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Abstract

The development of quantum computing opened new possibilities in cryptography and crypt-

analysis. Notably, the invention of Shor’s algorithm [46] – allowing one to factor an integer in

polynomial time – showed that quantum computers would break widely deployed primitives

based on RSA and elliptic curves, and protocols relying on them such as TLS. The paradigm

"Store now, Decrypt later", as well as the possibility that quantum computers may be available

in the near future, already make this a critical threat to the security of today’s communica-

tions. This motivated the scientific community to work on post-quantum replacements and to

collaborate with the industry to deploy them as early as possible.

The National Institute of Standards and Technology (NIST) initiated a standardization

effort of post-quantum primitives, which led to the upcoming standardization of the state-

ful hash-based signature schemes XMSS and LMS [13], 3 lattice-based schemes (the Kyber

KEM [45] and the signatures Dilithium and Falcon [44, 32]) and 1 stateless hash-based sig-

nature (SPHINCS [27]), further demonstrating the increasing significance and practicality of

post-quantum cryptographic primitives.

However, given the significant challenges associated with the costly and time-consuming

deployment of entirely new cryptographic systems, coupled with the need to ensure the

longevity of these systems over decades, there are application domains where adopting a

conservative approach to selecting a post-quantum candidate scheme is preferable. In light

of the unpredictable trajectory of quantum computing technology and quantum cryptanal-

ysis in years to come, practitioners with valuable data requiring long-term confidentiality

and authenticity guarantees may want to prioritize security and simplicity over premature

optimization. In that perspective, the question of which class of hard problem to rely on is

critical.
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Chapter 1

Introduction

1.1 Context

The theory of quantum computing was developed in the ’80s, with the conceptualization of the

quantum Turing machine. In this theory, bits are replaced by qubits that allow a probabilistic

superposition of 0 and 1. In theory, quantum computers can solve some classically hard

problems, such as determining whether a blackbox function is constant. It is also possible

to exploit quantum intrication to intuitively make several parallel computations exponential

in the number of qubits available. In the field of cryptography, Shor’s algorithm [46] solves

the problem of factoring and the discrete logarithm problem in polynomial time which are

believed to be hard to solve classically. Current primitives based on RSA and elliptic curves are

hence broken by quantum computing.

It is however not completely clear whether quantum computers are practical. At the time

of writing this thesis, quantum computers are limited to several dozen qubits, several orders

below what is required by Shor’s algorithm. And there are doubts about the scalability of

the current methods. Yet, Google claimed quantum supremacy in 2019 [24], even though

not everyone agrees this is true, this shows that the field is in active development and there

are regular improvements in the technology which may one day make quantum computers

scalable.

Quantum computing theory is here to stay, and although practice is lagging, it is important

to consider the risks of sticking with cryptography possibly broken in the near future. The

paradigm "Store now, decrypt later" makes it paramount to develop and deploy quantum-
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CHAPTER 1. INTRODUCTION

resistant cryptographic alternatives.

Quantum computers are not almighty, notably, NP-hard problems have not been solved in

polynomial time by quantum computers. For symmetric cryptography, quantum cryptography

usually reduces solving time to the square root of the size of the input size, which is a quadratic

speedup and not exponential. For asymmetric cryptography, new hardness assumptions are

made, that are believed to be hard to solve even with quantum computers, and new primitives

based on them are designed.

1.2 Lattice-based cryptography

Some of the main problems believed to be hard to solve on quantum computers are based on

lattices. The first lattice-based cryptographic construction was introduced in 1996 by Ajtai [4].

It was followed in 1998 by NTRU [26] based on stronger assumptions allowing more efficient

construction, and two decades of intense research in the field, with the construction of various

cryptographic primitives, key exchange [45, 37, 41], signatures [44, 32, 20], homomorphic

encryption [49, 12], and many others.

The security of several lattice problems is supported by average to worst-case reductions [5,

22], and there was intense cryptanalysis of lattice problems which gives strong confidence in

the security of these problems.

1.2.1 Structured vs. unstructured lattices.

The security of public-key cryptosystems relies on the assumption that certain computational

problems are difficult to solve. In lattice-based cryptography, two related important problems

are the Learning with Errors (LWE) and the Short Integer Solution (SIS) problem. The former

involves solving a noisy, random linear system over the ring Z/qZ, whereas the latter asks to

find a short solution to a linear system, again overZ/qZ. Both problems can also be interpreted

as approximate close vector problems (i.e., the problems of decoding errors of a certain size)

in random q-ary lattices.

Variants of these problems include algebraically structured versions such as Ring-LWE [33]

and Module-LWE [29], as well as problems associated with the so-called NTRU lattices. These

variants correspond to decoding problems in lattices over rings of algebraic integers (endowing

the lattices themselves with additional algebraic structure). Cryptosystems based on those
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CHAPTER 1. INTRODUCTION

structured assumptions and structured lattices generally offer greater efficiency, since the

corresponding lattices admit more compact representations, and typically benefit from the

faster arithmetic of the underlying rings. In principle, however, the additional structure could

also, introduce vulnerabilities that do not exist in the unstructured setting.

The current state of the art indicates that the recommended parameterizations for al-

gebraically structured lattice problems do not appear to exhibit specific weaknesses when

compared to plain lattice versions. However, the (quantum) complexity of certain related

problems on specific types of algebraic lattices is lower than their counterparts on general lat-

tices (see, e.g., [14, 15]). Whether new cryptanalytic techniques may in the future improve and

extend those stronger attacks that exist in the structured setting to the point of meaningfully

reducing the security of cryptosystems based on NTRU or structured variants of LWE and SIS

remain to be seen. Uncertainty in this matter does however make unstructured lattices appear

as a clearly more conservative choice.

1.3 S Q U I R R E L S: a signature scheme based on unstructured lattices

Given the uncertain long-term prospects of algebraically structured lattices and the need

for post-quantum standards to remain secure, this thesis introduces S Q U I R R E L S – a new

digital signature scheme based on plain lattice problems, i.e., without additional algebraic

structure. S Q U I R R E L S is an instantiation of the GPV framework [23] on a large class of lattices

– called co-cyclic lattices, and with a high density among plain lattices. It leverages novel

optimizations of the key generation and verification procedures to achieve small signature

sizes, and fast signature generation and verification. We choose to employ conservative

parameterizations for enhanced security. While this choice incurs some efficiency trade-offs

compared to algebraic variants, we believe it ensures robustness against potential weaknesses

in the future. Furthermore, the use of plain lattices presents minimal restrictions on parameter

choices, making it possible to reach specific security levels in a fine-grained manner.

S Q U I R R E L S was submitted to NIST 2023 Call for Additional Digital Signature Schemes [1],

with a submission package including an extended specification and analysis, a reference code

and test vectors. Notably, at NIST security level I, S Q U I R R E L S produces signatures of 1019

bytes, which is in between the size of the signatures produced by Falcon and Dilithium, the

two lattice-based signature NIST finalists. It has however larger public keys of about 600kB

against 1kB for Falcon. Our signature scheme offers an interesting trade-off between security

and communication size. It becomes particularly viable for long-term use, when the public
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CHAPTER 1. INTRODUCTION

key is rarely transmitted on the network.
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Chapter 2

Background

Notations. This paragraph states the convention that will be used in this document.

• Vectors are denoted with bold lower-case letters (e.g. a,v), matrices are denoted in bold

upper-case letters (e.g. A,M). For a set D , the set of n-dimensional vectors with coordi-

nates in D is denoted Dn , the set of matrices of n rows, m columns with coordinates in

D is denoted Dn×m .

• Matrices and vectors are denoted in row notation.

