
Plover
Muhammed F. Esgin
Monash University

Thomas Espitau
PQShield

Guilhem Niot
PQShield

University Rennes 1

Thomas Prest1
PQShield

Amid Sakzad
Monash University

Ron Steinfeld
Monash University

1Thanks to Thomas for letting me reuse some of his slides on Raccoon.

Motivation

Signature schemes strike a balance between:
Sizes (verification key and signatures)
Speed (signing, verification)
Portability
Conservative assumptions
Resistance against side‐channel attacks

And so on...

Criteria

Dilithium
Falcon

SPHINCS+
Raccoon
Plover

Side-Channel
Attacks

Side-channel attacks in cryptography

Power consumption [KJJ99]

Timing measurement [Koc96]

Electromagnetic emissions [Eck85]

Acoustic emissions [AA04]

Example with Falcon

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product ⟨sig, sk⟩, or sk itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

ffSampling

Figure 1: Flowchart of the signature
Learning sk directly

1FALCON Down: Breaking FALCON Post‐Quantum Signature Scheme through Side‐Channel Attacks [KA21]

Example with Falcon

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product ⟨sig, sk⟩, or sk itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

SamplerZ

Figure 1: Flowchart of the signature
Filtering ⟨sig, sk⟩ > 0

2Improved Power Analysis Attacks on Falcon [ZLYW23]

Masking and the t-probing model

t‐probing model
Adversary can probe t circuit values at runtime
Unrealistic but a good starting point

Masking
Each sensitive value x is split in d shares:JxK = (x0, x1, . . . , xd−1) (1)

such that
x0 + x1 + · · ·+ xd−1 = x mod q (additive)

or x0 ⊕ x1 ⊕ · · · ⊕ xd−1 = x (boolean)

In t‐probing model, ideally 0 leakage if d > t
In “real life”, security is exponential in d
What about computations?

Masking in practice?

How difficult are operations to mask?
Addition (JcK = Ja+ bK)?

Compute JcK = (a0 + b0, . . . , ad−1 + bd−1), simple and fast: Θ(d) operations
Multiplication (JcK = Ja · bK)?

Complex and slower: Θ(d2) operations
More complex operations?

Use so‐called mask conversions to convert between additive and boolean masking,
very slow: ≫ Θ(d2) operations

Masking Dilithium and Falcon

Masking
Dilithium

Dilithium - signature

Dilithium follows the Fiat‐Shamir with aborts paradigm.

Sign(sk = s, vk = (A, t),msg)→ sig

1 Generate a short ephemeral secret r
2 Compute the commitment w = A · r
3 Compute challenge c = H(w,msg, vk)
4 Compute the response z = s · c+ r
5 Check that z is in a given interval. If
not, restart.

6 Signature is sig = (c, z)

Verify(vk,msg, sig = (c, z))

1 Verify that z is small.
2 Recover w = A · z− c · t
3 Verify that c = H(w,msg, vk)

Dilithium - signature

Dilithium follows the Fiat‐Shamir with aborts paradigm.

Sign(sk = s, vk = (A, t),msg)→ sig

1 Generate a short ephemeral secret r ▷ Hard
2 Compute the commitment w = A · r ▷ Easy
3 Compute challenge c = H(w,msg, vk) ▷ No mask
4 Compute the response z = s · c+ r ▷ Easy
5 Check that z is in a given interval. If not, restart. ▷ Hard
6 Signature is sig = (c, z)

Masking bottlenecks:
Short secret generation (1) requires B2A.
Rejection sampling (5) requires A2B and B2A.

Total masking overhead: Θ(d2 log q)

Raccoon - masked signature

Sign(sk = JsK, vk = (A, t),msg)→ sig

1 Generate a masked short ephemeral secret JrK using “AddRepNoise” ▷ Easy
2 Compute the commitment JwK = A · JrK ▷ Easy
3 Unmask JwK to obtain w ▷ Easy
4 Compute the challenge c = H(w,msg, vk) ▷ No mask
5 Compute the response JzK = JsK · c+ JrK ▷ Easy
6 Unmask JzK to obtain z ▷ Easy
7 (No more rejection sampling!)
8 Signature is sig = (c, z)

Total masking overhead: O(d log d)

What happens inside AddRepNoise?

What happens inside AddRepNoise?

What happens inside AddRepNoise?

Security of Raccoon?

Vanilla Raccoon,
Output of AddRepNoise looks like a gaussian.
No rejection sampling: signatures leak part of the secret

Security of Raccoon?

