
Flood and Submerse:

Thomas Prest

Distributed Key Generation and Robust Threshold Signature
from Lattices

Guilhem NiotThomas Espitau

1. Background

(-out-of-) threshold signaturesT N
What are they?

An interactive protocol to distribute signature generation.

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

1 verification key

1 partial signing key per party

Given at least -out-of- partial
signing keys, we can sign.

𝗏𝗄

𝗌𝗄i

T N

(-out-of-) threshold signaturesT N
What are they?

An interactive protocol to distribute trust.

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

(T, N) = (3,6)

Signature on σ 𝗆𝗌𝗀

Security properties
Correctness: Given at least -out-of- partial signing keys, we can sign.

Unforgeability: The signature scheme remains unforgeable even if up to
 parties are corrupted. Often .

T N

T′￼ < T T′￼ = T − 1

𝗌𝗄1
𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

T′￼ = 2

It’s not possible to forge a
new signature, even by
taking part in the signing
protocol.

An active field of research

Aggregating hash-based signatures: [KCLM22]

Sequential TS scheme based on isogenies: [DM20]

Lattice-based threshold signatures:

2-round TS via FHE: [BGG+18], [ASY22], [GKS23]

TS with noise flooding: 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]

An active field of research

Aggregating hash-based signatures: [KCLM22]

Sequential TS scheme based on isogenies: [DM20]

Lattice-based threshold signatures:

2-round TS via FHE: [BGG+18], [ASY22], [GKS23]

TS with noise flooding: 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]TS with noise flooding: 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]

Open problems for lattice-based schemes

• Distributed Key Generation (DKG)

• Robustness: Guarantee valid signature in the presence of malicious signers

Our techniques for DKG + robust signing are quite generic:

• in our paper, applied to Plover [EENP+24]: hash-and-sign scheme

• can be applied to all 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]

Threshold Raccoon [dPKM+23]
Lyubashevsky’s signature scheme (without aborts)

𝗏𝗄 = 𝗍 = A′￼ I ⋅ s 𝗌𝗄 = s ∈ ℛℓ
q∈ ℛk

q short

r ← χ
w = A ⋅ r

{A

w

 “small”c = H(𝗏𝗄, 𝗆𝗌𝗀, w) ∈ ℛq
z = c ⋅ s + r Accept if

• is short

•

z
A ⋅ z = c ⋅ t + wSecure if ∥r∥ = 𝒪(Qs ⋅ ∥c∥)

Threshold Raccoon [dPKM+23]
Threshold signature: use -Shamir sharing on secret(T, N)

Sample polynomial s.t.

• and

• Partial signing keys

f ∈ ℛℓ
q[X]

f(0) = s deg f = T − 1
𝗌𝗄i := [[s]]i = f(i)

For any set of shares, reconstruct :S T s
s = ∑

i∈S

LS,i ⋅ [[s]]i

Lagrange coefficient

𝗌𝗄 = s ∈ ℛℓ
q short

Threshold Raccoon [dPKM+23]
Threshold signature: use -Shamir sharing on secret(T, N)

For any set of shares, reconstruct :S T s
s = ∑

i∈S

LS,i ⋅ [[s]]i

r ← χ
w = A ⋅ r

z = c ⋅ s + r
c = H(𝗏𝗄, 𝗆𝗌𝗀, w)

𝗌𝗄 = s ∈ ℛℓ
q short

Threshold Raccoon [dPKM+23]
Threshold signature: use -Shamir sharing on secret(T, N)

For any set of shares, reconstruct :S T s
s = ∑

i∈S

LS,i ⋅ [[s]]i

r ← χ
w = A ⋅ r

z = c ⋅ s + r
c = H(𝗏𝗄, 𝗆𝗌𝗀, w)

𝗌𝗄 = s ∈ ℛℓ
q short

ri ← χ
wi = A ⋅ ri

𝖼𝗆𝗍𝗂 = H(wi)

(𝖼𝗆𝗍j)j∈S

wi

(wj)j∈S

Threshold Raccoon [dPKM+23]
Threshold signature: use -Shamir sharing on secret(T, N)

For any set of shares, reconstruct :S T s
s = ∑

i∈S

LS,i ⋅ [[s]]i

r ← χ
w = A ⋅ r

z = c ⋅ s + r
c = H(𝗏𝗄, 𝗆𝗌𝗀, w)

𝗌𝗄 = s ∈ ℛℓ
q short

ri ← χ
wi = A ⋅ ri

𝖼𝗆𝗍𝗂 = H(wi)

(𝖼𝗆𝗍j)j∈S

wi

(wj)j∈S

zi

c = H(𝗏𝗄, 𝗆𝗌𝗀, w)

w = ∑
j∈S

wj

[[z]]i = c ⋅ LS,i ⋅ [[s]]i + ri+Δi

Share of 0

Accept if
• is short

•

z = ∑
j∈S

[[z]]j = c ⋅ s + ∑
j∈S

rj

A ⋅ z = c ⋅ t + w

2. Achieving additional threshold
properties with Verifiable Secret Sharing

Achieving additional threshold properties with Verifiable Secret Sharing

VSS: secret share
small secret s

Key generation:
Distributed short secret sampling

Robust signing:
Distributed short noise sampling

Verifiable Secret Sharing (VSS)

Dealer
owns s

Verifiable Secret Sharing (VSS)

Dealer
owns s

1) Send individual shares

[[s]]1
[[s]]2

[[s]]3

[[s]]4

[[s]]5[[s]]6

Verifiable Secret Sharing (VSS)

Dealer
owns s

1) Send individual shares

[[s]]1
[[s]]2

[[s]]3

[[s]]4

[[s]]5[[s]]6

2) Prove correct sharing, i.e.