• Given an n-dimension vector v, its i -th coordinate is written vi for 1⩽ i ⩽ n. Given an

n-by-m matrix A, its (i , j )-th coordinate (the coordinate in its i -th row, j -th column) is

written Ai , j for 1⩽ i ⩽ n,1⩽ j ⩽m.

• The matrix multiplication is denoted A ·B. It is extended to n-dimensional vectors by

interpreting them as a 1-by-n matrix.

• The transpose of the matrix A is denoted AT . Its orthogonal space is denoted A⊥ = {x |
∀y,〈x,y ·A〉 = 0}

• The ring of integers is denoted Z. For a positive integer q , we denote the quotient ring of

integers modulo q as Zq =Z/qZ.

• For a finite set S, we denote the uniform distribution over S as U (S).

• The floor of a real number a, i.e., the largest integer less than or equal to a, is denoted by

⌊a⌋.
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CHAPTER 2. BACKGROUND

• For a real vector v ∈Rn , its euclidean norm (i.e. ℓ2) is denoted ||v||.

• For an integer a, and a positive integer p, we denote the reduction of a modulo p by

a mod p ∈ [0, p −1].

• For two n-dimensional vectors a,b over a common ring, their inner product is denoted

by 〈a,b〉 =∑n
i=1 ai ·bi .

• For an n-by-m matrix B, we denote B̃ its Gram-Schmidt orthogonalization i.e. the matrix

B̃ verifying:

∀i ∈ �1,n�, b̃i = bi −
∑

1⩽i< j

〈bi , b̃ j 〉
〈b̃ j , b̃ j 〉

b̃ j

We note the Gram-Schmidt norm of a matrix ||B||GS = maxi ||b̃i ||.

2.1 Introduction to Lattices

Lattices are a common object used in post-quantum cryptography. They are very versatile and

allow designing a broad range of primitives while remaining very efficient. This section gives a

brief introduction to lattices and some of the main tools used to study them.

Definition 2.1.1 (Lattice). Given H = Rm , a lattice is a discrete subgroup of H. For a basis

B =


b1
...

bn

 ∈Rn×m , we note L (B) and call lattice generated by B the set of vectors

{
n∑

i=1
xi bi | xi ∈Z

}

A lattice is commonly noted Λ or L (B). The rank of a lattice – commonly noted n – is the

cardinal of a basis of the lattice.

Definition 2.1.2 (Successive Minima of a Lattice). Let Λ ∈Rm a lattice of rank n. For i ∈ �1,n�,

we note λi (Λ) and call i -th successive minimum of Λ the value:

λi (Λ) = inf
B s.t. Λ=L (B)

||b1||⩽||b2||⩽...⩽||bn ||
||bi ||

11



CHAPTER 2. BACKGROUND

Definition 2.1.3 (Determinant of a Lattice). Let Λ = L (B) be a lattice of rank n. We call

determinant of Λ the value det(Λ) :=
√

det(BBt ). This value is independent of the basis B

chosen.

The basis of a lattice can be transformed to respect extra properties. Two interesting such

forms are the Hermite Normal Form, which is unique and allows us to simply verify whether

two bases describe the same lattice, and the δ-LLL reduced form which intuitively reduces the

basis and sorts Gram-Schmidt norms of the basis. Both of these forms can be computed in

polynomial time.

Definition 2.1.4 (δ-LLL reduced basis). For B = [b1| · · · |bn] a matrix, the definition of a δ-

LLL-reduced basis is as follows: define µi , j = 〈bi b̃ j 〉
〈b̃ j ·b̃ j 〉 for any 1 ≤ j < i ≤ n. We say that B is δ

LLL-reduced for a parameter δ ∈ ( 1
4 ,1) if the following holds:

• Size-reduced: for 1 ≤ j < i ≤ n: |µi , j | ≤ 1
2 .

• Lovász condition: for k = 2, · · · ,n, δ||b̃k−1||2 ≤ |b̃k ||2 +µ2
k,k−1|b̃k−1||2.

The LLL [30] algorithm outputs an LLL-reduced basis.

Definition 2.1.5 (Hermite Normal Form (HNF)). Any m-by-n matrix B can be factored as U ·H

with U being an m-by-m unimodular matrix, and H is an m-by-n matrix verifying:

• H is upper triangular with positive coefficients, and rows of zeros are below any non-zero

row.

• The first non-zero entry in row i , called the pivot and noted ei = Hi , ji is strictly to the right

of the non-zero entry of the previous row: ji > ji−1.

• The pivot of each row is strictly larger than all entries above it in the same column:

∀1⩽ i ′ < i ,Hi ′, ji < Hi , ji .

2.1.1 On co-cyclic lattices

The structure of the quotient group Zn/Λ, where Λ is an integer lattice, that holds significant

importance in the study of lattices. It provides insights into the average complexity of lattice

problems, as highlighted in works such as [3] and its generalization [22]. In particular, when

this quotient group is cyclic, meaning it is spanned by a single element, we refer to the lattice
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as co-cyclic. Co-cyclic lattices exhibit a natural density of approximately 85% [38]. Moreover,

Paz and Schnorr demonstrated in [39] that the worst-case hardness problems, such as SVP

(Shortest Vector Problem) and CVP (Closest Vector Problem), on co-cyclic lattices are as

challenging as those on unconstrained lattices.

This class of lattices offers both strong security guarantees and practical efficiency as

discussed in section 3.1.

2.1.2 Problems over lattices

We recall several problems over lattices of interest for this thesis.

Definition 2.1.6 (SVP – Shortest Vector Problem). Given a n-dimensional lattice Λ, find a

lattice vector v such that ||v || =λ1(Λ).

Definition 2.1.7 (ASVPγ – Approximate Shortest Vector Problem). Given a n-dimensional

lattice Λ and γ⩾ 1 a function of n, find a lattice vector v such that ||v ||⩽ γ ·λ1(Λ).

Definition 2.1.8 (CVP – Closest Vector Problem). Given a n-dimensional lattice Λ and a point

c ∈ H, find a lattice vector v minimizing ||c − v ||.

These problems are hard on classical computers, and quantum computers are believed to

not significantly decrease their complexity, as opposed to problems such as the factoring of

integers, and discrete logarithm.

Some other problems arise from cryptographic constructions themselves.

Definition 2.1.9 (SISn,m,q,β – Short Integer Solution). Let n and m, q = Poly(n) some integers.

Given a matrix A ∈Zn×m
q uniformly random, find a non-zero vector z such that Azt = 0 mod q

and ||z||⩽β.

Definition 2.1.10 (ISISc,n,m,q,β – Inhomogeneous Short Integer Solution). Let n and m, q =
Poly(n) some integers. Given a matrix A ∈Zn×m

q uniformly random and c ∈Zn
q , find a non-zero

vector z such that Azt = ct mod q and ||z||⩽β.

ISIS can be reduced to SIS, and SIS was proven to be as hard as worst-case ASVPγ [4]. This

means that cryptographic constructions based on (I)SIS can ultimately rely on standard lattice

hardness assumptions.

The problems mentioned below are formally defined as the generalization of the (I)SIS

problems when the structure of the quotient Zn/Λ is prescribed to a group G .

13
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Definition 2.1.11 (GSISG ,m,β – Group Short Integer Solution). Let G be a finite abelian group.

Given (g1, ..., gm) ∈Gm , find x ∈Zm such that
∑m

i=1 xi · gi = 0G and ||x||⩽β.

Definition 2.1.12 (GISISG ,c,m,β – Group Inhomogeneous Short Integer Solution). Let G be a

finite abelian group. Given (g1, ..., gm) ∈Gm and c ∈G, find x ∈Zm such that
∑m

i=1 xi ·gi = c and

||x||⩽β.