Vanilla Raccoon,
Output of AddRepNoise looks like a gaussian.
No rejection sampling: signatures leak part of the secret

Definition 1 (Hint‐MLWE)

It is hard to distinguish (A,u, (ci · s+ ri)i) with (ci) small,
when u is random
or, when u = A · s an MLWE sample

Assuming at most Q hints, Hint‐MLWE is as hard as MLWE when taking ri of
standard deviation ≈

√
Q∥c∥.

Vanilla Raccoon is secure when taking large enough perturbations ri.

Security of Raccoon?

Vanilla Raccoon,
Output of AddRepNoise looks like a gaussian.
No rejection sampling: signatures leak part of the secret

Masked Raccoon:
Leak part of the perturbation r = AddRepNoise().

In t‐probing model, write r = rsafe + rleaked.
If rep iterations in AddRepNoise, rsafe has standard deviation

√
d · rep− t · σr.

Security ofMasked Raccoon reduces to Vanilla Raccoon with small loss.

Performances on a Desktop

1 2 4 8 16 32
0

20

40

60

80

100

Number of shares d

Speed (ms)

Dilithium
Raccoon

With some tricks [SR23], RAM consumption is < 128 kB

Masked
Hash-and-Sign
signatures

Falcon

Keygen(1λ)

1 Gen. matrices A, B s.t.:
A is pseudo‐random.
B · A = 0.
B has small coefficients.

2 vk := A, sk := B

Sign(sk = B,msg)

1 Compute c such that
c · A = H(msg)

2 v← vector in L(B), close to c.
3 sig := s = (c− v)

Verify(vk = A,msg, sig = s)

Check that (s is short) and (s · A = H(msg))

But masking Gaussian sampling efficiently remains an open problem.

What about Mitaka?

In 2022, Mitaka: a simpler, parallelizable, maskable variant of Falcon [EFG+22]
But, A Key‐Recovery Attack against Mitaka in the t‐Probing Model [Pre23]

Mitaka cannot be masked efficiently with current techniques.

A masking friendly hash-and-sign scheme?

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Keygen()

1 Generate matrices A,T s.t.:
A is pseudo‐random
T · A = β · I
T has small coefficients

2 vk := A, sk := T

Eagle.Verify(msg, sig = z)

1 u := H(msg)
2 Check that (z is small) and
(A · z = u)

Eagle.Sign(sk,msg)

1 u := H(msg)
2 p← DRℓ,

√
s2I−r2TT∗

3 c := u− A · p
4 Decompose c as c = β · c1 + c2
5 y← D⌊q/β⌉·Rℓ+c1,r

6 z := p+ T · y
7 return sig := z

A masking friendly hash-and-sign scheme?

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Sign(sk,msg)

1 u := H(msg)
2 p← DRℓ,

√
s2I−r2TT∗

3 w := A · p
4 c := u−w
5 Decompose c as c = β · c1 + c2
6 y← D⌊q/β⌉·Rℓ+c1,r

7 z := p+ T · y
8 return sig := z

Almost linear scheme, maybe we can do something with it!

A masking friendly hash-and-sign scheme?

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Sign(sk,msg)

1 u := H(msg) ▷ No mask
2 p← DRℓ,

√
s2I−r2TT∗ ▷ Hard

3 w := A · p ▷ Easy
4 c := u−w ▷ No mask
5 Decompose c as c = β · c1 + c2
6 y← D⌊q/β⌉·Rℓ+c1,r ▷ Hard
7 z := p+ T · y ▷ Easy
8 return sig := z

Almost linear scheme, maybe we can do something with it!

A masking friendly hash-and-sign scheme?

Eagle was recently introduced by Yu et al. in [YJW23].

Eagle.Sign(sk,msg)

1 u := H(msg) ▷ No mask
2 p← DRℓ,

√
s2I−r2TT∗ ▷ Hard

3 w := A · p ▷ Easy
4 c := u−w ▷ No mask
5 Decompose c as c = β · c1 + c2
6 y← D⌊q/β⌉·Rℓ+c1,r ▷ Hard
7 z := p+ T · y ▷ Easy
8 return sig := z

Plover.Sign(sk,msg)

1 u := H(msg)
2 JpK← AddRepNoise()
3 w := Unmask(A · JpK)
4 c := u−w
5 Decompose c as c = β · c1 + c2
6 z := Unmask(JpK + JTK · c1)
7 return sig := z

Almost linear scheme, maybe we can do something with it!
Introducing Plover, the first hash‐and‐sign masking‐friendly signature scheme.

Security of Plover

Vanilla Plover
Returns responses of the form z = p+ T · c1: hints on the secret.
Like Raccoon, rely on Hint‐MLWE. Secure for large enough perturbation p.

