
Internship Report
GoldFinger, a Fast and Precise method for approximating

Jaccard similarity

26. April - 23. July 2021

Guilhem Niot
Département Informatique Fondamentale

ENS de Lyon

Supervised by
Anne-Marie Kermarrec
EPFL, Lausanne, Switzerland

Olivier Ruas
Inria, Lille

François Taiani
IRISA, Rennes

Erick Lavoie
EPFL, Lausanne, Switzerland



Internship report Guilhem Niot

Contents
1 Introduction 2

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 How to evaluate the quality of ANN graphs . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Approximating Jaccard similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 MinHash Similarity Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Fast Similarity Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 GoldFinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Computing KNN graphs with GoldFinger 7
2.1 MinHash and b-bit minwise hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Fast Similarity Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 KNN search and set similarity join with GoldFinger 9
3.1 Leveraging GoldFinger to improve state-of-the-art KNN search algorithms . . . . . . . 9

3.1.1 Evaluation performance of KNN search implementations . . . . . . . . . . . . . 10
3.1.2 Impact of using GoldFinger for KNN search . . . . . . . . . . . . . . . . . . . . 10

3.2 GoldFinger and Set Similarity Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Quality metrics for Set Similarity Join . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Impact of using GoldFinger for Set Similarity Join . . . . . . . . . . . . . . . . . . . . 12

4 Improving GoldFinger by fitting the data for better quality 13

5 Conclusion and possible future work 15

A Improving existing KNN libraries 16
A.1 Improving the support of Jaccard similarity in ANN-benchmarks . . . . . . . . . . . . 16
A.2 Speeding up the KNN search library NMSLIB . . . . . . . . . . . . . . . . . . . . . . . 16

B Side project on small-world networks and peer-to-peer application 17
B.1 Using Raspberry Pis to simplify small-world network connectivity and application to

Scuttlebutt, a decentralized social network . . . . . . . . . . . . . . . . . . . . . . . . . 18
B.2 Integrating the Hypercore protocol with small-world Raspberry Pis . . . . . . . . . . . 18

1



Internship report Guilhem Niot

As part of my first year of Master at ENS de Lyon, I had to do a 12-weeks internship abroad. I’m
extremely grateful to Anne-Marie Kermarrec, professor at EPFL and director of the SaCS (Scalable
Computing Systems) laboratory, for her supervision, and for warmly welcoming me in her laboratory.
I also would like to express my deepest appreciation to Olivier Ruas, Postdoctoral fellow at Inria (Lille,
France), and to François Taiani, Professor at the University of Rennes 1 and IRISA/Inria in Brittany,
for co-supervising me and for joining Anne-Marie and I every week for a remote meeting where we
discussed the results obtained and where I could head next. Our discussions were always both pleasant
and enlightening. I would like to extend my gratitude to Erick Lavoie, Research Scientist at SaCS,
EPFL. Erick supervised me at the end of my internship on an additional project about small-world
connectivity using Raspberry Pis described in Appendix B. I worked on this side project to stay busy
when I had to wait for long experiments to terminate on my main topic. I also had great pleasure
working with all the members of the SaCS laboratory, who were very welcoming and with whom I
had the chance to exchange regularly either on-site or during the weekly team meeting.

While my internship started well remotely, I was able to go on-site for six weeks from the middle
of June. I really enjoyed being on-site, as it allowed me to appreciate the good humor in the lab
and to meet interesting people. It also allowed me to discover how scientists actually organize and
communicate about their work.

1 Introduction
K-Nearest Neighbors (KNN) graphs are widely used for recommendation systems [21, 7], for web
duplicates detection [26] and for machine learning prediction models [27]. KNN graphs are directed
graphs connecting nodes to their K nearest neighbors according to a given similarity metric.
However, their computation does not scale well to datasets with millions or billions of entries.

In order to make the computation scale, several approaches try to approximate the exact KNN
graph by computing an Approximate Nearest Neighbors (ANN) graph. Those approaches often offer
to tune their algorithm to obtain a tradeoff between quality and computation time adapted to the
application.
We can observe two main leverages to reduce the computation time of ANN graphs:

• Reducing the number of comparisons of pairs. The computations of similarities are costly
and limiting them often pays off.

• Approximating the computation of the distance between two elements. This approx-
imation can be done by performing dimensionality reduction on the dataset: each entry of the
dataset is reduced into a vector of small dimension while preserving as much as possible the
distances between the different entries. For instance, Spotify [3] uses sparse matrix factorization
to reduce the dimension of the set of listened songs of its users before computing the KNN graph
on the transformed dataset.

