Plover

Muhammed F. Esgin Thomas Espitau G”"he"? Niot
Monash Universit PQShield PQShield
Y University Rennes 1
Thomas Prest’ Amin Sakzad Ron Steinfeld
PQShield Monash University Monash University

Thanks to Thomas for letting me reuse his slides on Raccoon.

- : PaGHIELD

Motivation

Signature schemes strike a balance between:
2 Sizes (verification key and signatures)
" Speed (signing, verification)

118 Portability
/% Conservative assumptions
%" Resistance against side-channel attacks

And so on...
Criteria | V4 o Ll P *
Dilithium * Ny) 6 6 ¢) 8 8 ¢ *% >
Falcon) 6 6 ¢) 0 6 ¢) o ¢ *%)
SPHINCS+ *v *v *W) 6 4 >
Raccoon * % * AN) & 6 ¢ *%) 6 6 ¢
Plover * %) 6 & ¢) & & ¢ * %) 6 &

Side-Channel
Attacks

Side-channel attacks in cryptography ::)aGHIELD

&

TN

Timing measurement [Koc%6]

a

Power consumption [KJJ99] Electromagnetic emissions [Eck85]

L

SPECTRE

Example with Falcon . PASHIELD

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product (sig, sk), or sk itself.

FALCON Floating-Point Multiplication EM Trace

Exponent Sign-Bit
Addmon Compuke

Compress

H\ ““\ I ‘u‘ f

\p (bl ‘\ "\‘:H

HashToPoint
\m\w Wm‘ ‘J}“\”\m‘“ ! “‘

SHAKE SamplerZ
/E 7 Al |

(Basesampler) (Berbxp) = =

Time in Samples
*A roxex - -
Learning sk directly

Figure 1: Flowchart of the signature

Sampled Signal (V)

LFALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel Attacks [KA21]

Example with Falcon . : PASHIELD

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product (sig, sk), or sk itself.

[ffSampling] (Compress J

/*

[BaseSampler] [BerExp]

e

Figure 1: Flowchart of the signature

HashToPoint

2Improved Power Analysis Attacks on Falcon [Z1Y\W23]

Masking and the t-probing model ::)aGHIELD

t-probing model
& Adversary can probe t circuit values at runtime
sy Unrealistic but a good starting point

Masking
o4 Each sensitive value x is split in d shares:

[[X]] = (XO7X17"'7XC/—1) (1)

such that
Xo+ X1+ +X4-1 =xmod g (additive)
OrXo® X1 P B X1 =X (boolean)

& In t-probing model, ideally O leakage if d > t

& In “real life”, security is exponential in d
£ What about computations?

Masking in practice? .. PaSHIELD

How difficult are operations to mask?
© Addition ([c] = [a + b])?
> Compute [c]] = (a0 + bo, - .., d4_1 + bg_1), simple and fast: ©(d) operations
() Multiplication ([c] = [a - b])?
> Complex and slower: ©(d?) operations
@ More complex operations?

> Use so-called mask conversions to convert between additive and boolean masking,
very slow: > O(d?) operations

Masking Dilithium and Falcon .. PaSHIELD

How difficult are operations to mask?
=» Dilithium
> Generation of short secrets:

> Sample a uniform value in boolean masking.
> Convert boolean mask to arithmetic mask @

> Comparison for rejection sampling: conversion to boolean masking @
-» Falcon
> Gaussian sampling: no efficient way known @

Mashking
Dilithium

Dilithium - signature

- : PaGHIELD

Dilithium follows the Fiat-Shamir with aborts paradigm.

Sign(sk = s,vk = (A, t), msg) — sig

@ Generate a short ephemeral secret r
@ Compute the commitmentw = A -r
© Compute challenge ¢ = H(w, msg, vk)
@ Compute the responsez=s-c+r

© Check that zis in a given interval. If
not, restart.

O Signature is sig = (c, 2)

Verify(vk, msg, sig = (c,z))

@ Verify that z is small.
@ Recoverw=A-z—c-t
© Verify that ¢ = H(w, msg, vk)

Dilithium - signature

Dilithium follows the Fiat-Shamir with aborts paradigm.

Sign(sk = s,vk = (A, t), msg) — sig

- : PaGHIELD

@ Generate a short ephemeral secret r

@ Compute the commitmentw = A -r

© Compute challenge ¢ = H(w, msg, vk)

@ Compute the responsez=s-c+r

© Check that zis in a given interval. If not, restart.
O Signature is sig = (¢, 2)

> Hard
> Easy
> No mask
> Easy
> Hard

Masking bottlenecks:
@ Short secret generation (@) requires B2A.