Masked Plover
As in Raccoon, AddRepNoise leaks only a small part of the perturbation p.
Unforgeability of Masked Plover in the t‐probing model reduces to

unforgeability of Vanilla Plover.

Security of Plover

Vanilla Plover
Returns responses of the form z = p+ T · c1: hints on the secret.
Like Raccoon, rely on Hint‐MLWE. Secure for large enough perturbation p.

Masked Plover
As in Raccoon, AddRepNoise leaks only a small part of the perturbation p.
Unforgeability of Masked Plover in the t‐probing model reduces to

unforgeability of Vanilla Plover.

A generic framework

Plover introduces a very generic framework for masking friendly schemes:
Replace non‐linear operations with noise flooding. Leakage on the secret
mitigated by taking large perturbations p.
Analyse leakage with Hint‐MLWE problem.
Use AddRepNoise to sample short vectors. New composable notion t− SNIu to
prove security in the t‐probing model.

Proofs in the
t-probingmodel

t-probing model

t‐probing model
Adversary can probe t circuit values at runtime

Masking
Each sensitive value x is split in d shares:JxK = (x0, x1, . . . , xd−1)

such that
x0 + x1 + · · ·+ xd−1 = x mod q (additive)

In t‐probing model, ideally 0 leakage if d > t

t-probing model

t‐probing model
Adversary can probe t circuit values at runtime

Definition 1 (t‐probing security)

A circuit C is t‐probing secure, if there exists a simulator S such that for any input x,
and set P of up to t probes:

S(P,Cpublic(JxK)) = CP(JxK)︸ ︷︷ ︸
Probes on C executed with x

i.e., probes are simulatable without knowledge of the circuit input x, only from public
output Cpublic(x).

(strong) non-interference framework

The (strong) non‐interference (or (S)NI) framework eases proofs in the t‐probing
model.
Composition of simple gadgets: masked additions, multiplications, etc.

Definition 2 (t‐NI)

A circuit C is t‐NI, if there exists simulators S1,S2 such that for any input JxK, and
any set P of at most t probes:

i1, ..., it := S1(P)
S2(P, JxKi1 , ..., JxKit) = CP(JxK)

i.e. probes are simulatable from at most t shares of the input.

Definition 3 (t‐SNI)

Same, but output probes are simulated from internal probes only. Formally, there
exists an extra simulator S3 for probes on output: S3(Pout, S2(Pin, ...)) = CPout(JxK).

(strong) non-interference framework

The (strong) non‐interference (or (S)NI) framework eases proofs in the t‐probing
model.
Composition of simple gadgets: masked additions, multiplications, etc.

Definition 2 (t‐NI)

A circuit C is t‐NI, if there exists simulators S1,S2 such that for any input JxK, and
any set P of at most t probes:

i1, ..., it := S1(P)
S2(P, JxKi1 , ..., JxKit) = CP(JxK)

i.e. probes are simulatable from at most t shares of the input.

Definition 3 (t‐SNI)

Same, but output probes are simulated from internal probes only. Formally, there
exists an extra simulator S3 for probes on output: S3(Pout, S2(Pin, ...)) = CPout(JxK).

(strong) non-interference framework

Gadget 1

Gadget 2

(strong) non-interference framework

Gadget 1

Gadget 2

(strong) non-interference framework

Gadget 1

Gadget 2
t‐NI gadget

(strong) non-interference framework

Gadget 1

Gadget 2
t‐NI gadget

t‐NI gadget

(strong) non-interference framework

Gadget 1

Gadget 2
t‐NI gadget

t‐NI gadget

input 1 input 2

Gadget 3
t‐NI gadget

(strong) non-interference framework

Gadget 1

Gadget 2
t‐NI gadget

t‐NI gadget

input 1 input 2

(strong) non-interference framework

Gadget 1

Gadget 2
t‐NI gadget

t‐NI gadget

input 1 input 2

Refresh gadget
t‐SNI gadget

Handling AddRepNoise

The randomness added in AddRepNoise are secret inputs to the signature circuit,
but some of them leak.
(S)NI model does not capture partial leakage of input.

New notion: t‐SNIu, strong non‐interference with unmasked inputs.

We can show that AddRepNoise is t‐SNIu secure for t < d.

t‐SNIu is composable: probes on Raccoon/Plover signing procedure can be
simulated with at most t inputs shares, and t unmasked values.

t shares of masked input: independent from actual input
t unmasked values: remains d · rep− t safe values to ensure security

Handling AddRepNoise

The randomness added in AddRepNoise are secret inputs to the signature circuit,
but some of them leak.
(S)NI model does not capture partial leakage of input.
New notion: t‐SNIu, strong non‐interference with unmasked inputs.