A lot of research has been published on reducing the number of similarity computations, with
graph-based methods [15, 12, 7, 23] (successive improvements of a random KNN graph), hash based
methods [19] (hash functions which hash similar elements to the same value with high probability),
and further improvements seem complicated.
Surprisingly, there has been less interest in approximating the computation similarity while it still
represents a significant part of the computation time.

In this regard, my supervisors developed an approximation of the Jaccard similarity metric (when
given two sets S1 and S2, Jaccard(S1, S2) = |S1∩S2|

|S1∪S2| ) called GoldFinger [17], and the goal of my
internship was to compare it to other techniques for approximating Jaccard similarity in terms of
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speed and closeness to the true value, to benchmark it on real datasets in combination with other
techniques, and to explore possible improvements.

During my internship, I implemented state-of-the-art techniques for approximating Jaccard, and I
analyzed the compromise between performance and quality of each of these techniques. The conclusion
was that GoldFinger was still competitive against them for computing KNN graphs. Then, I applied
GoldFinger to different problems relying on the Jaccard similarity, and I showed that GoldFinger was
providing interesting performance improvements at a low implementation cost. This step was the
occasion to contribute major changes to KNN libraries, described in Appendix A. Finally, I studied
whether GoldFinger quality could be further improved, and I proposed and analyzed several strategies
to fit the method to the data. One of the three strategies analyzed has interesting results and improves
significantly the quality on datasets with non-linear frequency.

In link with my internship, I opened 7 pull requests to acknowledged libraries, totaling 565
line additions, and 187 line deletions. In addition, I also wrote thousands of lines of code
on repositories dedicated to this internship (5636 lines in https://gitlab.aliens-lyon.fr/gniot/
SamplingKNN, 1019 lines in https://github.com/GuilhemN/ann-benchmarks/tree/PAPER, and 1345
lines in https://github.com/GuilhemN/nmslib/tree/FASTSIM).

Those results will be included in a journal version of the conference version of Goldfinger [16] which
will be submitted to Transactions on Knowledge and Data Engineering Journal (TKDE).

1.1 Problem statement
We first define what a similarity function is, as it is central to the definition of KNN graphs and of
the problems we will study in this report.

Definition (Similarity function). Noted

sim : U × U −→ R+

(u, v) 7→ sim(u, v)

It can be seen as the inverse of a distance, it takes large values when u and v are similar, and values
near 0 when they are dissimilar.

There are plenty of similarity functions used in the literature such as cosine1, or based on Euclidean
distance, or Hamming distance2.
Since GoldFinger is used to approximate the Jaccard similarity, we will focus on the Jaccard similarity
in the rest of this document.

Definition (Jaccard similarity function). Given two sets S1, S2, we define:

Jaccard(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

It is a value between 0 and 1, and the closer to 1, the more similar the 2 sets.

Besides, there are actually several close but different problems studied on datasets with similarity
functions.

Definition (K-nearest neighbor graph). Given a dataset of points U , we want to compute the oriented
K-regular graph where each node u ∈ U is linked to the K nodes v1, ..., vK ∈ U with largest values
sim(u, vi). Those nodes are called the neighbors of u.

1https://en.wikipedia.org/wiki/Cosine_similarity
2https://en.wikipedia.org/wiki/Hamming_distance
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Definition (K-nearest neighbor search). Given a dataset of points U , we want to build an index such
that we can efficiently compute the K-nearest neighbors on subsequent queries:

search(index(U), qi) = K nearest neighbors of qi in U

Definition (Similarity Join). Given a dataset of points U and a threshold t, we want to find all the
couples (u1, u2) ∈ U2 such that sim(u, v) ≥ threshold.

All these problems have relaxed variants (for the KNN problems, they are called ANN for Ap-
proximate Nearest Neighbors) where we drop the exactitude constraint on the result and instead try
to achieve a trade-off between efficiency and quality metrics. For instance, for the KNN problems, we
may try to keep a high proportion of true nearest neighbors, while for Set Similarity Join, we may try
to retrieve a high proportion of the pairs having a similarity above the threshold.

The main purpose of the our research is to decrease the computation time while maintaining a
high quality on the results.

1.2 How to evaluate the quality of ANN graphs
Since the ANN graphs are not exact, we need to define metrics which capture how good the approx-
imations of the exact graphs are. Those metrics will be used to evaluate the trade-off between the
computation time and the quality provided by the ANN approaches.

Definition (Recall). A widely used metric in the literature is the recall. It is the proportion of correct
nearest neighbors in the ANN graph:

Recall =
|{(u, v) ∈ ANN ∩KNN}|

|KNN |

The closer it is to 1, the better.

The recall is however too restrictive for some applications using KNN graphs where we only need
to have similarity values close to their optimal values, and not the exact edges.
We can thus also adopt a relative error metric:

Definition (Quality).

quality =

∑
(u,v)∈ANN sim(u, v)∑
(u,v)∈KNN sim(u, v)

The closer it is to 1, the better.

