
M1 Internship:
Making KNN algorithms faster with GoldFinger, a Fast and Precise

method for approximating Jaccard similarity

Guilhem Niot1

Supervised by Anne-Marie Kermarrec2, Olivier Ruas3 and François
Taiani4

1Informatique Fondamentale
ENS de Lyon

2EPFL, Lausanne, Switzerland

3Inria, Lille

4IRISA, Rennes

26. April - 23. July 2021
Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 1 / 25

1. K-Nearest Neighbors and Jaccard similarity

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 2 / 25

K-Nearest Neighbors (KNN)

invented in the 50’s
consists in retrieving the K-Nearest Neighbors of a point to guess
some of its properties
=⇒ can be used for machine learning models

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 3 / 25

K-Nearest Neighbors (KNN)

Let’s assume we want to retrieve the color of the point with an
interrogation mark.

?

=⇒ Retrieve the K-Nearest Neighbors of the star point, then majority poll.
With K = 3, we guess blue. With K = 6, we guess yellow.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 4 / 25

K-Nearest Neighbors (KNN)

Let’s assume we want to retrieve the color of the point with an
interrogation mark.

?

=⇒ Retrieve the K-Nearest Neighbors of the star point, then majority poll.

With K = 3, we guess blue. With K = 6, we guess yellow.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 4 / 25

K-Nearest Neighbors (KNN)

Let’s assume we want to retrieve the color of the point with an
interrogation mark.

?

K=3

=⇒ Retrieve the K-Nearest Neighbors of the star point, then majority poll.
With K = 3, we guess blue.

With K = 6, we guess yellow.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 4 / 25

K-Nearest Neighbors (KNN)

Let’s assume we want to retrieve the color of the point with an
interrogation mark.

?

K=3

K=6

=⇒ Retrieve the K-Nearest Neighbors of the star point, then majority poll.
With K = 3, we guess blue. With K = 6, we guess yellow.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 4 / 25

Formalization of the KNN problem

How to formalize the "Nearest" property?

Definition (Similarity function)

Given a set of points S , a similarity function is a function S × S → R+.
For dissimilar objects, ≈ 0. For similar objects, takes high values.

For example, the Jaccard similarity for sets.
Given an items set I and S = P(I):

Jaccard(x1, x2) =
|x1 ∩ x2|
|x1 ∪ x2|

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 5 / 25

Formalization of the KNN problem

How to formalize the "Nearest" property?

Definition (Similarity function)

Given a set of points S , a similarity function is a function S × S → R+.
For dissimilar objects, ≈ 0. For similar objects, takes high values.

For example, the Jaccard similarity for sets.
Given an items set I and S = P(I):

Jaccard(x1, x2) =
|x1 ∩ x2|
|x1 ∪ x2|

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 5 / 25

Formalization of the KNN problem

How to formalize the "Nearest" property?

Definition (Similarity function)

Given a set of points S , a similarity function is a function S × S → R+.
For dissimilar objects, ≈ 0. For similar objects, takes high values.

For example, the Jaccard similarity for sets.
Given an items set I and S = P(I):

Jaccard(x1, x2) =
|x1 ∩ x2|
|x1 ∪ x2|

=
3
9

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 5 / 25

Formalization of the KNN problem

Definition (KNN graph)
Given an integer K, a set of points S and a similarity function sim, we
retrieve for each point p ∈ S their K Nearest Neighbors in S , i.e. the K
points q1, ..., qK ∈ S with highest values sim(p, q).

?

K=6

Definition (KNN queries)
We retrieve the K Nearest Neighbors of several points p ∈ S .

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 6 / 25

Formalization of the KNN problem

Definition (KNN graph)
Given an integer K, a set of points S and a similarity function sim, we
retrieve for each point p ∈ S their K Nearest Neighbors in S , i.e. the K
points q1, ..., qK ∈ S with highest values sim(p, q).

Definition (KNN queries)
We retrieve the K Nearest Neighbors of several points p ∈ S .

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 6 / 25

2. Approximate K Nearest Neighbors (ANNs)

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 7 / 25

Exact KNNs are too expensive in practice

Complexity:
KNN queries: |S | for each query.
KNN graphs: |S |2.

=⇒ not acceptable in practice (|S | � 109!!)

We only compute Approximate Nearest Neighbors (ANN).
Achieve a trade-off between the "quality" of the neighbors retrieved and
the computation time.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 8 / 25

Exact KNNs are too expensive in practice

Complexity:
KNN queries: |S | for each query.
KNN graphs: |S |2.

=⇒ not acceptable in practice (|S | � 109!!)

We only compute Approximate Nearest Neighbors (ANN).
Achieve a trade-off between the "quality" of the neighbors retrieved and
the computation time.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 8 / 25

Quality of Approximate Nearest Neighbors

What is the "quality" of approximate Nearest Neighbors?