Definition 4 (t‐SNIu)

A circuit C is t‐SNIu, if there exists simulators S1,S2 such that for any input JxK,
unmasked values (vi)i, and any set P of at most t probes:

i1, ..., it, i′1, ..., i
′
t := S1(P)

S2(P, JxKi1 , ..., JxKit , vi′1 , ..., vi′t) = CP(JxK, (vi)i)
i.e. probes are simulatable from at most t shares of the input x, and t values (vi).

We can show that AddRepNoise is t‐SNIu secure for t < d.

t‐SNIu is composable: probes on Raccoon/Plover signing procedure can be
simulated with at most t inputs shares, and t unmasked values.

t shares of masked input: independent from actual input
t unmasked values: remains d · rep− t safe values to ensure security

Handling AddRepNoise

The randomness added in AddRepNoise are secret inputs to the signature circuit,
but some of them leak.
(S)NI model does not capture partial leakage of input.
New notion: t‐SNIu, strong non‐interference with unmasked inputs.

We can show that AddRepNoise is t‐SNIu secure for t < d.

t‐SNIu is composable: probes on Raccoon/Plover signing procedure can be
simulated with at most t inputs shares, and t unmasked values.

t shares of masked input: independent from actual input
t unmasked values: remains d · rep− t safe values to ensure security

Handling AddRepNoise

The randomness added in AddRepNoise are secret inputs to the signature circuit,
but some of them leak.
(S)NI model does not capture partial leakage of input.
New notion: t‐SNIu, strong non‐interference with unmasked inputs.

We can show that AddRepNoise is t‐SNIu secure for t < d.

t‐SNIu is composable: probes on Raccoon/Plover signing procedure can be
simulated with at most t inputs shares, and t unmasked values.

t shares of masked input: independent from actual input
t unmasked values: remains d · rep− t safe values to ensure security

Conclusion

Raccoon and Plover are specific‐purpose scheme aimed at high side‐channel
resistance:

Standard assumptions: MLWE, MSIS
Simpler
Verification key size is similar
Signatures are larger (≈ 10kB)
When masked, orders of magnitude faster than other schemes are

General framework to create masking friendly schemes:
Noise‐flooding to replace non‐linear operations
Prove unmasked security with Hint‐MLWE
Sample short vectors with AddRepNoise and use t‐SNIu notion to prove security
in the t‐probing model

Questions?

Dmitri Asonov and Rakesh Agrawal.
Keyboard acoustic emanations.
pages 3–11, 2004.

Wim Van Eck.
Electromagnetic radiation from video display units: An eavesdropping risk?
Computers & Security, 4:269–286, 1985.

Thomas Espitau, Pierre‐Alain Fouque, François Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.
Mitaka: A simpler, parallelizable, maskable variant of falcon.
pages 222–253, 2022.

Emre Karabulut and Aydin Aysu.
FALCON down: Breaking FALCON post‐quantum signature scheme through
side‐channel attacks.
In 58th ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA,
USA, December 5‐9, 2021, pages 691–696. IEEE, 2021.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun.
Differential power analysis.
pages 388–397, 1999.

Paul C. Kocher.
Timing attacks on implementations of Diffie‐Hellman, RSA, DSS, and other
systems.
pages 104–113, 1996.

Thomas Prest.
A key‐recovery attack against mitaka in the t‐probing model.
pages 205–220, 2023.

Markku‐Juhani O. Saarinen and Mélissa Rossi.
Mask compression: High‐order masking on memory‐constrained devices.
Cryptology ePrint Archive, Paper 2023/1117, 2023.
https://eprint.iacr.org/2023/1117.
Yang Yu, Huiwen Jia, and Xiaoyun Wang.
Compact lattice gadget and its applications to hash‐and‐sign signatures.
pages 390–420, 2023.

Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang.
Improved power analysis attacks on falcon.
Cryptology ePrint Archive, Paper 2023/224, 2023.
https://eprint.iacr.org/2023/224.

https://eprint.iacr.org/2023/1117
https://eprint.iacr.org/2023/224

Masked Dilithium (Graph)

2 4 8 16
0

5

10

15

Number of shares d

Speed (billions of cycles)

NTT
SampleY
AY

Decomp
Resp
Reject
Hint
Sign

	Introduction
	Side-Channel Attacks
	Masking Dilithium
	Masked Hash-and-Sign signatures
	Proofs in the t-probing model
	Appendix