1.3 Approximating Jaccard similarity
Computing the exact Jaccard similarity of two sets is expensive when the sets contain tens or hun-
dreds of items. To speed it up, an idea is to produce a vector of small dimension, called a sketch,
representing the user’s set, and from which the Jaccard similarity can be approximated at a low cost.

To approximate the Jaccard similarity, a sketching technique first defines a function producing sketches:

produce_sketch : P(items set)→ Rsmall dimension

This function is applied to the whole dataset during its loading, and then approximate similarities are
computed using the sketches produced:

̂Jaccard(produce_sketch(S1), produce_sketch(S2)) ≈ Jaccard(S1, S2)

We will present three sketching techniques for Jaccard similarity: MinHash, Fast Similarity Sketching
and GoldFinger.
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1.3.1 MinHash Similarity Sketching

Min-wise Hashing [9] is the most popular sketching technique for approximating Jaccard similarity.
It is based on the fact that when sorting two similar sets by fixing an order on items, the sorted sets
are likely to have the same minimal element. More formally, given a random permutation on the set
of items π, and two sets S1, S2 to be compared, we have

P
(
min
s1∈S1

π(s1) = min
s2∈S2

π(s2)

)
= J(S1, S2)

We leverage this fact to define a sketching technique using l permutations of the items set noted
π1, ..., πl:

produce_sketch(S) = (mins∈Sπi(s))1≤i≤l

and,

̂Jaccard(sketch1, sketch2) =
∑l

i=1 1sketch1,i=sketch2,i

l

However this version has at least two drawbacks :

• It is costly to draw random permutations, to store them and to apply them to each set of the
dataset.

• It still takes a lot of space to store the minimal items of each set.

Several works tried to overcome these limitations, with two main strategies:

• By reusing permutations several times [29, 30].

• By keeping only some bits for each minimal ID, and compensating the statistical bias intro-
duced [9, 22, 26].

1.3.2 Fast Similarity Sketching

Fast similarity sketching [11] was designed to alleviate the expensive pre-processing cost of MinHash.
Instead of sampling with replacement one item for each element of the sketch, as MinHash does,
Fast Similarity Sketching mixes sampling with replacement and sampling without replacement. For
a sketch of length t, Fast Similarity Sketching uses 2t random hash functions that are used to assign
the items to a position in the sketch and to a random value. The first t hash functions randomly
assign items to positions while the last t hash functions deterministically assign items to a set position
–one position per hash function– to ensure that every position has at least one item associated to it.
At each position of the sketch, the minimum value of the associated items is stored. To improve the
performances, the sketch is filled with items one hash function at a time and the process is stopped
whenever every position has at least one value.
We can describe this algorithm with pseudo-code, using 2t hash functions h1, ..., h2t : items set →
{0, ..., t} × [0, 1]:

The similarity using Fast Similarity Sketching is then estimated in a similar way as MinHash: by
counting the proportion of equal values in the sketch, position-wise:

̂Jaccard(sketch1, sketch2) =
∑l

i=1 1sketch1,i=sketch2,i

l

Constructing a sketch of length t from a set S has a complexity of t+|S|, against t×|S| for MinHash.
Albeit its lower complexity, Fast Similarity Sketching is not as compact as densified variations of
MinHash such as b-bit Minwise Hashing [22] as it stores floats instead of bits.
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Algorithm 1 Pseudo-code of the function produce_sketch of Fast Similarity Sketching
1: function produce_sketch(S)
2: sketch← +∞t

3: counter ← 0 . Count the number of positions filled in the sketch to stop early
4: for i ∈ {1, ..., 2t} do
5: for item ∈ S do
6: b, v ← hi(item)
7: if i > t then . The hash functions t, ..., 2t make sure the sketch is entirely filled
8: b← i− t
9: end if

10: if sketch[b] =∞ then
11: counter ← counter + 1
12: end if
13: sketch[b] = min(sketch[b], v)
14: end for
15: . early return
16: if counter = t then return sketch
17: end if
18: end for
19: end function

1.3.3 GoldFinger

GoldFinger is a sketching technique that was designed with efficiency and simplicity in mind. It
leverages a technique called feature hashing, consisting in transforming a set of features into the set
of the hashes of these features, allowing to efficiently approximate the properties of the initial set, to
drastically accelerate similarity computations on sparse datasets (few items per set compared to the
number of items available).
Using a hash function h : I 7→ [0, B − 1], we produce a binary sketch of size B called Single Hash
Fingerprint (SHF for short):

