
Squirrels

Master thesis of Guilhem Niot (09/2023)
PQShield, ENS Lyon, EPFL

A post-quantum signature
scheme based on plain lattices

02

04

03

01

Plan

Post-quantum cryptography?

Lattices and the GPV framework

Squirrels

Evaluation

High-level design

2

Post-quantum
cryptography

01
Quick introduction

3

Classical cryptography is broken by quantum
computers

Quantum
computers

Shor’s
algorithm

The theory of quantum computing was developed in the ‘80s based on physics
quantum theory.

● They allow one to perform many computations at a time, and recover a
combined result.

● Not practical yet, but believed to be in a few decades.

Peter Shor developed in 1994 an algorithm for quantum computers allowing
one to factor integers in polynomial time.

● The current cryptographic schemes based on RSA and elliptic curves
could be broken by quantum computers in just a few hours.

1

Classical cryptography is broken by quantum
computers

Quantum
computers

Shor’s
algorithm

The theory of quantum computing was developed in the ‘80s based on physics
quantum theory.

● They allow one to perform many computations at a time, and recover a
combined result.

● Not practical yet, but believed to be in a few decades.

Peter Shor developed in 1994 an algorithm for quantum computers allowing
one to factor integers in polynomial time.

● The current cryptographic schemes based on RSA and elliptic curves
could be broken by quantum computers in just a few hours.

We need to develop new schemes to protect our data in the future.
That’s post-quantum cryptography.1

Year 1990 2000 2010 2020 2030 2040

The urgency to create and deploy
post-quantum secure schemes

Invention of Shor’s
algorithm

Practical quantum
computers

Adversary stores
traffic encrypted

with classic crypto

Post-quantum crypto
is deployed

Previously stored traffic can be
decrypted

“Store now, Decrypt later”2

Research and standardization efforts

New hardness assumptions NIST standardization

To develop post-quantum asymmetric
primitives, new hardness assumptions
had to be made.

To cite a few class of problems:

● Lattices
● Error codes
● Isogenies
● Hash-based

First call in 2016 for post-quantum
proposals of KEMs (Key Encapsulation
Mechanism) and Signature schemes.

Led to standardization in 2022 of the
KEM Kyber (Lattices), and the
signatures Dilithium, Falcon (Lattices)
and Sphincs⁺ (Hash).

Second call for signatures in 2022

Little variety in the signatures, and
both are based on structured
problems. → Call for alternatives.

3

Lattices and
the GPV

framework
02

8

Lattices

A set of vectors… … and given a random basis, it is hard to
find a short and quasi orthogonal basis

Mathematically, a lattice is a set of
vectors spanned by a basis:

4

Lattices

A set of vectors… … and given a random basis, it is hard to
find a short and quasi orthogonal basis

Mathematically, a lattice is a set of
vectors spanned by a basis:

It is even hard to find one short
vector in a random lattice given a

random basis.

4

It is possible to design signatures from this problem.
One way is to use the GPV framework, as Falcon does.

The signer initially samples a short and quasi
orthogonal basis, and publishes a bad basis with long
vectors.

1. To sign a message, the signer first hashes it to a
point in

2. Then, he uses the short basis to find a vector
close to that hash, and belonging to the lattice.

3. The signature is that vector.

Hash and sign signatures with the GPV framework

115

Hash and sign signatures with the GPV framework

It is possible to design signatures from this problem.
One way is to use the GPV framework, as Falcon does.

The signer initially samples a short and quasi
orthogonal basis, and publishes a bad basis with long
vectors.

1. To sign a message, the signer first hashes it to a
point in

2. Then, he uses the short basis to find a vector
close to that hash, and belonging to the lattice.

3. The signature is that vector.

The bad basis allows one to verify that this vector is in
the lattice, and a bound on the distance with the hash
ensures unforgeability.

Signature

126

Hash and sign signatures with the GPV framework

But… how to find a vector close to the hash?

Original idea was to use Babai’s Nearest Plane
algorithm, which maps the space with the
parallelepiped formed by the Gram-Schmidt
vectors. Signature

137

Hash and sign signatures with the GPV framework

But… how to find a vector close to the hash?

Original idea was to use Babai’s Nearest Plane
algorithm, which maps the space with the
parallelepiped formed by the Gram-Schmidt
vectors.

… but this leaks the shape of the parallelepiped
which is directly related to the good secret basis. It
is thus unsecure, and allows an adversary to forge
signatures after observing enough of them.

Signature

147

Hash and sign signatures with the GPV framework

But… how to find a vector close to the hash?

Instead, we use Gaussian sampling. Klein proposed
a randomized version of Babai Nearest Plane
algorithm, returning a point independent of the
secret basis.

158

Module and NTRU lattices

NIST lattice finalists optimize the size of public keys and signatures and efficiency by using specific classes
of lattices based on polynomials.

They fix a ring , and do polynomial multiplications instead of using matrices.
These can be efficiently implemented using Number Theoretic Transform (NTT).