Definition (Recall)
The Recall is the proportion of true nearest neighbors in the output of the
approximate algorithm:

Recall(ANN) =
|ANN ∩ KNN|
|KNN|

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 9 / 25

Quality of Approximate Nearest Neighbors

What is the "quality" of approximate Nearest Neighbors?

Definition (Recall)
The Recall is the proportion of true nearest neighbors in the output of the
approximate algorithm:

Recall(ANN) =
|ANN ∩ KNN|
|KNN|

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 9 / 25

Quality of Approximate Nearest Neighbors

What is the "quality" of approximate Nearest Neighbors?

Definition (Recall)
The Recall is the proportion of true nearest neighbors in the output of the
approximate algorithm:

Recall(ANN) =
|ANN ∩ KNN|
|KNN|

?

K=6

Approximate
Neighbors

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 9 / 25

Quality of Approximate Nearest Neighbors

What is the "quality" of approximate Nearest Neighbors?

Definition (Recall)
The Recall is the proportion of true nearest neighbors in the output of the
approximate algorithm:

Recall(ANN) =
|ANN ∩ KNN|
|KNN|

?

K=6

Approximate
Neighbors

Recall = 4
K = 4

6

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 9 / 25

Quality of Approximate Nearest Neighbors

What is the "quality" of approximate Nearest Neighbors?

Definition (Graph Quality)
The Quality of a KNN graph is the ratio of the similarities of the
computed neighbors over the similarities of the actual nearest neighbors.

Quality(ANN) =

∑
(p,q)∈ANN sim(p, q)∑
(p,q)∈KNN sim(p, q)

The closer to 1, the better.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 10 / 25

How do we Approximate Nearest Neighbors?

Two main leverages to approximate Nearest Neighbors efficiently:
Reducing the number of similarities computed.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 11 / 25

How do we Approximate Nearest Neighbors?

Two main leverages to approximate Nearest Neighbors efficiently:
Reducing the number of similarities computed.

For KNN graph computation: using graph heuristics (called
NNDescent).

1 Start with a random graph
2 Improve it step by step by assuming there likely are closer neighbors at

distance at most two in the graph

K=2

For KNN querying, we can use LSH (Locally-Sensitive Hashing)
functions.
They hash similar items to the same hash with high probability: we can
limit our computation to items with the same hash.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 11 / 25

How do we Approximate Nearest Neighbors?

Two main leverages to approximate Nearest Neighbors efficiently:
Reducing the number of similarities computed.

For KNN graph computation: using graph heuristics (called
NNDescent).

1 Start with a random graph
2 Improve it step by step by assuming there likely are closer neighbors at

distance at most two in the graph

K=2

For KNN querying, we can use LSH (Locally-Sensitive Hashing)
functions.
They hash similar items to the same hash with high probability: we can
limit our computation to items with the same hash.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 11 / 25

How do we Approximate Nearest Neighbors?

Two main leverages to approximate Nearest Neighbors efficiently:
Reducing the number of similarities computed.

For KNN graph computation: using graph heuristics (called
NNDescent).

1 Start with a random graph
2 Improve it step by step by assuming there likely are closer neighbors at

distance at most two in the graph

K=2

For KNN querying, we can use LSH (Locally-Sensitive Hashing)
functions.
They hash similar items to the same hash with high probability: we can
limit our computation to items with the same hash.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 11 / 25

How do we Approximate Nearest Neighbors?

Two main leverages to approximate Nearest Neighbors efficiently:
Reducing the number of similarities computed.

For KNN graph computation, we can use graph heuristics.
For KNN querying, we can use LSH (Locally-Sensitive Hashing)
functions.
They hash similar items to the same hash with high probability: we can
limit our computation to items with the same hash.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 11 / 25

How do we Approximate Nearest Neighbors?

Two main leverages to approximate Nearest Neighbors efficiently:
Reducing the number of similarities computed.
Approximating the similarity.
We usually project the points of the dataset onto sketches, i.e. vectors
of smaller dimensions with which we can efficiently approximate the
similarity of the original objects.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 11 / 25

Approximating the Jaccard Similarity

Min-wise hashing: Given a random permutation π of the items set, we have
for X1,X2 ∈ P(I):

P
(
min
i∈X1

π(i) = min
i∈X2

π(i)

)
= Jaccard(X1,X2)

Approximation of Jaccard by averaging:

Jaccard(X1,X2) ≈
∑n

`=1 1minX1 π`=minX2 π`

n

With, sketch(X) = (minXπ`)1≤`≤n.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 12 / 25

Approximating the Jaccard Similarity

Min-wise hashing: Given a random permutation π of the items set, we have
for X1,X2 ∈ P(I):

P
(
min
i∈X1

π(i) = min
i∈X2

π(i)

)
= Jaccard(X1,X2)

Approximation of Jaccard by averaging:

Jaccard(X1,X2) ≈
∑n

`=1 1minX1 π`=minX2 π`

n

With, sketch(X) = (minXπ`)1≤`≤n.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 12 / 25

Approximating the Jaccard Similarity

Min-wise hashing: But, random permutations + min computations are
costly.
Complexity of n × |X | for computing the sketch of |X |.