• relation for

• short

s = ∑
i∈S

LS,i ⋅ [[s]]i |S | = T

s, π1
, π2

, π3

, π4

, π5

π

Formally,

•

•
𝖵𝖲𝖲 . 𝖲𝗁𝖺𝗋𝖾(s) → (π, ([[s]]i, πi)1≤i≤N)
𝖵𝖲𝖲 . 𝖵𝖾𝗋𝗂𝖿𝗒(i, [[s]]i, π, πi) → ok | fail

Distributed Key Generation (DKG) from VSS

𝗌𝗄 = s ∈ ℛℓ
q short

𝗏𝗄 = 𝗍 = A′￼ I ⋅ s ∈ ℛk
q{A

Distributed Key Generation (DKG) from VSS

𝗌𝗄 = s ∈ ℛℓ
q short

𝗏𝗄 = 𝗍 = A′￼ I ⋅ s ∈ ℛk
q{A

1. Construct and share secret key s

Distributed Key Generation (DKG) from VSS

𝗌𝗄 = s ∈ ℛℓ
q short

𝗏𝗄 = 𝗍 = A′￼ I ⋅ s ∈ ℛk
q{A

1. Construct and share secret key s

s6

= ∑
i

si

s1 s2

s3

s4s5

1.a) Sample small secrets si

Distributed Key Generation (DKG) from VSS

𝗌𝗄 = s ∈ ℛℓ
q short

𝗏𝗄 = 𝗍 = A′￼ I ⋅ s ∈ ℛk
q{A

1. Construct and share secret key s

s6

= ∑
i

si

[[s6]]1, π1
6

[[s6]]5, π5
6

[[s6]]2, π2
6

[[s6]]3, π3
6

[[s6]]4, π4
6

1.a) Sample small secrets si 1.b) Send shares ([[si]]j, π j
i)j

Distributed Key Generation (DKG) from VSS

𝗌𝗄 = s ∈ ℛℓ
q short

𝗏𝗄 = 𝗍 = A′￼ I ⋅ s ∈ ℛk
q{A

s6

[[s6]]1, π1
6

1.a) Sample small secrets si 1.b) Send shares ([[si]]j, π j
i)j

1.c) Verify shares and complain([[si]]j, π j
i)j

[[s6]]2, π2
6

[[s6]]3, π3
6

[[s6]]4, π4
6[[s6]]5, π5

6

Complain vs 6

1. Construct and share secret key s = ∑
i

si

Distributed Key Generation (DKG) from VSS

𝗌𝗄 = s ∈ ℛℓ
q short

𝗏𝗄 = 𝗍 = A′￼ I ⋅ s ∈ ℛk
q{A

1.a) Sample small secrets si 1.b) Send shares ([[si]]j, π j
i)j

1.c) Verify shares and complain([[si]]j, π j
i)j 1.d) Aggregate

s = ∑
i≠6

si

Final secret

1. Construct and share secret key s = ∑
i

si

Distributed Key Generation (DKG) from VSS

𝗌𝗄 = s ∈ ℛℓ
q short

𝗏𝗄 = 𝗍 = A′￼ I ⋅ s ∈ ℛk
q{A

1.a) Sample small secrets si 1.b) Send shares ([[si]]j, π j
i)j

1.c) Verify shares and complain([[si]]j, π j
i)j

s1 = ∑
j≠6

[[sj]]1
s2

s3

s4s5

1.d) Aggregate

s = ∑
i≠6

si

Final secret

1. Construct and share secret key s = ∑
i

si

Distributed Key Generation (DKG) from VSS

𝗌𝗄 = s ∈ ℛℓ
q short

𝗏𝗄 = 𝗍 = A′￼ I ⋅ s ∈ ℛk
q{A

[[s]]2

[[s]]3

[[s]]4[[s]]5

[[s]]1

s6

2. Compute 𝗏𝗄 = A ⋅ s

1. Construct and share secret key s = ∑
i

si

A ⋅ s6

A ⋅ [[s]]1 A ⋅ [[s]]2

A ⋅ [[s]]3

A ⋅ [[s]]4

A ⋅ [[s]]5

A ⋅ s

Distributed Key Generation (DKG) from VSS

𝗌𝗄 = s ∈ ℛℓ
q short

𝗏𝗄 = 𝗍 = A′￼ I ⋅ s ∈ ℛk
q{A

[[s]]2

[[s]]3

[[s]]4[[s]]5

[[s]]1

s6

2. Compute 𝗏𝗄 = A ⋅ s

1. Construct and share secret key s = ∑
i

si

A ⋅ s6

A ⋅ [[s]]1 A ⋅ [[s]]2

A ⋅ [[s]]3

A ⋅ [[s]]4

A ⋅ [[s]]5

Use Reed-Solomon error correction
to recover

 can only support T’=T/3 corruption

𝗏𝗄 = A ⋅ s

→

A ⋅ s

Robust Signing with VSS

ri ← χ
wi = A ⋅ ri

𝖼𝗆𝗍𝗂 = H(wi)

