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Problem & Motivation

• Real deployments require distributed trust 

• ML-DSA (FIPS 204) signatures lack an 
efficient threshold version (TSS)  

Prior proposals have too many rounds, 
trust assumptions too strong 

• Main difficulty: distributing its rejection 
sampling mechanism

Our contributions

1. First Efficient ML-DSA TSS: <1s 
signing, ≤6 parties, no trusted setup 

2. Distributed KeyGen or A Posteriori 
Key Sharing 

3. Open implementation (Golang)

Technical Approach

Optimizations

•  B Rejection sampling with Unbalanced 
Hyperballs for improved success rate 

•E Optimal share reconstruction using 
max-flow problem resolution 

•  G g Parallel protocol repetitions

Performance Evaluation

Comparison with other works

+ our approach has lower computation costs.
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(T,N) Locations Signing (ms)
(2,6) T - S 27
(2,6) T - V 620
(4,6) T - V - L - L 750
(6,6) T - V - L - L - S - S 659

WAN experiments (one signing attempt) 
L = London, S = Seoul, T = Taipei, V = Virginia

Further information: 

Source code and artifacts available at 

https://github.com/GuilhemN/threshold-ml-dsa
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Key Features

1 Backward compatible: Drop-in 
integration with ML-DSA verifiers.

2 Flexible Key Gen: Both distributed 
and a posteriori keygen supported.

3 High Performance: Signing in <1s, 
even in distributed WAN setting.

4 Provably Secure: As secure as the 
original ML-DSA.
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