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Classical cryptography is broken by quantum 
computers

Quantum 
computers

Shor’s 
algorithm

The theory of quantum computing was developed in the ‘80s based on physics 
quantum theory.

● They allow one to perform many computations at a time, and recover a 
combined result.

● Not practical yet, but believed to be in a few decades.

Peter Shor developed in 1994 an algorithm for quantum computers allowing 
one to factor integers in polynomial time.

● The current cryptographic schemes based on RSA and elliptic curves 
could be broken by quantum computers in just a few hours.
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Classical cryptography is broken by quantum 
computers

Quantum 
computers

Shor’s 
algorithm

The theory of quantum computing was developed in the ‘80s based on physics 
quantum theory.

● They allow one to perform many computations at a time, and recover a 
combined result.

● Not practical yet, but believed to be in a few decades.

Peter Shor developed in 1994 an algorithm for quantum computers allowing 
one to factor integers in polynomial time.

● The current cryptographic schemes based on RSA and elliptic curves 
could be broken by quantum computers in just a few hours.

We need to develop new schemes to protect our data in the future.
That’s post-quantum cryptography.1



Year 1990 2000 2010 2020 2030 2040

The urgency to create and deploy 
post-quantum secure schemes

Invention of Shor’s 
algorithm

Practical quantum 
computers

Adversary stores 
traffic encrypted 

with classic crypto

Post-quantum crypto
is deployed

Previously stored traffic can be 
decrypted

“Store now, Decrypt later”2



Research and standardization efforts

New hardness assumptions NIST standardization

To develop post-quantum asymmetric 
primitives, new hardness assumptions 
had to be made.

To cite a few class of problems:

● Lattices
● Error codes
● Isogenies
● Hash-based

 

First call in 2016 for post-quantum 
proposals of KEMs (Key Encapsulation 
Mechanism) and Signature schemes.

Led to standardization in 2022 of the 
KEM Kyber (Lattices), and the 
signatures Dilithium, Falcon (Lattices) 
and Sphincs⁺ (Hash).

Second call for signatures in 2022

Little variety in the signatures, and 
both are based on structured 
problems. → Call for alternatives.
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Lattices and 
the GPV 

framework
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Lattices

A set of vectors… … and given a random basis, it is hard to 
find a short and quasi orthogonal basis

Mathematically, a lattice is a set of 
vectors spanned by a basis:
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Lattices

A set of vectors… … and given a random basis, it is hard to 
find a short and quasi orthogonal basis

Mathematically, a lattice is a set of 
vectors spanned by a basis:

It is even hard to find one short 
vector in a random lattice given a 

random basis.
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It is possible to design signatures from this problem. 
One way is to use the GPV framework, as Falcon does.

The signer initially samples a short and quasi 
orthogonal basis, and publishes a bad basis with long 
vectors.

1. To sign a message, the signer first hashes it to a 
point in

2. Then, he uses the short basis to find a vector 
close to that hash, and belonging to the lattice.

3. The signature is that vector.

Hash and sign signatures with the GPV framework
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Hash and sign signatures with the GPV framework

It is possible to design signatures from this problem. 
One way is to use the GPV framework, as Falcon does.

The signer initially samples a short and quasi 
orthogonal basis, and publishes a bad basis with long 
vectors.

1. To sign a message, the signer first hashes it to a 
point in

2. Then, he uses the short basis to find a vector 
close to that hash, and belonging to the lattice.

3. The signature is that vector.

The bad basis allows one to verify that this vector is in 
the lattice, and a bound on the distance with the hash 
ensures unforgeability.

Signature
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Hash and sign signatures with the GPV framework

But… how to find a vector close to the hash?

Original idea was to use Babai’s Nearest Plane 
algorithm, which maps the space with the 
parallelepiped formed by the Gram-Schmidt 
vectors. Signature
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Hash and sign signatures with the GPV framework

But… how to find a vector close to the hash?

Original idea was to use Babai’s Nearest Plane 
algorithm, which maps the space with the 
parallelepiped formed by the Gram-Schmidt 
vectors.

… but this leaks the shape of the parallelepiped 
which is directly related to the good secret basis. It 
is thus unsecure, and allows an adversary to forge 
signatures after observing enough of them.

Signature
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Hash and sign signatures with the GPV framework

But… how to find a vector close to the hash?

Instead, we use Gaussian sampling. Klein proposed 
a randomized version of Babai Nearest Plane 
algorithm, returning a point independent of the 
secret basis.
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Module and NTRU lattices

NIST lattice finalists optimize the size of public keys and signatures and efficiency by using specific classes 
of lattices based on polynomials.

They fix a ring                                  , and do polynomial multiplications instead of using matrices.
These can be efficiently implemented using Number Theoretic Transform (NTT).
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Module and NTRU lattices

NIST lattice finalists optimize the size of public keys and signatures and efficiency by using specific classes 
of lattices based on polynomials.