∀i ∈ [0, B − 1], produce_sketch(S) = SHF (S)i =

{
1 if ∃e ∈ S such that h(e) = i
0 otherwise

When there are few collisions in this bit array, it was experimentally verified [17] that we can approx-
imate the cardinal of a user set:

||S|| ≈ ||SHF (S)||1
And we can approximate the intersection of two user sets,

||S1 ∩ S2|| ≈ ||SHF (S1) AND SHF (S2)||1

From these observations arise the following approximation for Jaccard similarity, dubbed GoldFinger:

̂Jaccard(SHF (S1), SHF (S2)) =
||SHF (S1) AND SHF (S2)||1

c1 + c2 − ||SHF (S1) AND SHF (S2)||1

where c1 = ||SHF (S1)||1, c2 = ||SHF (S2)||1.

A very interesting property of GoldFinger is that when consider the set of positions of the ones in
the GoldFinger sketch, we obtain another formula for the approximation:

̂Jaccard(SHF (S1), SHF (S2)) = Jaccard ({i | SHF (S1)i = 1}, {i | SHF (S2)i = 1})

6
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Thus, by replacing the item sets of the dataset with the set of positions of the ones of the dataset
sketches, GoldFinger allows to perform dimensionality reduction on the dataset without changing the
original problem: the goal is to retrieve the same edges, and the similarity metric is unchanged. A
direct implication is that GoldFinger can be applied as a preprocessing layer to any KNN algorithm
using the Jaccard similarity to improve its performance, without any modification to the underlying
algorithm.

1.4 Datasets
We based our evaluations on six publicly available datasets. To apply Jaccard’s index, we binarize
each dataset by only keeping in a user’s profile Pu those items that user u has rated higher than 3.

Movielens Movielens [18] is a group of anonymous datasets containing movie ratings collected on-
line between 1995 and 2015 by GroupLens Research [28]. The datasets (before binarization) contain
movie ratings on a 0.5-5 scale by users who have at least performed 20 ratings. We use 3 versions of
the dataset, movielens1M (ml1M), movielens10M (ml10M) and movielens20M (ml20M), containing
between 575,281 and 12,195,566 positive ratings (i.e. higher than 3).

AmazonMovies AmazonMovies [24] (AM) is a dataset of movie reviews from Amazon collected
between 1997 and 2012. We restrain our study to users with at least 20 ratings (before binariza-
tion) to avoid users with not enough data (this problem, the cold start problem, is generally treated
separately [20]). After binarization, the dataset contains 57,430 users; 171,356 items; and 3,263,050
ratings.

DBLP DBLP [32] is a dataset of co-authorship from the DBLP computer science bibliography. In
this dataset, both the user set and the item set are subsets of the author set. If two authors have
published at least one paper together, they are linked, which is expressed in our case by both of them
rating each other with a rating of 5. As with AM, we only consider users with at least 20 ratings.
The resulting dataset contains 18,889 users, 203,030 items; and 692,752 ratings.

Gowalla Gowalla [10] (GW) is a location-based social network. As DBLP, both the user set and
the item set are subsets of the set of the users of the social network. The undirected friendship link
from u to v is represented by u rating v with a 5. As previously, only the users with at least 20 ratings
are considered. The resulting dataset contains 20,270 users, 135,540 items; and 1,107,467 ratings.

2 Computing KNN graphs with GoldFinger
In this section, we compare GoldFinger to the sketching techniques MinHash and Fast Similarity
Sketching on the KNN graph problem. During my internship, I showed that GoldFinger remained
competitive against the most recently published state-of-the-art sketching technique Fast Similarity
Sketching.

2.1 MinHash and b-bit minwise hashing
GoldFinger was compared to MinHash and b-bit MinHash [17]. GoldFinger significantly outperforms
both by providing a better compromise KNN quality versus computation time (excluding initialization
time).
Furthermore, the initialization cost of MinHash is prohibitive in practice, and makes it unsuitable for
large datasets.

7
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Table 1: Preprocessing time for the native approach, 2048 bits Fast Similarity Sketching (with t =
64) and 1024 bits GoldFinger. GoldFinger is significantly faster but Fast Similarity Sketching is
competitive.

Dataset Native FastSim GolFi speedup/ FastSim (×)

ml10M 5.27s 6.45s 4.01s 1.6
AM 2.68s 3.65s 2.12s 1.7
DBLP 0.27s 0.47s 0.21s 2.3
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Figure 1: Relation between the computation time and the KNN quality for different sketch sizes (in
number of bits) using Fast Similarity Sketching and GoldFinger.