We have SISn,m,q,β = GSISZn
q ,m,β and ISISc,n,m,q,β = GSISZn

q ,c,m,β.

G(I)SIS was proven to be as hard as ASVPγ in [22] under the assumption that G is suf-

ficiently large. This reduction applies to co-cyclic lattices with a large determinant ∆ for

which Zn/Λ=Z∆. The high density of co-cyclic lattices among the moduli space of all integer

lattices (without the determinant constraint) also supports the hardness of these problems

for co-cyclic lattices by allowing to reduce average G(I)SIS on co-cyclic lattices to G(I)SIS on

all integer lattices. Thus, strong reduction results support the use of co-cyclic lattices in a

lattice-based cryptographic scheme.

2.2 Digital Signature Schemes

A digital signature is a cryptographic scheme that allows one to verify the authenticity of a

digital document. The signer typically sends a signature alongside a document, that gives

confidence on its origin to anyone verifying it. Signatures have a broad set of use cases, such

as software distribution, or TLS handshakes.

A signature typically consists of three routines:

• a key generation procedure, which randomly generates a keypair, with a secret key

used for signature generation, and a public key that can be shared and allows signature

verification.

• a signing procedure, given a document and the secret key, generates a signature for that

document.

• a verification procedure, given a document, a signature, and the public key, verifies that

the signature is valid for the document.

We require the scheme to be correct, i.e. any signature generated by the signing procedure

must pass the verification. And it has to be secure or existentially unforgeable, i.e. it is hard
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to generate a valid signature for a message without knowledge of the private key. We say

that a scheme is strongly unforgeable if additionally no new signature can be generated for a

previously signed message.

2.2.1 Lattice-based signature scheme with the GPV framework

In 2008, Gentry, Peikert, and Vaikuntanathan [23] introduced a provably secure – and even

strongly unforgeable – lattice-based signature scheme under the SIS assumption. The frame-

work relies on the existence of a trapdoor basis, which serves as the secret key and exhibits

excellent properties for Gaussian sampling to generate a lattice point close to the hash of the

message. The verification process involves checking whether the signature belongs to the

lattice using linear algebra techniques and ensuring that the distance between the lattice point

and the message hash is sufficiently small. Over time, this robust framework has undergone

enhancements to offer highly compact and efficient signature schemes, most notably resulting

in the NIST-standardized Falcon [44] and variants such as Mitaka [20].

The ancestor of this framework is the GGH signature scheme [25], with the main difference

being the deterministic procedure to find a point close to the hash of the message, which was

leaking information about the secret basis. The GPV signature represents an improvement

over this construction by randomizing the point close to the hash and making it independent

from the secret basis.

The GPV signature can be described as follows:

• The public key is a full-rank matrix A ∈Zm×n
q (m < n).

• The secret key is a matrix B ∈Zn×n
q with short entries such that B ·AT = 0.

• Given a message m′, we first hash it to H(m′) where H is a hash function defined as

{0,1}∗ →Zn
q . A signature is a short s ∈Zn

q such that s ·AT = H (m′). It is straightforward to

check the validity of v by verifying that s is indeed short and s ·AT = H(m′).

• To generate a signature, first a preimage c0 ∈Zn
q is computed such that c0 ·AT = H(m′),

then B is used to find a vector c in the lattice spanned by B that is close to c0. The

difference s = c0 −c is a valid signature, because s ·AT = c0 ·AT −c ·AT = H(m′).

This signature is strongly unforgeable under the SIS assumption – i.e. an adversary cannot

produce a new signature, even for messages on which it queried the signing oracle. It also
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assumes that we do not rerun the signature generation twice for the same message. In practice,

we enforce the second condition by sampling a salt in the signature generation and appending

it to the message before hashing.

2.3 Babai’s Algorithms

Given a lattice L (B) and a point c, Babai’s algorithms find a point v ∈L (B) close to c. Babai

formalized two algorithms in [9]: RoundOff and NearestPlane. We present the NearestPlane
algorithm only here, which was used in the GPV signature, and whose core idea was reused

to design the Klein Gaussian Sampler introduced in section 2.4. The Klein Sampler is used in

S Q U I R R E L S to sample lattice vectors close to the message hash.

Algorithm 1 NearestPlane(B,c)

Require: A basis B and a vector c ∈Rm .
Ensure: A vector v close to c.

cn ← c
vn ← 0
for i = n, ...,1 do

di ←〈ci , b̃i 〉/||b̃i ||2
zi ←⌊di ⌉
ci−1 ← ci − zi ·bi

vi−1 ← vi + zi ·bi

end for
return v0

Proposition 2.3.1. The vector v returned by NearestPlane(B,c) verifies [42, prop. 2.26]:

||v−c||⩽
p

n

2
||B||GS

This is a result of the fact that v ends in the parallelepiped formed by the Gram-Schmidt vectors

of B.

2.4 Klein Gaussian Sampler

The Klein Gaussian Sampler is a randomized version of NearestPlane sampling vectors

according to a discrete Gaussian distribution over the lattice, centered on the target vector c.
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Algorithm 2 KleinSampler(B,c,σ)

Require: A basis B and a vector c ∈Rm .
Ensure: A vector v following distribution DL (B),σ,c

cn ← c
vn ← 0
for i = n, ...,1 do

di ←〈ci , b̃i 〉/||b̃i ||2
σi ←σ/||b̃i ||
zi ←⌊di ⌉σi ▷ Gaussian sampling in Zwith mean di , std σi

ci−1 ← ci − zi ·bi

vi−1 ← vi + zi ·bi

end for
return v0

The discrete Gaussian distribution is defined as follows:

• The Gaussian function ρσ :Rm →R is defined as ρσ(x) := exp(−σ2||x||2/2).

• Then, the discrete Gaussian distribution over Λ centered in c is defined as:

∀x ∈Λ,DΛ,σ,c(x) = ρσ(x−c)

ρσ(Λ−c)

Then, we can obtain a theorem over the quality of the Klein sampler:

Theorem 2.4.1. Let λ ∈N and ε= 2−λ. For any basis B ∈Zn×m , and a target vector c ∈Rm , the

statistical distance between the output distribution of KleinSampler(B,σ,c) and DL (B),σ,c is

upper bounded by 2−λ, provided [42, theorem 2.33]:

σ⩾ ||B||GS · 1

π
·
√

1

2
log

(
2n(1+ 1

ε
)

)

There is a larger theory to obtain this theorem, related to lattice duals and the notion of

"smoothing parameter" as defined in [35], but we stick to a simpler version here.

Hence, for a σ large enough, the output of KleinSampler is independent of the secret

basis, which ensures sound security in the GPV signature. In practice, we take ε smaller than

in the above theorem, using a result from [43] bounding the Rényi divergence between these

two distributions.
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Chapter 3

Design

This section describes and justifies some of the main choices made in the design of S Q U I R -

R E L S.

3.1 The choice of unstructured lattices

As seen in subsection 1.2.1 and subsection 2.1.1, unstructured lattices and co-cyclic lattices

offer strong security guarantees and worst-case reductions which make them great candidates

for the design of conservative cryptographic primitives. Co-cyclic lattices also have a practical

interest in the context of a GPV signature, with the possibility to efficiently implement lattice

membership as required in the verification procedure.