(𝖼𝗆𝗍j)j∈S

wi

(wj)j∈S

zi

c = H(𝗏𝗄, 𝗆𝗌𝗀, w)

w = ∑
j∈S

wj

[[z]]i = c ⋅ LS,i ⋅ [[s]]i + ri +Δi

Threshold Raccoon

Robust Signing with VSS

ri ← χ
wi = A ⋅ ri

𝖼𝗆𝗍𝗂 = H(wi)

(𝖼𝗆𝗍j)j∈S

wi

(wj)j∈S

zi

c = H(𝗏𝗄, 𝗆𝗌𝗀, w)

w = ∑
j∈S

wj

[[z]]i = c ⋅ LS,i ⋅ [[s]]i + ri +Δi

Threshold Raccoon Pelican

1) Use DKG to sample secret

and compute : 3 rounds

r = ∑
i

ri

w = A ⋅ r

Robust Signing with VSS

ri ← χ
wi = A ⋅ ri

𝖼𝗆𝗍𝗂 = H(wi)

(𝖼𝗆𝗍j)j∈S

wi

(wj)j∈S

zi

c = H(𝗏𝗄, 𝗆𝗌𝗀, w)

w = ∑
j∈S

wj

[[z]]i = c ⋅ LS,i ⋅ [[s]]i + ri +Δi

Threshold Raccoon Pelican

1) Use DKG to sample secret

and compute : 3 rounds

r = ∑
i

ri

w = A ⋅ r

c = H(𝗏𝗄, 𝗆𝗌𝗀, w)

[[z]]i = c ⋅ [[s]]i + [[r]]i

If corruption threshold , Reed-Solomon
error correction guarantees signature output.

T′￼ ≤ T/3

2) Compute signature shares: 1 round

3. A practical VSS with approximate
 shortness proof

Prior work on VSS

Classical setting (uniform secret)

BGW VSS [BGW88]: IT security

Pedersen VSS [Ped92]: relies on DL

[ABCP23] based on hash functions

VSS with shortness proof [GHL21]: quite large and DL aggregation

Our VSS
How to prove shortness of a vector without revealing it?s

Use a random projection to a smaller space!

Our VSS
How to prove shortness of a vector without revealing it?s

Use a random projection to a smaller space!

Modular Johnson-Lindenstrauss lemma with offset [Ngu22]:

If a matrix is sampled from a discrete distribution with coefficients with

proba , and with proba .

Then, is at least as large as for some .

R ±1
1
4

0
1
2

∥R ⋅ s + y mod q∥2 C ⋅ ∥s∥2 C = ω(1)

Take a vector .y

Use small Gaussian noise keeping enough entropy in
instead of information theoretic.

s

Our VSS
Johnson-Lindenstrauss only applies if is
sampled after and .

R
s y

Solution: hash-based verifiable randomness for akin to [ABCP23].N ≥ 2T′￼

Our VSS
Johnson-Lindenstrauss only applies if is
sampled after and .

R
s y

Solution: hash-based verifiable randomness for akin to [ABCP23].N ≥ 2T′￼

Dealer
owns s

samples y

[[s]]1, [[y]]1

[[s]]2, [[y]]2

[[s]]3, [[y]]3

[[s]]4, [[y]]4

[[s]]5, [[y]]5

Our VSS
Johnson-Lindenstrauss only applies if is
sampled after and .

R
s y

Solution: hash-based verifiable randomness for akin to [ABCP23].N ≥ 2T′￼

Dealer
owns s

samples y

[[s]]1, [[y]]1

[[s]]2, [[y]]2

[[s]]3, [[y]]3

[[s]]4, [[y]]4

[[s]]5, [[y]]5

Broadcast root Merkle tree

containing

h =
([[s]]i, [[y]]i)i

+ individual proof membership in h

Broadcast
R = H(h)

R ⋅ [[s]] + [[y]]

Our VSS

Our VSS reveals where is Gaussian: smaller shortness gap
compared to rejection sampling.

Not purely ZK: reduce security to Hint-MLWE

Approximation gap ~70, vs in [GHL21] using JL lemma

R ⋅ s + y y

≫ 2500

Conclusion

Conclusion

• Framework relying on VSS to achieve robust DKG and robust signature scheme with
corruption threshold .

• Pelican: first lattice hash-and-sign threshold signature + DKG + robustness

Pelican = application to Plover, in this presentation applied to Raccoon

• Practical VSS scheme with approximate shortness proof: slack ~70

T′￼ = T/3

κ max T’ | vk | | sig |

128 16 12.8kB 12.3kB

196 1024 25.6kB 26.4kB

Proposed parameter sets for Pelican