2.2 Fast Similarity Sketching
In order to compare Fast Similarity Sketching to GoldFinger, I first implemented Fast Similarity
Sketching in Java to compare it on the same ground as the Java implementation of GoldFinger [17].
My work on Fast Similarity Sketching was then divided into two parts: evaluating the performance
of GoldFinger and Fast Similarity Sketching on the different datasets studied, and trying to explain
these results.
The experiments3 were run on an Intel Xeon E5-2630@2.40GHz using 8 cores (out of the 16 available
cores) with 125GB of memory.
Table 1 summarizes the time required to construct the sketches for Fast Similarity Sketching, GoldFin-
ger and the speed-up of GoldFinger compared to Fast Similarity Sketching on movielens10M, Ama-
zonMovies and DBLP. For most of the experiments, we used Fast Similarity Sketching with t = 64
as it was the best trade-off between quality and computation time. As each stored value is encoded
as a float, the resulting sketches were 64 × 32 = 2048 bits long. On the other hand, we used 1028
bits GoldFinger as it was as well a trade-off promise between quality and computation time. Dur-
ing the preprocessing step, GoldFinger is significantly faster than Fast Similarity Sketching (×1.6)
for the initialization part. Still, Fast Similarity Sketching remains an acceptable competitor as the
preprocessing step is negligible compared to the total KNN graph computation.

Figure 1 shows how the trade-off between the computation time and the KNN quality evolves
when we increase the size of the sketches when computing KNN graphs with the brute force approach
on movielens10M and AmazonMovies. The size ranges from 64 to 2048 bits for GoldFinger and
from 512 to 8192 for Fast Similarity Sketching, which corresponds to a number of hash functions
ranging from 16 to 256. The results are averaged over four runs. On movielens10M, GoldFinger
significantly outperforms Fast Similarity Sketching while on AmazonMovies Fast Similarity Sketching

3Code is available at https://gitlab.aliens-lyon.fr/gniot/samplingknn
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Figure 2: Estimated similarity in function of the real similarity on movielens10M using 2048 bits Fast
Similarity Sketching and 1024 bits GoldFinger

seems slightly better, but the differences are negligible. This difference can be explained by how
GoldFinger behaves depending on the dataset: GoldFinger is more efficient on denser datasets. By
increasing artificially the density of a dataset –by randomly merging items– the KNN quality increases
for both approaches but GoldFinger widen the gap with Fast Similarity Sketching and is the clear
winner for denser datasets.

These results show that not only GoldFinger is competitive against one of the most
up-to-date sketching approach but it clearly outperforms it for denser datasets.

We also analyzed the difference in results between these two sketching techniques.
Figure 2 shows the repartition of the estimated similarity in function of the true similarity on

ml10M for both 1024 bits GoldFinger and 2048 bits Fast Similarity Sketching. We observe a poorer
approximation from Fast Similarity Sketching on this dataset, which is much further from a linear
expectation and explains the better quality obtained with GoldFinger.

3 KNN search and set similarity join with GoldFinger
As the original paper presenting GoldFinger focused on its impact on KNN graph computation, I
studied whether GoldFinger could also improve state-of-the-art algorithms for KNN search and Set
Similarity Join.

In spite of intense research in the field of KNN search, I showed that using GoldFinger could
significantly improve the performance of state-of-the-art algorithms with little development efforts. I
also obtained promising results for Set Similarity Join that could be investigated further.

3.1 Leveraging GoldFinger to improve state-of-the-art KNN search algo-
rithms

The KNN search problem is a fundamental problem related but different from the KNN graph problem.
In the KNN graph problem, the k closest neighbors are searched for every user in the dataset. The

graph can be built user by user or can be built as a whole. In that setting, the computation time of
both the sketches and the KNN graph are paramount performance metrics.

On the other hand, the KNN search problem aims at finding the k closest neighbors for users
which are not known beforehand and which may not be part of the initial set of users. In this case,

9
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the main metric for KNN queries is the number of queries that can be answered per second. Complex
indexes and datastructures can be built offline, once and for all, to speed up the KNN queries.

For instance, KNN search can be used to produce recommendations for giant datasets. To limit
the cost, it is possible to extract a small part of the dataset at random, and to find the k nearest
neighbors of a user at runtime in this smaller dataset. This limits the size of the index and speeds up
the process.

3.1.1 Evaluation performance of KNN search implementations

The implementation used in [17] for benchmarking KNN graph algorithms was not adapted to the
KNN search problem. Indeed, benchmarking KNN search algorithms require techniques closer to those
used by the ML community, with the separation into training and test sets, and the graph structure
is less apparent.

I decided to leverage the benchmarking tool ANN-benchmarks [5] for this study. It aims at
comparing ANN querying algorithms, by comparing state of the art implementations. The idea to
compare implementations without worrying about them being implemented in the same language,
with equal conditions, is that users care about the actual performance they will obtain.