Indeed, an equivalent characterization of co-cyclic lattices, as described in [39], involves

the existence of a vector w such that Λ= {x | 〈x,w〉 mod d = 0}. In other words, the lattice Λ

can be defined as the set of all vectors x for which the inner product of x and w modulo d yields

a specific value. When the lattice determinant is furthermore square-free with large factors,

this characterization also relates to the row Hermite Normal Form (HNF) of the lattice, which

takes the following form with high probability (⪆ 1−2−23 in our case):[
In−1 vT

check

0 ∆

]
(3.1)

where ∆= det(Λ).
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This characterization allows us to perform an efficient lattice membership check. Com-

puting the row HNF allows us to find such a vector w: w = (vcheck,−1). Indeed, given a point

c ∈Zn and the HNF of a co-cyclic lattice Λ:

c = (c1, ...,cn) ∈Λ ⇐⇒ ∃Y = (y1, ..., yn) | Y ·HNF(L ) = c

⇐⇒ ∃Y | c1 = y1,c2 = y2, ...,cn−1 = yn−1,

cn = ∑
1⩽i⩽n−1

yi · vcheck,i + yn ·∆

⇐⇒ cn = ∑
1⩽i⩽n−1

ci · vcheck,i mod ∆ (3.2)

Hence, in the context of GPV-type signatures, we can achieve efficient verification when

the underlying lattice is co-cyclic. To fully capitalize on this observation and create a practical

signature scheme, our focus lies in the construction of reliable trapdoors specifically designed

for co-cyclic lattices. By successfully addressing this aspect, we can develop an effective and

secure signature scheme that harnesses the advantages of co-cyclic lattices.

3.2 The S Q U I R R E L S family

This thesis presents the S Q U I R R E L S family, a collection of lattice-based digital signature

schemes for each of the five NIST security level requirements. These schemes adopt a hash-

and-sign structure construction and rely on unstructured co-cyclic lattices as their foundation.

At the core of these schemes is an integral matrix of dimensions n ×n, serving as a trapdoor

sampling basis for the lattice, which we will require to be co-cyclic. This matrix consists of a set

of n short and relatively orthogonal vectors, with constraints on their so-called Gram-Schmidt

norm to ensure good sampling properties. On the other hand, a public basis, expressed in the

Hermite Normal Form (HNF), is made available to enable the membership test for this lattice.

Unlike NTRU lattices, the secret basis employed in S Q U I R R E L S cannot be easily compressed

due to the absence of strong geometric properties. It is worth noting that this is a drawback

inherent to any plain lattice scheme. Indeed, we are sampling our keys from a distribution

that is computationally indistinguishable from the distribution of maximal entropy for the

dimension and size involved.

The sampler used to produce signatures is the KleinSampler, already used in the original

GPV proposal.
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3.2.1 S Q U I R R E L S secret keys

Even though signatures generation still relies on the Klein sampler, the generation of the

trapdoor differs significantly from earlier work, including the original GPV, or even from the

more recent Falcon and Mitaka signatures. We start with the observation that the quality

of signatures generated by the Klein sampler [28, 23] depends on the maximal norm of the

Gram-Schmidt vectors of the trapdoor basis. It follows that we would like to generate trapdoors

with such Gram-Schmidt norm as small as possible. However, as we fix the determinant both

to address the fact that the problem is essentially scale-invariant and for efficiency purposes,

we rather want trapdoor basis vectors to have their Gram-Schmidt norms to differ as little as

possible from the geometric mean imposed by the determinant. To construct such a basis,

we depart from the usual approach of sampling a trapdoor with random Gaussian vectors

and testing its quality afterward, as in [23, 44]. Instead, our key pair generation sequentially

samples secret vectors from regions of the space that are carefully crafted to provide a well-

controlled Gram-Schmidt norm. These vectors should ideally be short and close to orthogonal

for the best possible sampling quality, but not too short and orthogonal so as not to jeopardize

security concerning key recovery attacks. Hence, at each step, the algorithm samples a vector

of controlled norm close to the orthogonal subspace of the vector subspace spanned by the

previous vectors. It finally selects the last vector in such a way that the resulting matrix matches

the prescribed determinant.

3.2.2 Public key derivation

To derive an efficient public key, we require additionally that the sampled lattice has to be

co-cyclic, i.e., we can find a vector w = (vcheck,−1) such that c ∈ L ⇐⇒ 〈c,w〉 = 0 mod ∆

as seen in section 3.1. We choose a square-free determinant for efficiency and to enforce a

practical form of the HNF with high probability.

The vector vcheck can be computed from the row HNF of the secret basis. The HNF can be

computed in polynomial time from any lattice and thus gives a basis of the lattice that is “as

bad as can be”. The public key of S Q U I R R E L S is chosen to be the vector vcheck.

3.2.3 Signature sampling

As explained previously, signature generation consists of first hashing the message to sign,

along with a random nonce, into a vector h, whose coefficients are uniformly mapped to
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integers in the 0 to q −1 range. Then, the signer uses his knowledge of the secret lattice basis

to produce a vector c belonging to the lattice that is close to h. The signature s properly is c−h.

Sampling a vector in the lattice (very) close to an arbitrary point is in general a hard problem,

but here we rely on the fact that the secret basis is a basis of the lattice composed of short

vectors. Klein’s Gaussian sampler [28, 23] is used to efficiently sample this Gaussian vector.

3.2.4 Fast verification

The verification procedure first recomputes the hash of the message h, and the lattice point

c = s+h. It verifies that s is a short vector and that c belongs to the lattice. Efficient membership

checks are possible using the properties of co-cyclic lattices from section 2.1.1. We simply

need to verify equation 3.2 using vcheck. Fixing the determinant of the lattice to a fixed product

of primes allows to work modulo small primes, thanks to the Chinese remainder theorem, in

the verification procedure, instead of modulo ∆, and makes the verification procedure more

efficient.

3.3 Security considerations

To assess the concrete security of the S Q U I R R E L S scheme, we first prove that the GPV frame-

work securely translates to co-cyclic lattices. Then, we proceed using the usual cryptanalytic

methodology of estimating the complexity of the best attacks against key recovery attacks

on the one hand, and signature forgery on the other. Evaluating concrete security from the

best known attacks is the usual methodology as security reductions are not tight and give

unpractical parameters.

We first give a quick discussion on the modelization of practical lattice reduction algo-

rithms.

3.3.1 The GPV framework with co-cyclic lattices

As previously mentioned, the GPV framework is a versatile framework that can be instantiated

to different classes of lattices. The underlying hardness assumptions however vary with this

choice. In our case, S Q U I R R E L S relies on co-cyclic lattices instead of the uniform SIS-like

lattices presented in [23] or NTRU lattices [44, 20].
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The GPV framework constructs a signature scheme from a preimage samplable function f

that is supposed to be collision resistant – we refer to [23] for a formal definition of this class

of functions. The prototype of such a function is the SIS hash e 7→ A ·e mod q , where A is the

public matrix of the scheme and e follows a Gaussian distribution of standard deviation s.

This can be adapted seamlessly to S Q U I R R E L S by taking:

f : Dn →Z∆

x 7→ x ·AT mod ∆

with Dn = {e ∈ Zn | ||e||⩽ β}, the input distribution of e is DZn ,β/
p

n and A = (vcheck,−1) the

public key of S Q U I R R E L S. Lemma 5.2 of [23] adapts directly to prove that when e follows

DZn ,β/
p

n with β/
p

n large enough, f (e) is statistically close to U (Z∆).

Then, we define the (samplable) inversion function f −1(u) for u ∈Z∆ as follows: we chose

via linear algebra a t ∈ Zn
∆ such that t ·AT = u, then sample v from DL ,u,−t using the Klein

sampler with the secret basis, and output e = t+v.

