e
7p
O
.

al
7p
©
&
O

e

-

Guilhem Niot

Thomas Espitau

1. Background

(7-out-of-N) threshold signatures

What are they?

An Iinteractive protocol to distribute signature generation.

ﬁ t " ” = 1 verification key vk
ske sk; » 1 partial signing key sk; per party

= Given at least T-out-of-/V partial
signing keys, we can sign.

(7-out-of-N) threshold signatures

What are they?

An interactive protocol to distribute trust.

O

—_— Signature 6 on msg

SKe (T.N) = (3.6)

Security properties

o Correctness: Given at least 1-out-of-/V partial signing keys, we can sign.

o Unforgeability: The signature scheme remains unforgeable even if up to
1" < T parties are corrupted. Often 7' =T — 1.

It’s not possible to forge a
new signhature, even by
taking part in the signing
protocol.

An active field of research

o Aggregating hash-based signatures: [KCLM22]
o Sequential TS scheme based on isogenies: [DM20]

o |attice-based threshold signatures:

¢ 2-round TS via FHE: [BGG+18], [ASY22], [GKS23]
¢ TS with noise flooding: 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]

An active field of research

o Aggregating hash-based signatures: [KCLM22]
o Sequential TS scheme based on isogenies: [DM20]

o [attice-based threshold signatures:

¢ 2-round TS via FHE: [BGG+18], [ASY22], [GKS23]
¢ [S with noise flooding: 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]

Open problems for lattice-based schemes

* Distributed Key Generation (DKG)

 Robustness. Guarantee valid signature in the presence of malicious signers

Our techniques for DKG + robust signing are quite generic:
* in our paper, applied to Plover [EENP+24]|: hash-and-sign scheme

e can be applied to all 3-round [dPKM+23], 2-round [EKT24], [BKLM+24]

Threshold Raccoon [dPKM+23]

Lyubashevsky’s sighature scheme (without aborts)

_ — / . k _
-
A
r <y
wW=A-r w
¢ = H(vk,msg,w) € &£ _“small”
Z=cC-S+r - Accept If
/ e ZIs short

Seaure if ||| = 6(/Q; - lc]l) CAz—cot+w

Threshold Raccoon [dPKM+23]

Threshold signature: use (7, N)-Shamir sharing on secret
Sample polynomial f € g?g[X] s.t.
< ‘%5 short « f(0)=sanddegf=T-1
» Partial signing keys sk; := [[s]]. = f(7)

sk =

For any set S of T shares, reconstruct s:

S = ZLS,i' [s]];

< \

Lagrange coefficient

Threshold Raccoon [dPKM+23]

Threshold signature: use (7, N)-Shamir sharing on secret

S = ZLS,Z-- Is]l.

€S

_ For any set S of T shares, reconstruct s:
sk = H e R short g

r < y
W=A-r

c = H(vk, msg, w)

Z=¢C*S+T7r

Threshold Raccoon [dPKM+23]

Threshold signature: use (7, N)-Shamir sharing on secret

For any set S of T shares, reconstruct s:

sk = e R short 3
€S
ri (_)(A Cmti — H(Wl)
W. = - I P >
r—=x | 1 (emt;)ies
wW=A-r W;

c = H(vk, msg, w)

Z=¢C*S+T7r

Threshold Raccoon [dPKM+23]

Threshold signature: use (7, N)-Shamir sharing on secret

For any set S of T shares, reconstruct s:

sk = e %, short 5
s= 2 Lg; sl
1eS
ri (_)(A Cmti — H(Wl)
W. = N P >
A | | (emes Accept If
w=A-r W,
« . Z=Z[[Z]]j=c-s+2rjisshort
(Wj)jeS jes jes
C:H(vk’msg,w) WZZWj e Az=c-t+w
es
Z=C-S+Tr C = }-I(Vk, msg, W) Share of 0

[z]l; = c - LS,,' - Isll; + 1',-‘|‘Ai Z

2. Achieving additional threshold
properties with Verifiable Secret Sharing

Achieving additional threshold properties with Verifiable Secret Sharing

v

Verifiable Secret Sharing (VSS)

b

i

Dealer
OWNS S

Verifiable Secret Sharing (VSS)

1) Send individual shares
Isl, ” ﬁ
///@///

Dealer N
=3 }
[SH6

>

Verifiable Secret Sharing (VSS)

1) Send individual shares 2) Prove correct sharing, i.e.
* relation s = ZLSJ" [s]l. for [S| =T
e S short
Is]] 15 701 ﬁ

- »
Dealer w‘ ”

OWwWnsS S Formally,

« VSS. Verify(i, [sll;, =, ;) — ok |fail

[SH6

Distributed Key Generation (DKG) from VSS

Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S

)
A

sk = I = 9535 short

Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

1.a) Sample small secrets S;

)
A

sk = IEQ?g short S6 ﬁ

Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

I :
1.a) Sample small secrets s, 1.b) Send shares ([[s;]];, 7/);