They fix a ring                                  , and do polynomial multiplications instead of using matrices.
These can be efficiently implemented using Number Theoretic Transform (NTT).

Polynomial multiplications can be translated in matrix - vector multiplications, and can thus be translated 
into lattice problems.

With proper parameters, no attack improvement is known compared to plain random lattices.
But it is a worry, and motivated the additional NIST call for signatures.
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Squirrels
03

A digital signature scheme based on plain 
lattices
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The core idea

Why designing Squirrels?

Create a scheme relying on plain lattice assumptions, with high security guarantees.

No structure, average to worst case reductions.

Trade-offs?

The lack of structure implies having a much larger public key.
Signature size remains small.
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Optimizing the GPV framework for plain lattices

Squirrels is designed with the goal of optimizing the GPV framework for plain lattices.

Two main observations:

1. The size of signatures is proportional to the size of the largest secret Gram-Schmidt vector.
→ Our key generation should make it small.

2. We need an efficient way to verify lattice membership, without inverting a very large matrix or 
solving a linear system.
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Optimizing the GPV framework for plain lattices

Squirrels is designed with the goal of optimizing the GPV framework for plain lattices.

Two main observations:

1. The size of signatures is proportional to the size of the largest secret Gram-Schmidt vector.
→ Our key generation should make it small.

Solution: Sequential sampling of vectors depending on the previous ones, with a target 
Gram-Schmidt norm.

2. We need an efficient way to verify lattice membership, without inverting a very large matrix or 
solving a linear system.
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Optimizing the GPV framework for plain lattices

Squirrels is designed with the goal of optimizing the GPV framework for plain lattices.

Two main observations:

1. The size of signatures is proportional to the size of the largest secret Gram-Schmidt vector.
→ Our key generation should make it small.

Solution: Sequential sampling of vectors depending on the previous ones, with a target 
Gram-Schmidt norm.

2. We need an efficient way to verify lattice membership, without inverting a very large matrix or 
solving a linear system.

Solution: Use a subclass of plain lattices with large density, that allows easy membership check.
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Optimizing the GPV framework for plain lattices

Squirrels’ key generation

Secret vectors are generated sequentially.

1. A continuous candidate is sampled with a 
constrained norm in the orthogonal of the 
previous ones.

2. It is then lifted to an integral vector by 
rounding its coordinates, which introduces 
a small difference on the Gram-Schmidt 
norm.
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Optimizing the GPV framework for plain lattices

Using co-cyclic lattices

A co-cyclic lattice is a special case of lattices for which there exists                              and:

  

These lattices have a density of more than 80% among integer lattices.

When fixing the determinant appropriately, we can directly compute       from the Hermite Normal 
Form (HNF) of the lattice with high probability.

and
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Optimizing the GPV framework for plain lattices

Using co-cyclic lattices

A co-cyclic lattice is a special case of lattices for which there exists                              and:

  

In practice, we would like to verify                                                 without big integers (det ~ 3000 
bits).

We can fix the determinant to be a product of large primes, and use Chinese Remainder Theorem.
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Optimizing the GPV framework for plain lattices

Fixing the determinant

Recall, determinant = product of Gram-Schmidt norms.

1. In the key generation, we thus maintain                                 
close to                                     by varying the sampling bounds.
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Optimizing the GPV framework for plain lattices

Fixing the determinant

Recall, determinant = product of Gram-Schmidt norms.

1. In the key generation, we thus maintain                                 
close to                                     by varying the sampling bounds.

2. The last vector is fixed so as to obtain the target determinant.
Determinant expansion on the last vector gives:

Method: obtain Bezout coefficients for a few minors, then multiply by target det.
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Evaluation
04
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Sizes

PK size (bytes) Sig size (bytes)

Squirrels I 666000 1019

Falcon I 897 666

Dilithium II 1312 2420
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Speed

Keygen Sign Verify

Squirrels I 34s 600/s 13000/s

Falcon I 8ms 6000/s 28000/s

Dilithium II 0.05ms 6900/s 19400/s
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Conclusion
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● Squirrels offers an alternative to schemes based on structured lattices with stronger security 
assumptions.
Submitted to NIST 2022 Call for Additional Digital Signature Schemes.

○ Small signature size, between Falcon and Dilithium. Efficient to sign and 
verify.

○ But, large public key and slow to generate.

Conclusion
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● Squirrels offers an alternative to schemes based on structured lattices with stronger security 
assumptions.
Submitted to NIST 2022 Call for Additional Digital Signature Schemes.

○ Small signature size, between Falcon and Dilithium. Efficient to sign and 
verify.

○ But, large public key and slow to generate.

● Practical contributions, with the optimization of the GPV framework

○ Novel usage of co-cyclic lattices, and key generation technique
○ New algorithm to efficiently compute a batch of matrix minors

Conclusion
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Thanks!
Questions?


