Plover

A masking-friendly lattice-based Hash-and-Sign signature

Muhammed F. Esgin Monash University

Guilhem Niot
PQShield & Uni. Rennes 1

Amin Sakzad Monash University **Thomas Espitau** PQShield

Thomas Prest¹ PQShield

Ron Steinfeld Monash University

¹ Thanks to Thomas Prest for letting me reuse several of his slides.

Motivation

Signature schemes strike a balance between:

- Sizes (verification key and signatures)
- Speed (signing, verification)
- Portability
- Conservative assumptions
- Resistance against side-channel attacks

And so on...

Criteria		*	Ţ	→	*
Dilithium	**1	***	***	**	⊕
Falcon	***	***	**	**	⊕
SPHINCS+	*1	**	**	***	☆
Raccoon	**	***	***	**	***
Plover	**	***	***	**	***

Side-Channel Attacks

Side-channel attacks in cryptography

Example with Falcon

In Falcon, a signature sig is distributed as a Gaussian.

The signing key **sk** should remain private.

The power consumption leaks information about the dot product $\langle sig, sk \rangle$, or sk itself.

Figure 1: Flowchart of the signature

¹FALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel Attacks [KA21]

Example with Falcon

In Falcon, a signature sig is distributed as a Gaussian.

The signing key **sk** should remain private.

The power consumption leaks information about the dot product $\langle sig, sk \rangle$, or sk itself.

Filtering $\langle sig, sk \rangle > 0$

²Improved Power Analysis Attacks on Falcon [ZLYW23]

Masking and the t-probing model

t-probing model

- ⚠ Adversary can probe t circuit values at runtime
- Unrealistic but a good starting point

Masking

 \blacksquare Each sensitive value x is split in t + 1 shares:

$$[\![x]\!] = (x_1, x_2, \dots, x_{t+1})$$
 (1)

such that

$$x_1 + x_2 + \dots + x_{t+1} = x \mod q$$
 (additive)

or
$$x_1 \oplus x_2 \oplus \cdots \oplus x_{t+1} = x$$
 (boolean)

- \triangle In "real life", attacks cost is exponential in t
- **\$\oint{Computations}**?

Masking in practice?

How difficult are operations to mask?

- **②** Addition ([[c]] = [[a + b]])?
 - **>** Compute $[\![c]\!] = (a_1 + b_1, \dots, a_{t+1} + b_{t+1})$, simple and fast: $\Theta(t)$ operations
- - **>** Complex and slower: $\Theta(t^2)$ operations
- More complex operations?
 - > Use so-called *mask conversions* to convert between additive and boolean masking, very slow: $\gg \Theta(t^2)$ operations

Masking Dilithium and Falcon

Dilithium

- → Requires costly mask conversions. Does not scale well with t.
- → Or, masking-friendly variant Raccoon²

Falcon

²Submitted at the NIST 2023 Call for Additional Digital Signature Schemes.

Masked Hash-and-Sign signatures

Quick overview

PoSHIELD

- → In 2017, Falcon was submitted to NIST.
 - > Gaussian sampling and floating-point are challenging to mask.
- → In 2022, Mitaka [EFG⁺22], attempted to solve this.
 - > But, A Key-Recovery Attack against Mitaka in the t-Probing Model [Pre23]

Masking hash-and-sign signature scheme efficiently remains an open problem.

A masking friendly hash-and-sign scheme?

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Sign(sk, msg)

- $\mathbf{0} \mathbf{u} \coloneqq H(\mathsf{msg})$
- $\mathbf{0} \mathbf{w} := \mathbf{A} \cdot \mathbf{p}$
- $\mathbf{Q} \quad \mathbf{c} := \mathbf{u} \mathbf{w}$
- **5** Decompose **c** as $\mathbf{c} = \beta \cdot \mathbf{c}_1 + \mathbf{c}_2$
- **6** $\mathbf{y} \leftarrow D_{\lfloor q/\beta \rceil \cdot \mathcal{R}^{\ell} + \mathbf{c}_1, r}$
- $oldsymbol{o}$ $z := p + T \cdot y$
- return sig := z
- ② Almost linear scheme, maybe we can do something with it!

