
and compute w = A - r: 3 rounds

l



Robust Signing with VSS

Threshold Raccoon

(c:mtj)jE g

W;

(Wj)jes
ies

¢ = H(vk, msg, w)

[z]l; = c - LS,i Isll; + r; + A,

Robust ThRaccoon

l

1) Use DKG to sample secretr = Z I

l
and compute w = A - r: 3 rounds

2) Compute signature shares: 1 round
¢ = H(vk, msg, w)
[[Z]]i = C [[S]]i + [[I’]]l-

If corruption threshold 7" < T/3, Reed-Solomon
error correction guarantees signature output.



3. A practical VSS with approximate
shortness proof



Prior work on VSS

o Classical setting (uniform secret)
¢ BGW VSS [BGWS8S8]: IT security
¢ Pedersen VSS [Ped92]: relies on DL
¢ [ABCP23] based on hash functions

o VSS with shortness proof [GHL21]: quite large and DL aggregation



Our VSS

How to prove shortness of a vector S without revealing it?
Use a random projection to a smaller space!

Modular Johnson-Lindenstrauss lemma with offset [Ngu22]: Take a vectory.

If a matrix R is sampled from a discrete distribution with coefficients =1 with

|
proba %, and 0 with proba >

Then, ||[R - s +y mod ¢||, is at least as large as C - |[s]|, for some C = w(1).



Our VSS

How to prove shortness of a vector S without revealing it?
Use a random projection to a smaller space!

Modular Johnson-Lindenstrauss lemma with offset [Ngu22]: Take a vectory.

If a matrix R is sampled from a discrete distribution with coefficients =1 with

|
proba %, and 0 with proba >

Then, ||[R - s +y mod ¢||, is at least as large as C - |[s]|, for some C = w(1).

\ Use small Gaussian noise keeping enough entropy in S
instead of information theoretic.



Our VSS

Johnson-Lindenstrauss only applies if R is
sampled after s and y.

—p  Solution: hash-based verifiable randomness for N > 27" akin to [ABCP23].




Our VSS

Johnson-Lindenstrauss only applies if R is
sampled after s and y.

—p  Solution: hash-based verifiable randomness for N > 27" akin to [ABCP23].

1

[sll;, Iylly, ~ R ﬁ
s, Lyll,
” [sll5, Lyl
[sT. [yl - N
Dealer

[sls, Ly 1l - ﬁ
OWNS S
samples 'y \



Our VSS

Johnson-Lindenstrauss only applies if R is
sampled after s and y.

—p  Solution: hash-based verifiable randomness for N > 27" akin to [ABCP23].

1

[[S]]la [[Y]]l B . W
[s1l. Lyl
” Islls, [yll; + individual proof membership in A
[T, Iyl - )
Dealer

[s]ls, [Lylls ~
owns S \ ﬁ

samples y Broadcast & = root Merkle tree R = H(h)
containing ([[s1]., [[y1l.); Broadcast R - [[s]] + [ Y]

\>



Our VSS

o QOur VSSreveals R - s + y where y is Gaussian: smaller shortness gap compared to
rejection sampling.

¢ Not purely ZK

Zero-knowledge:




Our VSS

o Our VSSreveals R - s + y where y is Gaussian: smaller shortness gap compared to
rejection sampling.

¢ Not purely ZK : reduce security to Hint-MLWE with matrix hints

Zero-knowledge:

7, ([x],, 7).y 7_; = SimShare()




Our VSS

o QOur VSSreveals R - s + y where y is Gaussian: smaller shortness gap compared to
rejection sampling.

¢ Not purely ZK : reduce security to Hint-MLWE with matrix hints

o Approximation gap ~70, vs > 2500 in [GHL21] using JL lemma



4. Bonus: application to hash-and-sign



Fiat-Shamir vs Hash-and-Sign signatures

Fiat-Shamir Hash-and-Sign

r <y
w=A-r - u = H(vk, msg)

c = H(vk, msg, w)

Z = Inv(sk,u)

Z7=¢C-*‘S+T7r

Accept If Accept If
e ZIs short e ZIs short
e AvZ=c-t+w « A-z=u (= H(vk, msg))




Plover signature scheme

Based on Eagle [YJW23]

vk — = . -2 e Rt sk = € R, short
R/_J
A
u = H(vk, msg)
r <y Accept if
wW=A:r e Zis short
u:u—W:2U°Cl+C2 e A t|-Z=u (:H(Vkamsg))

Cl°S+I'
7 =
C1




Conclusion



Conclusion

* Framework relying on VSS to achieve robust DKG and robust signature scheme with

corruption threshold 7" = T/3.

* Pelican: first lattice hash-and-sign threshold signature + DKG + robustness

Pelican = application to Plover, in this presentation applied to Raccoon

* Practical VSS scheme with approximate shortness proof: slack ~70

K max T’ | vk | | sig | Communication
128 16 12.8kB 12.3kB 26.8 + 19N kB
196 1024 25.6kB 26.4kB 53.8 + 38N kB

Proposed parameter sets for Pelican