)
A

sk = I = 9535 short

Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

i .
1.a) Sample small secrets s; 1.b) Send shares ([[s;]l, 771]);

1.c) Verify shares ([[S.]l, JZ'{)J- and complain

)
A
sk = € R short ﬁ [s6115, 75

Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

I :
1.a) Sample small secrets s, 1.b) Send shares ([[s;]];, 7/);

1.c) Verify shares ([[Si]]j, JZ'{)J- and complain 1.d) Aggregate

)
A

Final secret

sk = HE% short x s=zsi
176

Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

i .
1.a) Sample small secrets s; 1.b) Send shares ([[s;]l, ﬂlj);

1.c) Verify shares ([[S.]l, lej)j and complain 1.d) Aggregate

c R 5= LI, ﬁ

1 6

Vk:z.

)
A

Final secret

= @g short x > = z Si ﬂ 53
176
S- ” 34

sk =

Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

2. Compute vk = A - S

Distributed Key Generation (DKG) from VSS

1. Construct and share secret key S = Z S.

l

2. Compute vk = A - S

Use Reed-Solomon error correction
to recover vk = A - s

— can only support T’=T/3 corruption

Robust Signing with VSS

Threshold Raccoon

(c:mtj)jE g

W;

(Wj) ies

ies

¢ = H(vk, msg, w)

Robust Signing with VSS

Threshold Raccoon

(c:mtj)jE g

W;

(Wj) ies

ies

¢ = H(vk, msg, w)
[z]l; = c - LS,i Isll; + r; + A,

Pelican

1) Use DKG to sample secretr = Z I

l
and compute w = A - r: 3 rounds

l

Robust Signing with VSS

Threshold Raccoon

(c:mtj)jE g

W;

(Wj)jes
ies

¢ = H(vk, msg, w)

[z]l; = c - LS,i Isll; + r; + A,

Pelican

l

1) Use DKG to sample secretr = Z I

l
and compute w = A - r: 3 rounds

2) Compute signature shares: 1 round
¢ = H(vk, msg, w)
[[Z]]i = C [[S]]i + [[I’]]l-

If corruption threshold 7" < T/3, Reed-Solomon
error correction guarantees signature output.

3. A practical VSS with approximate
shortness proof

Prior work on VSS

o Classical setting (uniform secret)
¢ BGW VSS [BGWS8S8]: IT security
¢ Pedersen VSS [Ped92]: relies on DL
¢ [ABCP23] based on hash functions

o VSS with shortness proof [GHL21]: quite large and DL aggregation

Our VSS

How to prove shortness of a vector S without revealing it?
Use a random projection to a smaller space!

Our VSS

How to prove shortness of a vector S without revealing it?
Use a random projection to a smaller space!

Modular Johnson-Lindenstrauss lemma with offset [Ngu22]: Take a vectory.

If a matrix R is sampled from a discrete distribution with coefficients =1 with

|
proba %, and 0 with proba >

Then, ||[R - s +y mod ¢||, is at least as large as C - |[s]|, for some C = w(1).

\ Use small Gaussian noise keeping enough entropy in S
instead of information theoretic.

Our VSS

Johnson-Lindenstrauss only applies if R is
sampled after s and y.

—p Solution: hash-based verifiable randomness for N > 27" akin to [ABCP23].

Our VSS

Johnson-Lindenstrauss only applies if R is
sampled after s and y.

—p Solution: hash-based verifiable randomness for N > 27" akin to [ABCP23].

1

[sll;, Iylly, ~ R ﬁ
s, Lyll,
” [sll5, Lyl
[sT. [yl - N
Dealer

[sls, Ly 1l - ﬁ
OWNS S
samples 'y \

Our VSS

Johnson-Lindenstrauss only applies if R is
sampled after s and y.

—p Solution: hash-based verifiable randomness for N > 27" akin to [ABCP23].

1

[[S]]la [[Y]]l B . W
[s1l. Lyl
” Islls, [yll; + individual proof membership in A
[T, Iyl -)
Dealer

[s]ls, [Lylls ~
owns S \ ﬁ

samples y Broadcast & = root Merkle tree R = H(h)
containing ([[s1]., [[y1l.); Broadcast R - [[s]] + [Y]

\>

Our VSS

o QOur VSS reveals R - s + y where y is Gaussian: smaller shortness gap
compared to rejection sampling.

+ Not purely ZK: reduce security to Hint-MLWE

o Approximation gap ~70, vs > 2500 in [GHL21] using JL lemma

Conclusion

Conclusion

* Framework relying on VSS to achieve robust DKG and robust signature scheme with
corruption threshold 7" = T/3.

* Pelican: first lattice hash-and-sign threshold signature + DKG + robustness

Pelican = application to Plover, in this presentation applied to Raccoon

* Practical VSS scheme with approximate shortness proof: slack ~70

K max T’ | vk | | sig |
128 16 12.8kB 12.3kB
196 1024 25.0kB 26.4kB

Proposed parameter sets for Pelican