@ Rejection sampling (@) requires A2B and B2A.
Total masking overhead: O(d” log q)

Raccoon - masked signature

- : PaGHIELD

Sign(sk = [s],vk = (A, t), msg) — sig

@ Compute the commitment [w] = A - [r]
© Unmask [w] to obtain w

@ Compute the challenge ¢ = H(w, msg, vk)
© Compute the response [z] = [s] - ¢ + [r]
® Unmask [Z] to obtain z

@ (No more rejection sampling!)

© Signature is sig = (c, 2)

@ Generate a masked short ephemeral secret [r] using “AddRepNoise” > Easy

> Easy
> Easy
> No mask
> Easy
> Easy

Total masking overhead: O(dlogd)

What happens inside AddRepNoise?

O OO0

+r,1

+r2.1

)

+r31

+ra1

O O O O

+ri2

+ro 2

+r32

+rao

O OO0

+ri3

+r23

’

+r33

+rs3

O OO0

+ri4

+ro 4

’

+r34

+rg.a

I

PaSHIELD

O
O
O
O

What happens inside AddRepNoise? . PASHIELD

-
[———

Problem: a probing adversary can learn the sum of T random in 2 probes.

What happens inside AddRepNoise?

>

6 +ri1 6 +ri1o
O tr2a O (Fr22)
O +r31 O +r32
O (Hraa) O a2

>

O O O J

+ri3

+r3

+r33

+r43

O
O
O

O

+r14

+r2.4

+rs4

: PaGHIELD

O O OO

S N

Solution: add refresh gadgets to separate the algorithm in independent layers
Now a probing adversary learns at most (the sum of) t short noises.

Security of Raccoon? .1 PASHIELD

=» Vanilla Raccoon,

> Randomness w = A - ris public
> No rejection sampling: signatures leak part of the secret

Security of Raccoon? .1 PASHIELD

=» Vanilla Raccoon,

> Randomness w = A - ris public
> No rejection sampling: signatures leak part of the secret

Definition 1 (Hint-MLWE)
It is hard to distinguish (A, u, (¢ - s + 1;);) with (¢;) small,

-» when uis random
> or,whenu=A-san MLWE sample

Assuming at most Q hints, Hint-MLWE is as hard as MLWE when taking r; of
standard deviation ~ v/Q||c||.
® Vanilla Raccoon is secure when taking large enough perturbations ;.

Security of Raccoon? .1 PASHIELD

=» Vanilla Raccoon,
> Randomness w = A - ris public
> No rejection sampling: signatures leak part of the secret
=» Masked Raccoon:
> Leak part of the perturbation r = AddRepNoise().
In t-probing model, write r = re,fe + MNeaked-
If rep iterations in AddRepNoise, rg, e has standard deviation \/d - rep — t - oy.
Security of Masked Raccoon reduces to Vanilla Raccoon with small loss.

Performances on a Desktop ::)aGHIELD

Speed (ms)
100

—e— Dilithium
—=— Raccoon

80

60

40

20

16 32
Number of shares d

© With some tricks [SR23], RAM consumption is < 128 kB

Mashked
Hash-and-Sign
signatuves

Zelle .. PASHIELD
A
Keygen(1) Verify(vk = A, msg, sig = s)

@ Gen. matrices A, B s.t.:

> Alis pseudo-random.
>B-A=0.
> B has small coefficients.

D vk =A sk:=B

Sign(sk = B, msg)

@ Compute ¢ such that

c-A = H(msg)
® v « vector in L(B), close to c.
O sigi=s=(c—v)

Check that (s is short) and (s - A = H(msg))

@ But masking Gaussian sampling efficiently remains an open problem.

What about Mitaka? - : PaGHIELD

> In 2022, Mitaka: a simpler, parallelizable, maskable variant of Falcon [EFGT22]
> But, A Key-Recovery Attack against Mitaka in the t-Probing Model [Pre23]

Mitaka cannot be masked efficiently with current techniques.

A masking friendly hash-and-sign scheme? .. PaSHIELD

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Keygen()

@ Generate matrices A, T s.t.: .
> Ais pseudo-random Eagle.Sign(sk, msg)
>T-A=5-1
> T has small coefficients ® u:= H(msg)
D vk=Ask:=T 2] PFDRz,m
®c=u-Ap
Eagle.Verify(msg, sig = z) ® Decompose casc=p-¢; +Co
@ u:=H(msg) © y Dig/pretess
@ Check that (z is small) and Oz=p+T-y
(A-z=u) @ return sig =z

A masking friendly hash-and-sign scheme? .. PaSHIELD

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Sign(sk, msg)

@ u:= H(msg)
@ p Dy o
O®w=Ap

Oc=u-—w

© Decomposecasc=pf-¢;+¢C
Oy < Digprresess
@z=p+T-y

O return sig =z

®© Almost linear scheme, maybe we can do something with it!

