
Scheme Parties Round
s

Comm (MB) Security

Our work 6 0.021 to 1.05 Dishonest
Majority

Bienstock et al. Unlimited 96 >1.2 Honest
Majority24 >2.3

Trilithium 2 60 234 Trusted
Party

Efficient Threshold ML-DSA

Sofia Celi (Brave Research & Univ Bristol),
Rafael del Pino, Thomas Espitau,
Guilhem Niot, Thomas Prest (PQShield)

Problem & Motivation

• Real deployments require distributed trust

• ML-DSA (FIPS 204) signatures lack an
efficient threshold version (TSS)

Prior proposals have too many rounds,
trust assumptions too strong

• Main difficulty: distributing its rejection
sampling mechanism

Our contributions

1. First Efficient ML-DSA TSS: <1s
signing, ≤6 parties, no trusted setup

2. Distributed KeyGen or A Posteriori
Key Sharing

3. Open implementation (Golang)

Technical Approach

Optimizations

• B Rejection sampling with Unbalanced
Hyperballs for improved success rate

•E Optimal share reconstruction using
max-flow problem resolution

• G g Parallel protocol repetitions

Performance Evaluation

Comparison with other works

+ our approach has lower computation costs.

Threshold ()T

B
an

d
w

id
th

 p
er

 p
ar

ty
 (K

B
)

(T,N) Locations Signing (ms)
(2,6) T - S 27
(2,6) T - V 620
(4,6) T - V - L - L 750
(6,6) T - V - L - L - S - S 659

WAN experiments (one signing attempt)
L = London, S = Seoul, T = Taipei, V = Virginia

Further information:

Source code and artifacts available at

https://github.com/GuilhemN/threshold-ml-dsa

≤ 6

Secret sharing
with short shares

Local per-party
rejection sampling

Global size
rejection

Signing

+

Key Features

1 Backward compatible: Drop-in
integration with ML-DSA verifiers.

2 Flexible Key Gen: Both distributed
and a posteriori keygen supported.

3 High Performance: Signing in <1s,
even in distributed WAN setting.

4 Provably Secure: As secure as the
original ML-DSA.

ACM CCS ‘25

https://github.com/GuilhemN/threshold-ml-dsa