Now the proof of theorem 5.9 of [23] translates in asserting that f forms a preimage

samplable function under a variant of ISIS, the Group-SIS GISISZ∆,c,n,β with cyclic groupZ∆, for

a uniform syndrome u ∈Z∆. It is collision-resistant under the hardness of the corresponding

GSISZ∆,n,2·β problem.

Regularity of the keygen output.

To fully follow the security proof of GLP, we hence only need to assume that the lattices sampled

by our key generation algorithm “behaves as if” they were sampled randomly from the family

above. More precisely, we make the following assumption:

• SQR-PRλ: The public matrix A = (vcheck,−1) output by KeyGen(1λ) is computationally

indistinguishable from a uniformly random element of Zn−1
∆ × {−1}.

This assumption is very natural from the construction and is the exact non-structured

analog of the NTRU assumption (the NTRU assumption over the ring Zwould coincide exactly

with our assumption as the normal form of the NTRU lattice would be exactly the Hermite

form of the basis).
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3.3.2 Heuristic modelization of lattice reduction, GSA and beyond

On the core-SVP model

To accurately assess the hardness of the underlying problems and ensure security in terms of

bits, it is necessary to model the behavior of a practical oracle that approximates the Shortest

Vector Problem (SVP). Our problems involve finding relatively short vectors in various lattices.

For this purpose, we will employ the well-known (self-dual) Block Korkine-Zolotarev (BKZ)

algorithm. The BKZ algorithm, with a block size denoted as B , may require a polynomial

number of calls to an SVP oracle in dimension B , with a heuristic estimation of the number of

calls being essentially linear. To account for potential future improvements in this reduction

technique, we will only consider the cost of a single call to the SVP oracle. This conservative

estimation is referred to as "core-SVP hardness." This cautious approach is motivated by

the fact that there are methods to amortize the cost of SVP calls within BKZ, particularly

when sieving is employed as the SVP oracle. Sieving is getting the de facto standard for

larger cryptographic block sizes (we for instance refer to [6] for more details on the practical

challenges raised by the use of sieving within lattice reduction).

Modelization of the output of reduced bases.

In all of the following and to ease the presentation, we follow the so-called Geometric series

assumption (GSA), asserting that a reduced basis sees its Gram-Schmidt vectors’ norm decrease

with geometric decay. More formally, it can be instantiated as follows for self-dual BKZ (DBKZ)

reduction algorithm of Micciancio and Walter [36]: an output basis (b1, . . . ,bn) yielded by

DBKZ algorithm with block size B on a lattice Λ of rank n satisfies

∥b̃i∥ = δd−2(i−1)
B det(Λ)

1
n , where δB =

(
(πB)

1
B ·B

2πe

) 1
2(B−1)

,

for b̃i being the i -th Gram Schmidt vector of the basis.

To obtain a more accurate estimation when computing actual figures, it is beneficial to

enhance this analysis by employing the probabilistic simulation proposed in [16]. This simula-

tion provides a more precise determination of the Block Korkine-Zolotarev (BKZ) block size

B required for a successful attack, surpassing the coarse estimation based on the Geometric

series assumption (GSA). By incorporating this probabilistic simulation, we can consider the

widely recognized "quadratic tail" phenomenon of reduced bases [50], thereby improving the
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precision of our calculations.

From lattice reduction blocksize to bitsec estimates.

This analysis translates into concrete bit-security estimates following the methodology of

N E W H O P E [8] (so-called “core-SVP methodology”). In this model, the bit complexity of lattice

sieving (which is asymptotically the best SVP oracle) is taken as ⌊0.292B⌋ in the classical [10]

setting and ⌊0.257B⌋ in the quantum setting [11] in dimension B .

As the whole methodology is restated, we now turn to the fine-grained security of key

recovery and then forgery.

3.3.3 Key Recovery attack

The key recovery attack aims at finding (at least) one of the short vectors of the secret basis,

from the knowledge of the public key. A direct approach to key recovery is to do lattice

reduction on a public basis, aiming at finding a relatively short vector in the spanned lattice:

such attacks are addressed in Section 3.3.3.

Basic projection attack

This technique, initially described in the Falcon specification [44] and subsequently utilized in

Mitaka [20] , operates by examining the lattice formed by the public basis, which is encoded in

the public key as the Hermite Normal Form of the lattice in our scheme. It then finds vectors of

the secret basis by listing all possible lattice vectors of norm less than gmin. The attack avoids

listing all lattice vectors in that sphere by restricting the search space to a projection.

More precisely, we fix B the block size of the DBKZ algorithm [36], and we first reduce the

public basis using DBKZ to obtain a reduced basis [b1, . . . ,bn]. Then, we consider the lattice

projected on P = Span(b1, . . . ,bn−B−1)⊥. If we can find a projection of a secret vector in P , we

can efficiently lift it to a vector of the target norm using Babai Nearest Plane algorithm [9].

Running a classical sieve (see [19] for instance) on P will list all vectors of norm smaller than√
4
3ℓ, where ℓ if the norm of the n −B-th Gram-Schmidt vector of the reduced basis. Under
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the GSA assumption, we have:

ℓ= det(Λ)
1
n ·δ2B+2−n ≈ det(Λ)

1
n ·

(
B

2πe

)1− n
2B

Assuming that secret vectors behave as random vectors of norm gmin, their projection on

P is roughly:

∥πP (bi )∥ =
√

B

n
· gmin

Thus, we will retrieve the projection among the sieved vectors if
√

B
n · gmin ⩽

√
4
3ℓ, that is

if the following condition is fulfilled:

gmin ⩽

√
4n

3B
·det(Λ)

1
n

(
B

2πe

)1− n
2B

. (3.3)

Remark. • This approach is similar to the one used in the security evaluation of [8] , but

we use all the vectors given by the last step of sieving, resulting in a slightly stronger attack

and as such more conservative parameters choices.

• (On the size of the enumeration window.) In the previous description we only considered

the space P , orthogonal to span(b1, . . . ,b2d−B−1). It is natural to want to extend its

dimension and choose the optimal one. It appears that for the specific parameters of

our work, this optimization would only result in a difference of less than a single bit of

security. Besides, on the one hand, by using the exact block size beta we can extract the

vectors we need to sieve for free from the preliminary run of DBKZ, avoiding the need for

an additional sieving pass. On the other hand, using a larger dimension for the additional

sieving pass adds a non-negligible cost. Note that this is a consequence of the Core-SVP

methodology which ignores the polynomial overhead cost of (D)BKZ.

3.3.4 Signature forgery by BDD reduction.

As a Hash-and-Sign paradigm signature, forging a signature stems from feeding a lattice point

v at a bounded distance from a random space point x (in practice which is actually (H(r∥m)).

This bounded distance decoding (BDD) problem can be solved using the so-called Nearest-

Cospace framework developed in [21]. Under the Geometric Series assumption, Theorem 3.3

of [21] states that under the condition: ∥x−v∥⩽
(
δn

B det(Λ)
1
n

)
, the decoding can be done in

time Poly(n) calls to a CVP oracle in dimension B .
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Remark. On the contrary to Falcon and Mitaka, we manage to reduce the security gap between

forgery and key recovery to only a few bits (even less than 1 for S Q U I R R E L S-128), thanks to the

flexibility of the choice of parameters.

3.4 Advantages and limitations

This new signature scheme presents advantages and limitations in comparison to the existing

literature. It is important to be aware of them and be transparent so that application develop-

pers can choose the most adapted primitives to their needs. This section tries to objectively list

the main characteristics of S Q U I R R E L S to take into account during such a decision process.