A masking friendly hash-and-sign scheme?

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Sign(sk, msg)

1
$$\mathbf{u} := H(\mathsf{msg})$$
 \triangleright No mask
2 $\mathbf{p} \leftarrow D_{\mathcal{R}^\ell, \sqrt{s^2 \mathbf{I} - r^2 \mathbf{T} \mathbf{T}^*}}$ \triangleright Hard
3 $\mathbf{w} := \mathbf{A} \cdot \mathbf{p}$ \triangleright Easy
4 $\mathbf{c} := \mathbf{u} - \mathbf{w}$ \triangleright No mask
5 Decompose \mathbf{c} as $\mathbf{c} = \beta \cdot \mathbf{c}_1 + \mathbf{c}_2$
6 $\mathbf{y} \leftarrow D_{\lfloor q/\beta \rceil \cdot \mathcal{R}^\ell + \mathbf{c}_1, r}$ \triangleright Hard
7 $\mathbf{z} := \mathbf{p} + \mathbf{T} \cdot \mathbf{y}$ \triangleright Easy
8 return sig $:= \mathbf{z}$

② Almost linear scheme, maybe we can do something with it!

A masking friendly hash-and-sign scheme?

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Sign(sk, msg)

1
$$\mathbf{u} := H(\mathsf{msg})$$
 \triangleright No mask

2
$$\mathbf{p} \leftarrow D_{\mathcal{R}^{\ell}, \sqrt{s^2 \mathbf{I} - r^2 \mathbf{T} \mathbf{T}^*}}$$

$$\mathbf{0} \mathbf{w} \coloneqq \mathbf{A} \cdot \mathbf{p}$$

$$\mathbf{Q} \mathbf{c} := \mathbf{u} - \mathbf{w}$$
 \triangleright No mask

5 Decompose **c** as
$$\mathbf{c} = \beta \cdot \mathbf{c}_1 + \mathbf{c}_2$$

6
$$\mathbf{y} \leftarrow D_{|q/\beta|} \cdot \mathcal{R}^{\ell} + \mathbf{c}_1, r$$
 $\triangleright \mathbf{Hard}$

$$oldsymbol{o}$$
 $z := p + T \cdot y$ \triangleright Easy

Plover.Sign(sk, msg)

$$2 \quad \|\mathbf{p}\| \leftarrow \text{AddRepNoise}(\sigma_{\mathbf{p}}) \quad \triangleright \quad \mathbf{Easy}$$

$$\mathbf{4} \ \mathbf{c} \coloneqq \mathbf{u} - \mathbf{w} \qquad \qquad \triangleright \text{ No mask}$$

5 Decompose **c** as
$$\mathbf{c} = \beta \cdot \mathbf{c}_1 + \mathbf{c}_2$$

$$\mathbf{z} := \mathsf{Unmask}(\llbracket \mathbf{p} \rrbracket + \llbracket \mathbf{T} \rrbracket \cdot \mathbf{c}_1) \; \triangleright \; \mathsf{Easy}$$

- ② Almost linear scheme, maybe we can do something with it!
- 😉 Introducing Plover, the first hash-and-sign masking-friendly signature scheme.

What happens inside AddRepNoise?

What happens inside AddRepNoise?

Problem: a probing adversary can learn the sum of ${\it T}$ random in 2 probes.

What happens inside AddRepNoise?

Solution: add refresh gadgets to separate the algorithm in independent layers Now a probing adversary learns at most (the sum of) t short noises.

Security of Plover?