However, before I used it, its support of the Jaccard similarity was limited and very inefficient
making it infeasible to benchmark KNN algorithms on large datasets such as movielens10M. This
was the occasion to contribute some improvements to ANN-benchmarks described more precisely in
Appendix A.1.

3.1.2 Impact of using GoldFinger for KNN search

In this section, we evaluate the impact of the use of GoldFinger for KNN search.
ANN-benchmarks evaluates algorithms with parameters optimized empirically by the libraries

authors corresponding to different compromises between quality and performance. For the Jaccard
Similarity metric, ANN-benchmarks4 compares the following implementations: NMSLIB [8], PyN-
NDescent [25, 12], Datasketch [13] and PUFFINN [4].

In the following I focus on the implementation of HNSW (Hierarchical Navigable Small World
graphs) [23] from NMSLIB as it significantly outperforms the other competitors in all our experi-
ments, in both its base version, and the version with a GoldFinger preprocessing. The library NM-
SLIB was adopted by Amazon [1] and HNSW was implemented at Facebook [2]. ANN-benchmarks
provide a list of good parameters configurations for the implementation HNSW in NMSLIB: this list
of configurations will be used for all our experiments.

For optimal performances, I implemented GoldFinger directly inside NMSLIB5, in C++. During
my testing, I observed that the Python interface exposed by NMSLIB was not optimized and that it
could be drastically improved (performance improved up to a factor 10). This was another occasion
to contribute to a public library, described in Appendix A.2.

Figure 3 shows the trade-off between quality of the resulting queries, expressed as recall and KNN
quality, and the performances, expressed as the number of queries per second, for the different pa-
rameters configurations provided by NMSLIB for HNSW on the dataset movielens10M. We plot both
results in HNSW original form (dubbed bas.), and with a pre-treatment to compute GoldFinger with
a size ranging from 512 to 4096. The use of GoldFinger provides an important speed-up of
the queries while maintaining a similar level of quality.

4The version I used is available at https://github.com/GuilhemN/ann-benchmarks/tree/PAPER. It leverages some
improvements I contributed to the NMSLIB library.

5The version I used is available at https://github.com/GuilhemN/nmslib/tree/PAPER. It integrates GoldFinger in
the NMSLIB library itself.
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Figure 3: Relation between the quality metrics and the number of queries per second in function
of the parameter configuration on the dataset movielens10M. Using GoldFinger highly increases the
number of queries per second at the expense of a slight decrease in quality.

This shows that the use of GoldFinger is not limited to KNN graph computation but can be
extended to other problems where the Jaccard similarity is used, such as KNN search.

Remark. While we wanted to compare the impact of Fast Similarity Sketching on NMSLIB to the
impact of GoldFinger, I was not able to have a working implementation in time. The version available
at https: // github. com/ GuilhemN/ nmslib/ tree/ FASTSIM ships a C++ version of Fast Similarity
Sketching I developed but the quality metrics are inexplicably low and we thus decided to not include
them in the paper produced nor in this report.

3.2 GoldFinger and Set Similarity Join
Another interesting problem that GoldFinger applies to is Similarity Join. An application of this
problem is to find duplicates and merge similar sets in a dataset.

Researchers recently showed [6] that, when comparing exact and approximate algorithms for Sim-
ilarity Join, the exact algorithm was the fastest on most datasets. However, the algorithms compared
limit their optimizations to reducing the number of similarity computations, without approximating
the similarity itself.

While I did lack time to evaluate whether we could obtain a performance gain for Similar-
ity Join using GoldFinger, as GoldFinger would not have been sufficient used alone and it would
have required also reducing the number of similarity computations to compete with other meth-
ods, I showed that using GoldFinger allowed to obtain a high-quality approximation of the set
{(u, v)|sim(u, v) ≥ threshold}, and was performing better than Fast Similarity Sketching at it.

3.3 Quality metrics for Set Similarity Join
Benchmarking this problem is different than for KNN problems in that each node does not have a
fixed number of neighbors, so we need to define two adapted evaluation metrics, depending on whether
we care about false positives.

Definition (Recall). The recall for this problem differs from the recall used for KNN graphs. Given
the set S = {(u, v) | sim(u, v) ≥ threshold}, and an approximation of it noted Ŝ, we define the recall
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Figure 4: Quality of the approximate Similarity Join computed by GoldFinger and Fast Similarity
Sketching on DBLP. GoldFinger achieves high quality with a low number of bits, and outperforms
Fast Similarity Sketching.

as:

recall(Ŝ) =
|S ∩ Ŝ|
|S|

This definition ignores false positives, it only takes into account the retrieval of the actual edges.