3.4.1 Advantages

Confidence in unstructured lattices. One concern about Falcon is its use of NTRU lattices

which might be vulnerable to specialized and more powerful attacks than the generic attacks

on lattices. Our scheme samples lattices with no strong geometric property and bases its

security on generic lattice problems. These problems have been studied for decades, notably

with average-to-worst-case reductions, which give strong confidence in their security.

Compact signatures. Despite leveraging an unstructured problem, our scheme still manages

to generate remarkably compact signatures. The byte-size of our signatures falls within the

range of Falcon and Dilithium, both of which are renowned for producing concise signatures

in the post-quantum setting.

Efficient signature generation and verification. S Q U I R R E L S is also very competitive in terms

of signature generation and verification efficiency. On a personal laptop, it is capable of gener-

ating several dozens to hundreds of signatures per second, while also verifying thousands of

signatures within a single second.

Simple signature verification. The signature verification process is remarkably straightfor-

ward, primarily consisting of a hash computation and the verification of a single linear equation.

Its simplicity streamlines the verification procedure without compromising the security of the

scheme.
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3.4.2 Limitations

Slow key generation. One aspect that warrants consideration is the relatively slow key genera-

tion procedure employed in our scheme. This process involves computationally expensive

operations on high-dimensional matrices, such as determinant calculations and HNF (Her-

mite Normal Form) computations. Consequently depending on the target hardware and

security level desired, generating a single keypair can take anywhere several dozen seconds.

The acceptability of this duration depends on the specific application at hand. However, it

may prove to be prohibitive if the application necessitates a high frequency of rotation of

signature keys. This is a direct consequence of the choice of using unstructured lattices: every

non-trivial linear algebra operation is at the very least quadratic in the dimension of the lattice.

Large public keys. Due to the absence of structure in the lattices we sample, it is not possible to

compress the public key in a manner similar to Falcon. As a result, our public keys are larger by

a factor of O (n), weighing several hundred kilobytes to a few megabytes. This increase in size

should be taken into consideration, particularly when storage or transmission constraints are

significant factors in the system’s design. Once again, this can not be improved when dealing

with unstructured lattices, as the entropy of the matrix representing the keys is essentially

maximal for their size and dimensions.

Floating-point arithmetic. It is important to note that our signature scheme utilizes floating-

point arithmetic during both key generation and signature generation procedures. While this

choice contributes to the scheme’s effectiveness, it may pose a significant limitation when

implementing the scheme on very constrained devices with limited computational capabilities

or limited support for floating-point operations. Careful consideration must be given to the

feasibility and the practicality of implementing our scheme in such environments. We stress

that verification, on the other hand, does not rely on floating point arithmetic, so the more

common use case where signatures only need to be verified on constrained devices (e.g.,

bootloader signing) is supported without issue.
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Implementation

This section covers some of the implementation details of S Q U I R R E L S. We focus on the

main details of the key generation procedure, as the signature generation and verification

are less novel and described from a high level in subsections 3.2.3 and 3.2.4. For extended

details, we refer to the specification of S Q U I R R E L S [2] submitted to NIST. It can be found at

https://squirrels-pqc.org/squirrels-spec-v1.0.pdf.

4.1 Public parameters

S Q U I R R E L S uses public parameters in its algorithms:

1. n the dimension of the lattices sampled.

2. Bounds gmin < gmax on the Gram-Schmidt norms accepted during the key generation

after rounding the vectors.

3. Bounds g0,min < g0,max on the norms of the vectors sampled in key generation, before

rounding.

4. Bound eδ controls the distance to the target determinant of the sampled basis at each

step of the key generation.

5. A target determinant ∆=∏
p∈P∆

p. With P∆ a set of primes in [230,231]. We also define

ldet = log(∆)
n , which corresponds to the target Gram-Schmidt norm.
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6. A bound q ∈N∗ on coefficients of hashed messages during signature generation. Mes-

sages are hashed in [0, q −1]n .

7. A real bound ⌊β2⌋ > 0 on the square norm of signatures.

8. Standard deviations σ and σmin <σmax used in Klein’s sampler.

9. Integers sigsize and sigrate used to compress the signatures.

4.2 Key pair generation

Keypair generation splits into three main steps:

1. First, we generate the first n −1 vectors of the secret basis.

2. Then, we compute the last secret basis vector so that the basis has the target determinant.

3. Finally we compute the row HNF of the secret basis and derive the public key from it.

During the whole process, we must carefully control the norms of the Gram-Schmidt

vectors, and the expected distance to the target determinant so that the norm of the last vector

is also bounded.

This procedure is described in Keygen.

4.2.1 Generation of the first vectors

The first step generates n −1 vectors, with Gram-Schmidt norms between gmin and gmax. Ad-

ditionally, to bound the norm of the last Gram-Schmidt vector, as we have ||b̃n || = ∆∏
1⩽i⩽n−1 ||b̃i || ,

we control the value δ :=∑
1⩽ j<i log(||b̃ j ||)− log(∆)

n · (i −1) at each step i so that it remains small

in absolute value.

This procedure works sequentially and at each step, it samples a candidate vector v =
vB +vB⊥ verifying:

• vB⊥ is uniformly distributed among the vectors of B⊥ with a norm bounded between

blow and bup.
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Algorithm 3 Keygen()

Ensure: A secret key sk, a public key pk
while True do

B ←GenVectors(n −1) ▷ Sample the n −1 first vectors of the basis
vlast ←ComputeLastVector(B) ▷ vlast such that det(B∪ {vlast}) =∆
if vlast =⊥ then

continue
end if
sk ← B∪ {vlast}
pk ←ComputePK(sk) ▷ Verify the lattice co-cyclicity, and derive pk
if pk =⊥ then

continue ▷ The sampled lattice is not co-cyclic
end if
return sk,pk

end while

• vB follows a Gaussian distribution in B of standard deviation gmaxp
n

.

The vector v is then rounded to an integral vector by rounding each of its coordinates. This

rounding introduces an error on the norm of the resulting Gram-Schmidt vector, but param-

eters are chosen so that when sampling in [g0,mi n , g0,max], the Gram-Schmidt vector after

rounding will have a norm in [gmin, gmax] with probability at least 90%. Thus, by default, we

take blow = g0,min and bup = g0,max and reject vectors if their Gram-Schmidt norm is not in

[gmin, gmax] after rounding.

As noted before, we also control the distance to the target determinant at each step. At

step i , we define the drift δ = (∑
1⩽ j<i log(||b̃ j ||)

)− ldet · (i − 1). If δ > eδ, then we update

bup = bup+3·blow

4 . If δ<−eδ, then we update blow = 3·bup+blow

4 .

This leads to algorithm 4.

4.2.2 Computation of the last secret vector

Once we have the n −1 first vectors, we determine a vector vlast such that the determinant of

the extended basis is ∆ and with a Gram-Schmidt norm in [gmin, gmax].