A masking friendly hash-and-sign scheme? .. PaSHIELD

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Sign(sk, msg)

@ u = H(msg) > No mask
(2] p(-DRe’\/m > Hard
Ow=Ap > Easy
Oc=u—w > No mask
© Decomposecasc=pf-¢;+¢C

O y < Dg/p1Rete,r > Hard
@z=p+T-y > Easy

O return sig =z

®© Almost linear scheme, maybe we can do something with it!

A masking friendly hash-and-sign scheme?

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Sign(sk, msg)

©® Decomposecasc=pf-¢;+6C
Oy < Dig/g1Resesr
@z=p+T-y

© returnsig:=1z

@ u = H(msg) > No mask
(2] p < DRé’m > Hard
Ow=Ap > Easy
Oc=u—w > No mask

> Hard
> Easy

Plover.Sign(sk, msg)

@ u:= H(msg)

@ [p] « AddRepNoise()

® w = Unmask(A - [p])
Oc=u-w

© Decomposecasc=f-c; +C
O z:=Unmask([p] + [T] - 1)

@ returnsig =z

®© Almost linear scheme, maybe we can do something with it!
® Introducing Plover, the first hash-and-sign masking-friendly signature scheme.

- : PaGHIELD

Security of Plover ::)aGHIELD

=>» Vanilla Plover

> Returns responses of the formz = p + T - ¢1: hints on the secret.
© Like Raccoon, rely on Hint-MLWE. Secure for large enough perturbation p.

Security of Plover ::)aGHIELD

=>» Vanilla Plover

> Returns responses of the formz = p + T - ¢4: hints on the secret.
© Like Raccoon, rely on Hint-MLWE. Secure for large enough perturbation p.

> Masked Plover

> As in Raccoon, AddRepNoise leaks only a small part of the perturbation p.
© Unforgeability of Masked Plover in the t-probing model reduces to
unforgeability of Vanilla Plover.

A generic framework .. PaSHIELD

Plover introduces a very generic framework for masking friendly schemes:

-» Replace non-linear operations with noise flooding. Leakage on the secret
mitigated by taking large perturbations p.

> Analyse leakage with Hint-MLWE problem.

-» Use AddRepNoise to sample short vectors. New composable notion t — SN/u to
prove security in the t-probing model.

Proojs in the
t-probing model

t-probing model .1 PASHIELD

t-probing model
& Adversary can probe t circuit values at runtime

Masking
+42 Each sensitive value x is split in d shares:
[x] = (x0s X1, - -+ s Xd—1)
such that
Xo+ X1+ +Xx4_1 =xmod g (additive)

& In t-probing model, ideally O leakage if d > t

t-probing model .1 PASHIELD

t-probing model
8 Adversary can probe t circuit values at runtime

Definition 1 (t-probing security)

A circuit C is t-probing secure, if there exists a simulator S such that for any input x,
and set P of up to t probes:

S(P, Coublic([X])) = Cr([x])
——
Probes on C executed with x

i.e., probes are simulatable without knowledge of the circuit input x, only from public
output Cpulic(X).

\. J

(strong) non-interference framework . PaSHIELD

-» The (strong) non-interference (or (S)NI) framework eases proofs in the t-probing
model.
Composition of simple gadgets: masked additions, multiplications, etc.

(strong) non-interference framework . PaSHIELD

-» The (strong) non-interference (or (S)NI) framework eases proofs in the t-probing
model.
Composition of simple gadgets: masked additions, multiplications, etc.

Definition 2 (t-NI)

A circuit C is t-NlI, if there exists simulators S1, S, such that for any input [x], and
any set P of at most t probes:

il, ceey it = Sl(P)
So (P [X]i,s s [X1i,) = Cp([X])

i.e. probes are simulatable from at most t shares of the input.

Definition 3 (t-SNI)

Same, but output probes are simulated from internal probes only. Formally, there
exists an extra simulator S for probes on output: S3(Pout; S2(Pin, ---)) = Cp,,. ([X])-

J

(strong) non-interference framework .. PaSHIELD

GadgetlC C C C

(strong) non-interference framework .. PaSHIELD

Gadgetlc C : :

(strong) non-interference framework .. PaSHIELD

GadgetlC C : :
O
O

‘@

(strong) non-interference framework .. PaSHIELD

Gadget 1
t-NI gadget

(strong) non-interference framework .. PaSHIELD

Gadgetf’ C . . Gadget, . ‘ :

t-NI gadget t-NI gadget

Eﬁq%:}dget input 1 input 2

O @ O O
OO0 @

(strong) non-interference framework .. PaSHIELD

input 2

(strong) non-interference framework .. PaSHIELD

Gadget :
t-NI gadget 'NPUt

Handling AddRepNoise :: PAGHIELD

-» The randomness added in AddRepNoise are secret inputs to the signature circuit,
but some of them leak.
(S)NI model does not capture partial leakage of input.