Definition (Precision). Given the set S = {(u, v) | sim(u, v) ≥ threshold}, and an approximation of
it Ŝ, we define the recall as:

precision(Ŝ) =
|S ∩ Ŝ|
|S ∪ Ŝ|

This definition penalizes false positives. The approximated set must not include too many additional
elements to keep a high precision.

3.4 Impact of using GoldFinger for Set Similarity Join
The protocol I adopted was to compute the approximated sets

Ŝ1 = {(u, v) | GoldF inger(u, v) ≥ threshold}

and
Ŝ2 = {(u, v) | FastSim(u, v) ≥ threshold}

on the datasets using a brute force method before computing their recall and precision.
Figure 4 shows our results on DBLP. GoldFinger achieves both a high recall and precision

with a low number of bits, and significantly outperforms Fast Similarity Sketching. We
obtain similar results on movielens10M and Gowalla.

This can be explained by the fact that this problem is very sensible to errors on the similarity
value, when only keeping the relative order between elements was important for KNN graphs. While
GoldFinger both provides a precise approximation of the similarity value and keeps the relative order
between elements, Fast Similarity Sketching performs well at the former, but provides a poor absolute
approximation of the similarity value as observed on Figure 2.

We thus obtained promising preliminary results on this problem, and it could be interesting to
further investigate the performance gain obtained by plugging GoldFinger into existing Set Similarity
Join methods. The strength of GoldFinger is that it would only require a pre-treatment layer replacing

12
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the item sets with the sketchs produced by GoldFinger, just like for KNN search, without any change
to the underlying algorithms. In comparison, the integration of other sketching techniques such as
Fast Similarity Sketching or MinHash, would be much more complicated as many Set Similarity Join
algorithms do not compute the Jaccard similarity directly, and rather do their own computations on
the item sets. The source code of [6], available at http://ssjoin.dbresearch.uni-salzburg.at
could be used as basis for this evaluation.

4 Improving GoldFinger by fitting the data for better quality
While constructing GoldFinger, we studied the choice of the hash function used. Indeed, GoldFinger
assigns a hash to each item of the dataset, and two items with the same hash will induce errors in
the computation of the approximated similarity. For instance, if two frequent items obtain the same
hash, they will collide often and create a significant number of errors and thus decrease the KNN
graph quality. The original paper [17] observed that using the Jenkins hash function6, SHA-5127 or a
modulo as hash function resulted in a similar quality. Indeed, on real datasets, these functions behave
as if hashes were randomly chosen for each item.

Replacing the random hash function by a function which is adapted to the data should lower the
impact of those unavoidable collisions.

Intuitively, collisions occur when two items share the same hash so reducing the total frequency of
the items associated to a hash should thus reduce the number of collisions. We consider a new hashing
strategy, dubbed AdaptHash, which is based on the frequency of the items. The items are greedily
assigned one by one by decreasing frequency to the least used hash. This is a 4

3 -approximation [14]
of the classical scheduling problem where we minimize the makespan of scheduling the items on p
processors based on their frequency. Hence, this strategy is efficiently distributing the item hashes
while maintaining near the optimal the value maxb∈[0,B−1]

∑
item|h(item)=b frequency(item).

Concerning computation time, this new hashing strategy mainly impact the initialization time,
during which the sketches are computed, as the method to estimate the similarity remains unchanged.
The initialization time remain negligible compared to the KNN graph computation time. On movie-
lens10M, using AdaptHash doubles the initialization time, from 4s to 8s (independently of the sketch
size), which is negligible compared to the computation time of the KNN graph (110s with Hyrec).

Figure 5 shows the impact of the hashing strategy on the KNN graph quality on movielens10M
and Gowalla. The use of AdaptHash provides a better KNN quality compared to the use
of a random hash function, especially on movielens10M where the gain is substantial.
Similar results were obtained on AmazonMovies, ml1M, ml20M and DBLP: the AdaptHash strategy
outperforms the use of a random hash function.

The gain compared to the use of a random hash function is tightly bounded to the frequency
distribution of the items. Figure 6 shows the frequency distribution of the datasets movielens10M and
Gowalla. On movielens10M, where the gain is important, the frequency is not linear, there are items
which are much more frequent than others while the frequency is linearly distributed among items
in Gowalla, resulting in a slight improvement in terms of KNN quality. AdaptHash is particularly
interesting when the frequency distribution is not uniform.

Remark. We experimented a second strategy for choosing the item hashes consisting in dedicating
part of the sketch to the most frequent items. This strategy reserves k bits for the k most frequent
items. The other items are hashed at random on the remaining bits. The intuition was that most
errors are due to hash conflicts with frequent items and eliminating these conflicts should improve the
quality.