- → Vanilla Plover,
 - > Output of AddRepNoise looks like a Gaussian.
 - No Gaussian sampling: signatures leak part of the secret

Definition 1 (Hint-MLWE)

It is hard to distinguish $(\mathbf{A}, \mathbf{u}, (c_i \cdot \mathbf{s} + \mathbf{p}_i)_i)$ with (c_i) small,

- \rightarrow when **u** is random
- \rightarrow or, when $\mathbf{u} = \mathbf{A} \cdot \mathbf{s}$ an MLWE sample

Assuming at most Q hints, Hint-MLWE is as hard as MLWE when taking \mathbf{p}_i of standard deviation $\approx \sqrt{Q} \|c\|$.

Vanilla Plover is secure when taking large enough perturbations p_i.

Security of Plover?

- → Masked Plover:
 - **\rightarrow** Leak part of the perturbation $\mathbf{p} = AddRepNoise(\sigma_{\mathbf{p}})$.

In t-probing model, write $\mathbf{p} = \mathbf{p}_{\mathsf{safe}} + \mathbf{p}_{\mathsf{leaked}}$.

If rep iterations in AddRepNoise, $\mathbf{p}_{\mathsf{safe}}$ has standard deviation $\sqrt{(t+1)\cdot\mathsf{rep}-t}\cdot\sigma_{\mathsf{p}}$.

Security of Masked Plover reduces to Vanilla Plover with small loss.

Performances on a Desktop

Proof in the t-probing model

Proof in the t-probing model

- → Generally, proofs are easy with the **SNI** framework.
 - Prove security of masked gadgets.
 - Compose them securely.
- → But doesn't work for AddRepNoise: AddRepNoise leaks some secret randomness, and not only shares.
 - New composable notion t-SNIu, which covers partial leakage of secret values.

Conclusion

A generic framework

Plover highlights a very generic framework for masking friendly schemes:

- → Replace non-linear operations with noise flooding. Leakage on the secret mitigated by taking large perturbations **p**.
- → Analyse leakage with Hint-MLWE problem.
- \rightarrow Use AddRepNoise to sample short vectors. New composable notion t-SNIu to prove security in the t-probing model.

Conclusion

Raccoon and Plover are specific-purpose scheme aimed at high side-channel resistance:

- © Standard assumptions: MLWE, MSIS
- Simpler
- Verification key size is similar
- Signatures are larger (≈ 10kB)
- (2) When masked, orders of magnitude faster than other schemes are

General framework to create masking friendly schemes:

- → Noise-flooding to replace non-linear operations
- → Prove unmasked security with Hint-MLWE
- → Sample short vectors with AddRepNoise and use t-SNIu notion to prove security in the t-probing model

Questions?

²Image from Emma Scheltema, https://drawingescape.wordpress.com

- Dmitri Asonov and Rakesh Agrawal. Keyboard acoustic emanations. pages 3–11, 2004.
 - Wim Van Eck.
 Electromagnetic radiation from video display units: An eavesdropping risk?
 Computers & Security, 4:269–286, 1985.
- Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.

 Mitaka: A simpler, parallelizable, maskable variant of falcon.

 pages 222–253, 2022.
- Emre Karabulut and Aydin Aysu.

 FALCON down: Breaking FALCON post-quantum signature scheme through side-channel attacks.

 In 58th ACM/IFEE Design Automation Conference, DAC 2021, San Francisco, CA
 - In 58th ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021, pages 691–696. IEEE, 2021.
- Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. pages 388–397, 1999.

Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. pages 104–113, 1996.

Thomas Prest.

A key-recovery attack against mitaka in the *t*-probing model. pages 205–220, 2023.

Yang Yu, Huiwen Jia, and Xiaoyun Wang.
Compact lattice gadget and its applications to hash-and-sign signatures.
pages 390–420, 2023.

Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang. Improved power analysis attacks on falcon. Cryptology ePrint Archive, Paper 2023/224, 2023. https://eprint.iacr.org/2023/224.