Efficient Threshold ML-DSA

Key Features

Sofia Celi (Brave Research & Univ Bristol),

Rafael del Pino, Thomas Espitau, n Backward compatible: Drop-in
Guilhem Niot, Thomas Prest (PQShield) integration with ML-DSA verifiers.

. . Flexible Key Gen: Both distributed
Problem & Motivation and a posteriori keygen supported.

e Real deployments require distributed trust

e ML-DSA (FIPS 204) signatures lack an
efficient threshold version (TSS)

O Prior proposals have too many rounds,
trust assumptions too strong

e Main difficulty: distributing its rejection
sampling mechanism

High Performance: Signing in <1s,
even in distributed WAN setting.

n Provably Secure: As secure as the
original ML-DSA.

Performance Evaluation

Our contributions
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Technical Approach
Secret sharing L = London, S = Seoul, T = Taipel, V = Virginia
with short shares (T,N) Locations Signing (ms)

WAN experiments (one signing attempt)
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Comparison with other works

Optimizations
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+ our approach has lower computation costs.
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