169

Module and NTRU lattices

NIST lattice finalists optimize the size of public keys and signatures and efficiency by using specific classes
of lattices based on polynomials.

They fix a ring , and do polynomial multiplications instead of using matrices.
These can be efficiently implemented using Number Theoretic Transform (NTT).

Polynomial multiplications can be translated in matrix - vector multiplications, and can thus be translated
into lattice problems.

With proper parameters, no attack improvement is known compared to plain random lattices.
But it is a worry, and motivated the additional NIST call for signatures.

179

Squirrels
03

A digital signature scheme based on plain
lattices

18

The core idea

Why designing Squirrels?

Create a scheme relying on plain lattice assumptions, with high security guarantees.

No structure, average to worst case reductions.

Trade-offs?

The lack of structure implies having a much larger public key.
Signature size remains small.

1910

Optimizing the GPV framework for plain lattices

Squirrels is designed with the goal of optimizing the GPV framework for plain lattices.

Two main observations:

1. The size of signatures is proportional to the size of the largest secret Gram-Schmidt vector.
→ Our key generation should make it small.

2. We need an efficient way to verify lattice membership, without inverting a very large matrix or
solving a linear system.

2011

Optimizing the GPV framework for plain lattices

Squirrels is designed with the goal of optimizing the GPV framework for plain lattices.

Two main observations:

1. The size of signatures is proportional to the size of the largest secret Gram-Schmidt vector.
→ Our key generation should make it small.

Solution: Sequential sampling of vectors depending on the previous ones, with a target
Gram-Schmidt norm.

2. We need an efficient way to verify lattice membership, without inverting a very large matrix or
solving a linear system.

2111

Optimizing the GPV framework for plain lattices

Squirrels is designed with the goal of optimizing the GPV framework for plain lattices.

Two main observations:

1. The size of signatures is proportional to the size of the largest secret Gram-Schmidt vector.
→ Our key generation should make it small.

Solution: Sequential sampling of vectors depending on the previous ones, with a target
Gram-Schmidt norm.

2. We need an efficient way to verify lattice membership, without inverting a very large matrix or
solving a linear system.

Solution: Use a subclass of plain lattices with large density, that allows easy membership check.

2211

Optimizing the GPV framework for plain lattices

Squirrels’ key generation

Secret vectors are generated sequentially.

1. A continuous candidate is sampled with a
constrained norm in the orthogonal of the
previous ones.

2. It is then lifted to an integral vector by
rounding its coordinates, which introduces
a small difference on the Gram-Schmidt
norm.

12

Optimizing the GPV framework for plain lattices

Using co-cyclic lattices

A co-cyclic lattice is a special case of lattices for which there exists and:

These lattices have a density of more than 80% among integer lattices.

When fixing the determinant appropriately, we can directly compute from the Hermite Normal
Form (HNF) of the lattice with high probability.

and

2413

Optimizing the GPV framework for plain lattices

Using co-cyclic lattices

A co-cyclic lattice is a special case of lattices for which there exists and:

In practice, we would like to verify without big integers (det ~ 3000
bits).

We can fix the determinant to be a product of large primes, and use Chinese Remainder Theorem.

2514

Optimizing the GPV framework for plain lattices

Fixing the determinant

Recall, determinant = product of Gram-Schmidt norms.

1. In the key generation, we thus maintain
close to by varying the sampling bounds.

15

Optimizing the GPV framework for plain lattices

Fixing the determinant

Recall, determinant = product of Gram-Schmidt norms.

1. In the key generation, we thus maintain
close to by varying the sampling bounds.

2. The last vector is fixed so as to obtain the target determinant.
Determinant expansion on the last vector gives:

Method: obtain Bezout coefficients for a few minors, then multiply by target det.

15

Evaluation
04

28

Sizes

PK size (bytes) Sig size (bytes)

Squirrels I 666000 1019

Falcon I 897 666

Dilithium II 1312 2420

16

Speed

Keygen Sign Verify

Squirrels I 34s 600/s 13000/s

Falcon I 8ms 6000/s 28000/s

Dilithium II 0.05ms 6900/s 19400/s

17

Conclusion

31

● Squirrels offers an alternative to schemes based on structured lattices with stronger security
assumptions.
Submitted to NIST 2022 Call for Additional Digital Signature Schemes.

○ Small signature size, between Falcon and Dilithium. Efficient to sign and
verify.

○ But, large public key and slow to generate.

Conclusion

18

● Squirrels offers an alternative to schemes based on structured lattices with stronger security
assumptions.
Submitted to NIST 2022 Call for Additional Digital Signature Schemes.

○ Small signature size, between Falcon and Dilithium. Efficient to sign and
verify.

○ But, large public key and slow to generate.

● Practical contributions, with the optimization of the GPV framework

○ Novel usage of co-cyclic lattices, and key generation technique
○ New algorithm to efficiently compute a batch of matrix minors

Conclusion

18

Thanks!
Questions?

