Sofia Celi (Brave Research & Univ Bristol), Rafael del Pino, Thomas Espitau, **Guilhem Niot**, Thomas Prest (PQShield)

Problem & Motivation

- Real deployments require distributed trust
- ML-DSA (FIPS 204) signatures lack an efficient threshold version (TSS)
 - Prior proposals have too many rounds, trust assumptions too strong
- Main difficulty: distributing its rejection sampling mechanism

Our contributions

- 1. First Efficient ML-DSA TSS: <1s signing, ≤6 parties, no trusted setup
- 2. Distributed KeyGen or A Posteriori Key Sharing
- 3. Open implementation (Golang)

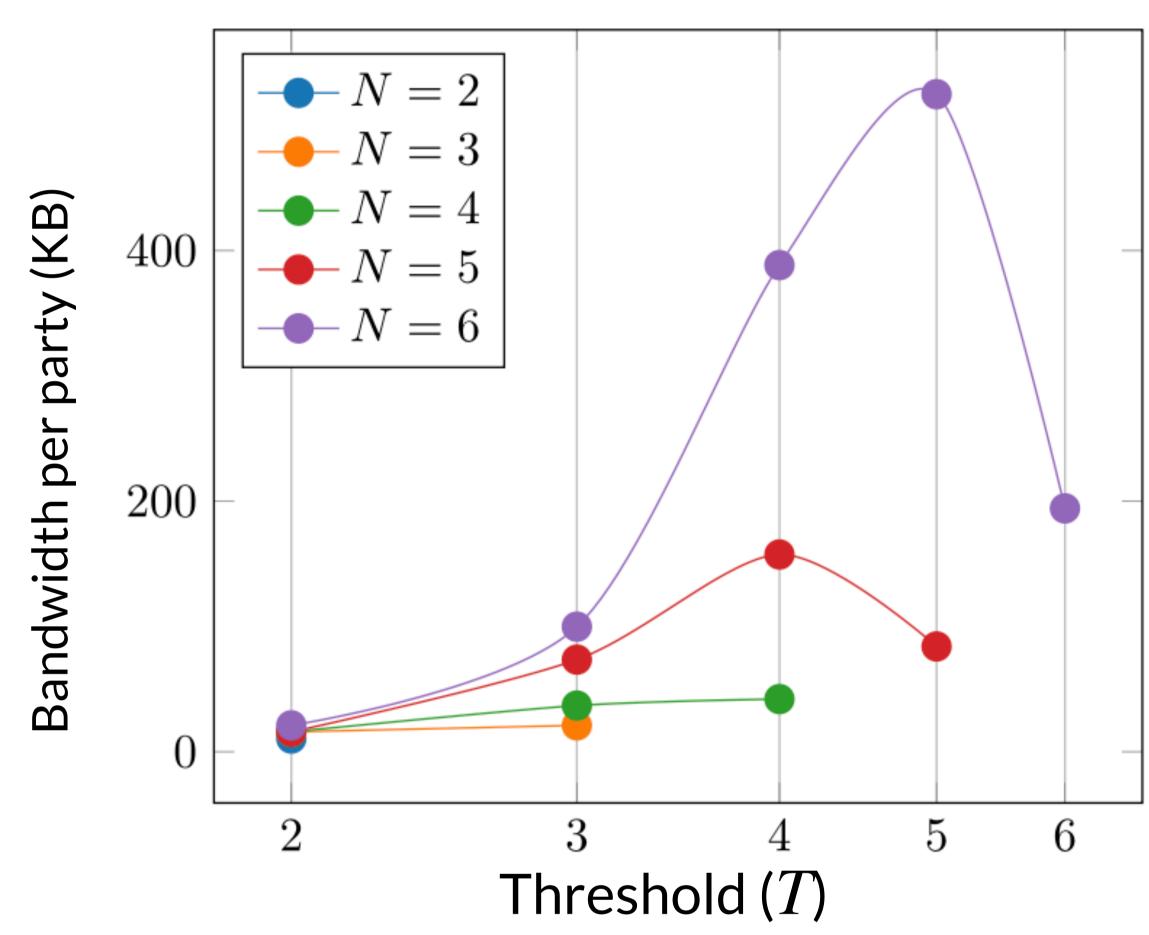
Technical Approach

Secret sharing with short shares

Signing

Local per-party rejection sampling

Global size rejection


Optimizations

- © Rejection sampling with Unbalanced Hyperballs for improved success rate
- Optimal share reconstruction using max-flow problem resolution
- III Parallel protocol repetitions

Key Features

- Backward compatible: Drop-in integration with ML-DSA verifiers.
- Flexible Key Gen: Both distributed and a posteriori keygen supported.
- High Performance: Signing in <1s, even in distributed WAN setting.
- 4 Provably Secure: As secure as the original ML-DSA.

Performance Evaluation

WAN experiments (one signing attempt) L = London, S = Seoul, T = Taipei, V = Virginia

(T,N)	Locations	Signing (ms)
(2,6)	T-S	27
(2,6)	T-V	620
(4,6)	T-V-L-L	750
(6,6)	T-V-L-S-S	659

Comparison with other works

Scheme	Parties	Round	Comm (MB)	Security
Our work	≤ 6	6	0.021 to 1.05	Dishonest Majority
Bienstock et al.	Unlimited	96	>1.2	Honest
		24	>2.3	Majority
Trilithium	2	60	234	Trusted Party

+ our approach has lower computation costs.

Further information:

Source code and artifacts available at https://github.com/GuilhemN/threshold-ml-dsa