Efficient Threshold ML-DSA

Key Features

Sofia Celi (Brave Research & Univ Bristol),

Rafael del Pino, Thomas Espitau, n Backward compatible: Drop-in
Guilhem Niot, Thomas Prest (PQShield) integration with ML-DSA verifiers.

. . Flexible Key Gen: Both distributed
Problem & Motivation and a posteriori keygen supported.

e Real deployments require distributed trust

e ML-DSA (FIPS 204) signatures lack an
efficient threshold version (TSS)

O Prior proposals have too many rounds,
trust assumptions too strong

e Main difficulty: distributing its rejection
sampling mechanism

High Performance: Signing in <1s,
even in distributed WAN setting.

n Provably Secure: As secure as the
original ML-DSA.

Performance Evaluation

Our contributions

1. First Efficient ML-DSA TSS: <15 2 400
signing, <6 parties, no trusted setup g
2. Distributed KeyGen or A Posteriori E 200
Key Sharing E
3. Open implementation (Golang) § | —
> 3 i 5 6
Threshold (7)

Technical Approach
Secret sharing L = London, S = Seoul, T = Taipel, V = Virginia
with short shares (T,N) Locations Signing (ms)

WAN experiments (one signing attempt)

Signing (2,6) T-8 27

=== — === = = \ (2,6) T-V 620

Local per-party + Global size | (4,6) T-V-L-L 750

| rejection sampling rejection |, (6,6) T-V-L-L-5-5 659
Q

Comparison with other works

Optimizations

Scheme Parties |[Round|Comm (MB)| Security
® Rejection sgmpllng with Unbalanced Our work <6 & 1009110 1.05 Dl\l/TQ.cc))?ifst
Hyperballs for improved success rate IOty
' - - Bienstock et al. Unlimited |0 >1.2 Honest
° Optimal share reconstruction using lenstock et al. | Unlimited ——, = 3 Majority
max-flow problem resolution T) 50 - ngjr’i?d
e |l|l Parallel protocol repetitions

+ our approach has lower computation costs.

T,
@‘-_.; ?:‘“#,(:D Further information:
b i "‘t': Source code and artifacts available at

1
%%ﬁ https://github.com/GuilhemN/threshold-ml-dsa

https://github.com/GuilhemN/threshold-ml-dsa