We recall that given a matrix B ∈ Rn×n , we can expand its determinant on its last row using
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Algorithm 4 GenVectors(k)

Require: A number k of vectors to generate
Ensure: k vectors, with Gram-Schmidt norms between gmin and gmax

B ← [] ▷ Contains the sampled basis
B̃ ← [] ▷ Contains the Gram-Schmidt orthogonalization of B
for i = 1, ...,k do

while True do
δ← (∑

1⩽ j<i log(||b̃ j )||)− ldet · (i −1) ▷ Compute the drift
bup ← g0,max

blow ← g0,min

if δ> eδ then

bup ← bup+3·blow

4
end if
if δ<−eδ then

blow ← 3·bup+blow

4
end if

c ←SampleOrthogonal(B,blow,bup)
v ←Round(c) ▷ Round each coordinate (round-to-nearest-even)
ṽ ←GramSchmidt(B,v)
if gmin ⩽ ||ṽ||⩽ gmax then

B ← B∪ {v}
B̃ ← B̃∪ {ṽ}
break

end if
end while

end for
return B

31



CHAPTER 4. IMPLEMENTATION

Algorithm 5 SampleOrthogonal(B,blow,bup)

Require: B a set of ℓ independent vectors, blow < bup two bounds
Ensure: A vector v = vB +vB⊥ such that vB is a Gaussian vector with mean 0 and standard

deviation gmaxp
n

, and vB⊥ ∈ B⊥ uniform verifying blow ⩽ ||vB⊥ ||⩽ bup

v ←SampleNormal(gmax/
p

n,n) ▷ Sample a Gaussian vector
vB⊥ ←GramSchmidt(B,v) ▷ First, sample a direction in B⊥

vB ← v−vB⊥

x ← a random double uniform in [0,1]

r ← blow ·
(

x ·
((

bup

blow

)n−ℓ−1

)
+1

)1/(n−ℓ)

▷ Sample a target norm

return vB + vB⊥
||vB⊥ || · r

minors:

det(B) = ∑
1⩽i⩽n

(−1)i+1Bn,i ·Minorn,i (B)

where Minorn,i (B) is the determinant of the matrix B where we removed line n and column i .

If we can find a set of Minorn,i which are co-prime, using Euclid’s extended algorithm we

can find ci such that
∑

1⩽i⩽n ci ·Minorn,i = 1. Multiplying by ∆ gives us a relation
∑

1⩽i⩽n c ′i ·
Minorn,i =∆. We can then simply take vlast = ((−1)i+1c ′i )1⩽i⩽n .

Remark. For efficiency, we compute only the last 4 minors: (Minorn,n+1−i )1⩽i⩽4. We evaluated

that there are co-prime with a probability close to 42%, so we can restart the key generation

in case they are not without affecting the scheme security. In practice, the speedup gained by

only computing 4 minors instead of n −1 is non-negligible, even with the restarts (about 2 on

average).

We also want the vector vlast to have small coefficients for efficiency so we need to reduce

it:

1. we reduce the c ′i using the algorithm ComputeReducedXGCD from [34] so that their

absolute value is lower than max((|Minorn,n+1−i |/2)1⩽i⩽4,∆).

2. The coefficients c ′i are further improved by LLL reducing a matrix containing the c ′i and

relationships mi /gcd(mi ,m j ),−m j /gcd(mi ,m j ) which keep the gcd of the c ′i constant.

In practice, fpLLL [18] is used for this step.
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Remark. The use of LLL in this step of the key generation is not strictly necessary to sample

lattices of the desired shape, but it speeds up the computation of the last vector.

3. we apply Babai Nearest Plane algorithm [9] to (0, ...,0,c ′4,−c ′3,c ′2,−c ′1) to reduce the part

of the vector in B. The part of the vector in B⊥ is guaranteed to be small by the control of

the drift δ in the GenVectors algorithm.

The pseudo-code of this procedure is in Algorithm 6.

Algorithm 6 ComputeLastVector(B)

Ensure: vector vlast, with Gram-Schmidt norm between gmin and gmax, and such that B∪{vlast}
has determinant ∆.
m ← []
for k = 1, ...,4 do

m ← m ∪ {det((Bi , j )i∈[1,n−1], j∈[1,n]\{n+1−k})} ▷ Computes Minorn,k (B)
end for
if gcd(m) ̸= 1 then

return ⊥ ▷ We won’t be able to find a combination of the minors equal to ∆
end if
c ′ ←ComputeReducedXGCD(m,∆) ▷ Algorithm from [34]
c ′ ←ReduceWithLLL(c ′)

vlast ← (0, ...,0,c′4,−c′3,c′2,−c′1)
return vlast −NearestPlane(B,vlast) ▷ Reduce vlast with Babai Nearest Plane

4.3 Interplay between parameters

To instantiate our signature scheme, we need to define concrete sets of parameters. We

describe below relations and constraints on our parameters to ensure the correctness and

security of our scheme.

The number of queries Qs , targeted security level λ. The first parameters are the maximal

number of signing queries Qs , and the targeted security level λ. According to [1], we take

Qs = 264, and:

λ= 128 for NIST levels I and II

λ= 192 for NIST levels III and IV

λ= 256 for NIST level V
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Bounds on sampled norms g0,min and g0,max, and lattice determinant∆. We wish to have

the bounds g0,min and g0,max as close to each other as the greater the lower bound, the greater

the key recovery security, and as the lower the upper bound, the lower the length of signatures.

We are however constrained by the correction of the determinant drift: we need to ensure we

can sample vectors with a norm smaller or larger than n
p
∆ as desired.

To correct the drift δ in the GenVectors, we sample vectors with a norm lower than
3·g0,min+g0,max

4 to reduce the drift, or higher than g0,min+3·g0,max

4 to increase the drift. For this cor-

rection to be effective, we enforce that after sampling two-thirds of the vectors the parameters

verified:

3 · g0,min + g0,max

4
+er ound < n

p
∆< g0,min +3 · g0,max

4
−0.5

where er ound is an upper bound on the rounding error after sampling two-thirds of the

bases.

We chose as a determinant a product of large primes verifying the above inequalities.

Bounds on accepted Gram-Schmidt norms gmin and gmax. These bounds extend the in-

terval [g0,min, g0,max] to take into account the rounding error and accept rounded vectors with

high probability. Knowing these bounds in advance allows us to have a more precise security

analysis of our scheme.

Standard deviation σ of the signatures. Signatures follow a discrete Gaussian distribution

and are sampled using Klein’s sampler. To ensure we lose at most O(1) bits of security by using

this sampler instead of a perfect distribution, it suffices to take ε⩽ 1/
√

Qs ·λ, and:

σ= 1

π
·
√

log(2n(1+1/ε))

2
· gmax︸ ︷︷ ︸
⩾||B||GS

Maximal norm β of the signatures. Signatures have an expected norm of
p

n ·σ. We

reject too large signatures by using a tail-cut τsig i.e. we reject signatures of norm larger than

β= τsig ·
p

n ·σ.

We take τsig = 1.1. Lemma 4.4 of [31] ensures that rejection happens only with a small

probability.

Signature byte-length sigsize and sigrate. Given a sigrate, we evaluate the corresponding
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sigsize as the average compressed signature size of vectors of norms β. We choose the sigrate ∈
{4,5,6,7} giving the smallest sigsize.
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Evaluation

The previous sections defined the theoretical framework of S Q U I R R E L S, and constraints

on the parameter set. In this section, we give details about its concrete instantiation and

evaluation. Full parameters are included in S Q U I R R E L S submission package at https://
squirrels-pqc.org/.

5.1 Concrete parameters

We decided to publish one set of parameters for each NIST security level. We selected them by

exploring a grid of parameters respecting the constraints from section 4.3, and keeping the

ones minimizing the signature size.

This selection process is completely reproducible using the script from the NIST speci-

fication Supporting_Documentation/additional/params.py, notably the determinant is

computed using a prime random generator with a fixed seed. We give below a table summa-

rizing the concrete security of these sets of parameters and public key and signature size. We

again refer to S Q U I R R E L S specification for the full sets of parameters.
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S Q U I R R E L S-I S Q U I R R E L S-II S Q U I R R E L S-III S Q U I R R E L S-IV S Q U I R R E L S-V

Target NIST Level I II III IV V

Lattice dimension n 1034 1164 1556 1718 2056

Key-recovery:


BKZ block-size B

Core-SVP hardness (C)

Core-SVP hardness (Q)

433 491 666 736 887

126 143 194 214 259

114 130 176 195 235

Forgery:


BKZ block-size B

Core-SVP hardness (C)

Core-SVP hardness (Q)

431 499 709 784 968

125 145 207 228 282

114 132 187 207 256

Public key byte-length 681 780 874 576 1 629 640 1 888 700 2 786 580

Signature byte-length 1 019 1 147 1 554 1 676 2 025

5.2 Description of the Reference Implementation

The submission package includes a reference implementation written exclusively in portable

C, supporting all five security levels and adapted using a compilation flag.