=⇒ Fast Similarity Sketching reduces this complexity to n + |X | by filling
the sketch on the whole instead of coordinate by coordinate and by
stopping early when it is full.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 13 / 25

Approximating the Jaccard Similarity

GoldFinger: inspired by the feature hashing technique.
Using a hash function h : I → [0,B], we produce:

sketch(X) = {h(x), x ∈ X}

Then,

Jaccard(X1,X2) ≈ GoldFinger(X1,X2) =
|sketch(X1) ∩ sketch(X2)|
|sketch(X1) ∪ sketch(X2)|

Assumes:
|X1 ∩ X2| ≈ |sketch(X1) ∩ sketch(X2)|
|X1 ∪ X2| ≈ |sketch(X1) ∪ sketch(X2)|

works well in practice when |X | � B (sparse dataset).

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 14 / 25

Approximating the Jaccard Similarity

GoldFinger: inspired by the feature hashing technique.
Using a hash function h : I → [0,B], we produce:

sketch(X) = {h(x), x ∈ X}

Then,

Jaccard(X1,X2) ≈ GoldFinger(X1,X2) =
|sketch(X1) ∩ sketch(X2)|
|sketch(X1) ∪ sketch(X2)|

Assumes:
|X1 ∩ X2| ≈ |sketch(X1) ∩ sketch(X2)|
|X1 ∪ X2| ≈ |sketch(X1) ∪ sketch(X2)|

works well in practice when |X | � B (sparse dataset).

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 14 / 25

3. GoldFinger against Fast Similarity Sketching for the
KNN graph problem

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 15 / 25

GoldFinger against Fast Similarity Sketching for the KNN
graph problem

GoldFinger vs Min-wise hashing: huge advantage for GoldFinger due to the
prohibitive preprocessing cost of Min-wise hashing.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 16 / 25

GoldFinger against Fast Similarity Sketching for the KNN
graph problem

Comparison of GoldFinger performance against state-of-the-art Fast
Simarity Sketching for the KNN graph problem.

0 100 200 300 400
Time (s)

0.6

0.7

0.8

0.9

1.0

KN
N

qu
al

ity

64

128

256

512
10242048

512

1024
2048

4096 8192

(a) movielens10M

0 100 200 300
Time (s)

0.7

0.8

0.9

1.0

KN
N

qu
al

ity
64

128

256

8192

GoldFinger
FastSim

(b) AmazonMovies

Figure: Relation between the computation time and the KNN quality for different
sketch sizes (in number of bits) using Fast Similarity Sketching and GoldFinger.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 17 / 25

GoldFinger against Fast Similarity Sketching for the KNN
graph problem

GoldFinger has a clear advantage on Movielens10M.
Fast Similarity Sketching has a short advantage on Amazon Movies.

GoldFinger is competitive against Fast Similarity Sketching. GoldFinger is
more efficient on denser datasets.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 18 / 25

4. Improving KNN querying with GoldFinger

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 19 / 25

Improving KNN querying with GoldFinger

I also showed that GoldFinger could be used to improve state-of-the-art
algorithms for KNN querying.

HNSW is an ANN algorithm used at Amazon and Facebook, that
consistently outperforms other algorithms for Jaccard similarity.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 20 / 25

Improving KNN querying with GoldFinger

0 20000 40000
Queries per second

0.00

0.25

0.50

0.75

1.00

re
ca

ll

bas.
512
1024
2048
4096

(a) Recall

0 10000 20000
Queries per second

0.90

0.95

1.00

qu
al

ity
(b) KNN quality

Figure: Relation between the quality metrics and the number of queries per
second on the dataset movielens10M. Using GoldFinger highly increases the
number of queries per second at the expense of a slight decrease in quality.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 21 / 25

Improving KNN querying with GoldFinger

For a similar quality, GoldFinger provides a significant speedup (up to a
factor 4).

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 22 / 25

5. Conclusion

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 23 / 25

Conclusion

GoldFinger is competitive against state-of-the-art sketching technique
on the ANN graph problem.
GoldFinger provides a significant speed-up to state-of-the-art
algorithms for answering ANN queries.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 24 / 25

Other achievements

GoldFinger performs better than Fast Similarity Sketching for another
problem consisting in retrieving all the pairs (p, q) such that
sim(p, q) ≥ threshold .
GoldFinger can be significantly improved using adaptative hash
functions to adapt to the dataset and avoid harmful collisions.

Some changes merged to upstream libraries, and usable for future
research.
Great experience with my team, half of the internship on site, and a
paper in production.

Guilhem Niot (ENS de Lyon) M1 Internship: 26. April - 23. July 2021 25 / 25

	K-Nearest Neighbors and Jaccard similarity
	Approximate K Nearest Neighbors (ANNs)
	GoldFinger against Fast Similarity Sketching for the KNN graph problem
	Improving KNN querying with GoldFinger
	Conclusion