Handling AddRepNoise - PaGHIELD

-» The randomness added in AddRepNoise are secret inputs to the signature circuit,
but some of them leak.
(S)NI model does not capture partial leakage of input.

-» New notion: t-SNlu, strong non-interference with unmasked inputs.

Definition 4 (t-SNIlu)

A circuit C is t-SNlu, if there exists simulators S1, S, such that for any input [x],
unmasked values (v;);, and any set P of at most t probes:

il, ceey it, Ill, ceey Ig = Sl(P)
So (P [X]iys -y DX Vi s Vi) = C (X, (V1))

i.e. probes are simulatable from at most t shares of the input x, and t values (v;).

\. J

Handling AddRepNoise :: PAGHIELD

-» The randomness added in AddRepNoise are secret inputs to the signature circuit,
but some of them leak.
(S)NI model does not capture partial leakage of input.

-» New notion: t-SNlu, strong non-interference with unmasked inputs.

-» We can show that AddRepNoise is t-SNIu secure for t < d.

Handling AddRepNoise - PaGHIELD

-» The randomness added in AddRepNoise are secret inputs to the signature circuit,
but some of them leak.
(S)NI model does not capture partial leakage of input.

-» New notion: t-SNlu, strong non-interference with unmasked inputs.

-» We can show that AddRepNoise is t-SNIu secure for t < d.

-» t-SNIu is composable: probes on Raccoon/Plover signing procedure can be
simulated with at most t inputs shares, and t unmasked values.

> tshares of masked input: independent from actual input
> tunmasked values: remains d - rep — t safe values to ensure security

Conclusion - : PaGHIELD

Raccoon and Plover are specific-purpose scheme aimed at high side-channel
resistance:

© Standard assumptions: MLWE, MSIS

© Simpler

© Verification key size is similar

@ Signatures are larger (=~ 10kB)

® When masked, orders of magnitude faster than other schemes are

General framework to create masking friendly schemes:
-» Noise-flooding to replace non-linear operations
-» Prove unmasked security with Hint-MLWE

-» Sample short vectors with AddRepNoise and use t-SNlu notion to prove security
in the t-probing model

Questions?

@ Dmitri Asonov and Rakesh Agrawal.
Keyboard acoustic emanations.
pages 3-11, 2004.

[Wim Van Eck.
Electromagnetic radiation from video display units: An eavesdropping risk?
Computers & Security, 4:269-286, 1985.

[l Thomas Espitau, Pierre-Alain Fouque, Francois Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.
Mitaka: A simpler, parallelizable, maskable variant of falcon.
pages 222-253, 2022.

[Emre Karabulut and Aydin Aysu.
FALCON down: Breaking FALCON post-quantum signature scheme through
side-channel attacks.
In 58th ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA,
USA, December 5-9, 2021, pages 691-696. IEEE, 2021.

[Paul C. Kocher, Joshua Jaffe, and Benjamin Jun.
Differential power analysis.
pages 388-397, 1999.

@ Paul C. Kocher.
Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other

systems.
pages 104-113, 1996.

@ Thomas Prest.
A key-recovery attack against mitaka in the t-probing model.
pages 205-220, 2023.

[Markku-Juhani O. Saarinen and Mélissa Rossi.
Mask compression: High-order masking on memory-constrained devices.
Cryptology ePrint Archive, Paper 2023/1117, 2023.
https://eprint.iacr.org/2023/1117.

@ Yang Yu, Huiwen Jia, and Xiaoyun Wang.
Compact lattice gadget and its applications to hash-and-sign signatures.
pages 390-420, 2023.

[Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang.
Improved power analysis attacks on falcon.
Cryptology ePrint Archive, Paper 2023/224, 2023.
https://eprint.iacr.org/2023/224.

https://eprint.iacr.org/2023/1117
https://eprint.iacr.org/2023/224

Masked Dilithium (Graph) ::)aGHIELD

Speed (billions of cycles)

15

—— NTT

—=— SampleY
—— AY

—— Decomp
—— Resp
—=— Reject
—— Hint
e

10

Number of shares d

	Introduction
	Side-Channel Attacks
	Masking Dilithium
	Masked Hash-and-Sign signatures
	Proofs in the t-probing model
	Appendix