These implementations use dynamically linked libraries, used only in the key generation

for big integer and matrix computations:

• GMP [48]

• Flint [47]

• fplll [18]

All the computations in the key generation requiring big integers or matrix manipulations

are performed using Flint structures, this includes notably computations of matrix determi-

nants and HNF. The reference implementation also includes an efficient function to compute

several minors at a time inspired by the DoubleDet algorithm from [40].

In the Verify procedure, we note that the variable sum always fits on 64-bits signed inte-

gers:

• vcheck,i mod p is in [0,231)

• ci = si +hi ∈ [−4096,8192) as |si |⩽β< 4096 and hi ∈ [0, q) (in case |si | >β the result is

rejected later during norm checking in the procedure).
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• there are n < 4096 = 212 summations of products ci · (vcheck,i mod p)

So we need no more than 31+13+12 = 57 bits to store the variable sum, plus one bit for

the sign. For efficiency, we thus directly compute it on a 64-bit signed integer and reduce it

modulo reduction p only once.

Due to their large or varying size, many structures of our implementations go on the heap.

5.3 Test vectors

The submission package includes test vectors – a keypair along a signature generated from a

given seed – which allows one to verify that our implementation is portable and to verify that

their own implementation works as expected.

5.4 Performance on the NIST x64 Reference Target

In this section, we summarize our performance evaluation on a 2018 laptop Lenovo Y530,

equipped with Intel Core i5-8300H (8 CPU threads at 2.3GHz), 32 GB of physical RAM and

running Manjaro 22.1.

The benchmark program is compiled with GCC version 12.2.1 with flags

-03 -march=native -Ofast and calls the NIST API crypto_sign_keypair(), crypto_sign(),

and crypto_sign_open(). We then ran it on one CPU thread. Execution time was measured

with clock POSIX calls, number of cycles was measured with rdtsc instruction.

keygen sign vrfy

seconds RAM (kB) cycles/sign sign/s cycles/vrfy vrfy/s

S Q U I R R E L S-I 74 189 776 4 230 444 545.1 201 737 11429.8

S Q U I R R E L S-II 120 236 356 5 305 045 434.8 244 573 9427.3

S Q U I R R E L S-III 306 410 152 8 977 892 257.2 430 609 5375.5

S Q U I R R E L S-IV 425 433 164 10 693 130 215.6 481 334 4789.2

S Q U I R R E L S-V 1175 626 824 41 512 206 55.6 1 048 477 2207.4
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5.5 Performance on x64 AMD

In this section, we evaluate the performance on a 2022 Lenovo Thinkpad P14s equipped with

a Ryzen Pro 7 5850U (16CPU threads at 3GHz), boost disabled, and running Manjaro 22.1.

The benchmark program was compiled with GCC version 12.2.1 with flags

-03 -Ofast -march=native and ran on one CPU thread.

keygen (s) sign vrfy

cycles/sign sign/s cycles/vrfy vrfy/s

S Q U I R R E L S-I 34 3 164 772 601.6 145 351 13099.4

S Q U I R R E L S-II 52 3 732 387 509.0 159 887 11871.9

S Q U I R R E L S-III 127 7 139 278 266.2 287 974 6594.4

S Q U I R R E L S-IV 179 9 097 631 208.7 329 066 5765.5

S Q U I R R E L S-V 351 10 670 614 177.9 481 938 3937.5
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Related Work

There has been intense work in the field of post-quantum cryptography, and lattice-based

signature schemes specifically. The two NIST finalists Falcon [44] and Dilithium [32] are good

points of comparison for our scheme.

Comparison with Falcon. Falcon is also based on the GPV framework and a Gaussian

sampler with similar quality to the Klein sampler. Its high-level design is thus very similar to

the one of S Q U I R R E L S. However, Falcon uses NTRU lattices which allows it to drastically

compress its keys (wins a factor O (n)), and cut in half the size of its signatures thanks to the

additional algebraic structure.

Falcon achieves a signature size of 666 bytes at level I, while S Q U I R R E L S achieves 1019

bytes. Interestingly that is less than twice the size of Falcon’s signatures. This can be explained

by the production of smaller Gram-Schmidt secret vectors in S Q U I R R E L S compared to Falcon,

which allows it to compensate in part for the lack of structure of its lattices.

In terms of performance, S Q U I R R E L S achieves signature generation and verification

about 10 times slower than Falcon, which still makes it a very competitive competitor as

Falcon is known for being an extremely fast signature scheme.

Comparison with Dilithium. Dilithium followed a quite different design path and is based

on Fiat-Shamir with rejection sampling. Its security relies on hardness problems over module

lattices and LWE. These structured lattices allow it to also have a small public key. However,

its signature size is at minimum 2420 bytes which is significantly larger than what we achieve

with S Q U I R R E L S. The signature generation of S Q U I R R E L S is about 20 times slower than

40



CHAPTER 6. RELATED WORK

the one from Dilithium, and its verification is about 3 times slower. This again shows that

S Q U I R R E L S is still competitive as Dilithium is also a very fast scheme.

S Q U I R R E L S however has a much larger public key size than Falcon and Dilithium ( 600kB

at level I, against 1-2kB) and a slow keypair generation. This is due to the use of unstructured

lattices in our scheme. This reduces the applicability of our scheme, but we believe that

S Q U I R R E L S still offers great security guarantees that may be worth the trade-off for critical

applications, or long-term signature keys pre-delivered with an OS for instance.

Our signature scheme also compares favorably to other schemes based on unstructured

problems such as Wave [17] which obtains signatures of 13kB and public keys of 3000kB. We

can also mention qTESLA [7] which relies on a plain version of LWE, achieves 14kB public key

size, and 2.5kB signature size.

Hence, our scheme is competitive with schemes based on both structured and unstruc-

tured problems. The size of its public key limits its usage to long-term or very critical use, but

we believe this is an interesting trade-off that was not achievable with the existing literature.
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Conclusion

In this thesis, we presented S Q U I R R E L S, a novel digital signature scheme based on plain lattice

hardness assumptions. It instantiates the GPV framework and optimizes its key generation to

generate short Gram-Schmidt vectors and sample co-cyclic lattices. This allows our scheme to

generate short signatures, and to have a very fast verification despite the lack of structure. We

showed that it has a signature size and performance competitive with the two lattice-based

NIST finalists Falcon and Dilithium, with a signature size of 1019 bytes at NIST level I, and

signature generation and verification of about 10 times slower.

We performed an extended analysis of the security of our scheme with a proof that the

GPV framework adapts to co-cyclic lattices, and evaluation of S Q U I R R E L S bit security against

key recovery and forgery using standard methodology. We defined 5 parameter sets, one for

each security level defined by NIST. Test vectors and reproducible scripts are included in the

package submitted to NIST which allows one to reproduce and verify our parameters selection.

S Q U I R R E L S has a larger public key of about 600kB at level I, but it still represents an

interesting and competitive trade-off compared to the existing literature. S Q U I R R E L S provides

strong security guarantees while providing short signatures. We believe its use is especially

interesting in critical applications, or applications using long-term signature keys.
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