However, it was not performing predictably and was sometimes improving, and other times worsen-
ing the KNN graph quality, so we do not analyze it in depth here and focused our work on AdaptHash.

6https://en.wikipedia.org/wiki/Jenkins_hash_function
7https://en.bitcoinwiki.org/wiki/SHA-512
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Figure 5: Evolution of KNN quality with a random hash function and AdaptHash for GoldFinger.
AdaptHash outperforms the use of a random hash function.
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Figure 6: Frequency distribution of movielens10M and Gowalla
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5 Conclusion and possible future work
During this internship, I showed that GoldFinger remained competitive against the later released Fast
Similarity Sketching. I have also illustrated the effectiveness of GoldFinger for KNN search, and the
significant improvement it provides to state-of-art algorithms performance, which have not leveraged
similarity approximation so far. Additionally, I showed that GoldFinger outperforms Fast Similarity
Sketching for Set Similarity Join, in terms of quality. Complementary work could be realized to
determine whether the performance gain obtained with GoldFinger balances the loss in quality, when
using GoldFinger alongside state-of-the-art Set Similarity Join algorithms. Along with these results,
I showed that GoldFinger quality could be slightly increased by using Adaptative hashing functions,
with little increase in the initialization time.

The results obtained during this internship will be presented in a paper submitted to the Trans-
actions on Knowledge and Data Engineering journal (TKDE).
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A Improving existing KNN libraries
As I used existing libraries to answer KNN queries and to benchmark the impact of GoldFinger,
I encountered a few issues and implementations that could be improved. It was the occasion to
contribute to previous research papers and to improve their implementation.

I contributed to ANN-benchmarks the support of sparse datasets, and the correction of the support
of Jaccard similarity with the ANN libraries NMSLIB and PUFFINN [4]. Besides, I contributed to
NMSLIB a refactor of its C-to-Python interface that drastically improves the performances for several
metrics, including Jaccard similarity.

A.1 Improving the support of Jaccard similarity in ANN-benchmarks
ANN-benchmarks [5] is a benchmarking tool aiming at drawing a fair comparison between KNN search
libraries, and to provide people with a way to determine which algorithm and parameters suit their
application best.

It supports the Angular, Euclidean and Jaccard metrics. Yet, its support of the Jaccard similarity
was quite limited prior to my contributions due to the lack of support of sparse datasets, and several
algorithms integrations being broken.

The support of an adapted format for sparse datasets is paramount for the Jaccard similarity,
given the size of the datasets used in practice, a dense format is in the best case terribly inefficient,
and in the worse simply not possible with the actual technologies. The density is the ratio between
the number of items possessed by the users, and the product of the number of users and the number
of items, and it is proportional to the ratio between the size of a dataset stored in sparse format, and
of the size of its dense representation. For instance, Movielens10M has a density of 1%, and DBLP
even has a density of 0.02%!

Due to the importance of supporting sparse datasets, I integrated their support in the library and
contributed it back in https://github.com/erikbern/ann-benchmarks/pull/235. It reduced the
size of the dataset archive provided by the library for evaluating Jaccard similarity from 2GB to just
33MB!

I also fixed the support of the PUFFINN [4] library with Jaccard Similarity8, and I added the
support of the Jaccard similaritty with NMSLIB in another pull request9.

In total, I opened 6 pull requests on ANN-benchmarks, totaling 435 line additions, and
78 deletions.

A.2 Speeding up the KNN search library NMSLIB
NMSLIB is a major library answering to the KNN search problem. Amazon AWS has dedicated offers
implementing it for its users. And NMSLIB ranks among the best KNN search algorithms according
to ANN-benchmarks10.

It is a generic library implementing different KNN search algorithm (BallTree, SW-graph, HNSW),
as well as different metrics (Jaccard, Hamming, Cosine, Euclidean, etc).

However, its implementations of the different metrics are not all as performant. Indeed it exposes
a python interface where the user retrieves the data, and for some metrics like Euclidean or Cosine,
the data are passed directly to the C++ program, but for some others, like Jaccard or Hamming, the
data are first converted to string format before being passed to C++, where they are converted again
to integers or floats.

8https://github.com/erikbern/ann-benchmarks/pull/234
9https://github.com/erikbern/ann-benchmarks/pull/239

10See their website http://ann-benchmarks.com/.
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Figure 7: Measurement of the improvement of the performance of NMSLIB on movielens10M. For
clarity reasons, we only show results for HNSW, these improvements also apply to the other algorithms
provided by NMSLIB. We observe a performance gain of a factor up to 10.

While it simplifies the codebase by avoiding the need for managing polymorphic C++ classes, it
is highly inefficient.

In the scope of my internship, I wanted to measure the impact of GoldFinger on NMSLIB with the
minimum of noise possible, and I wanted to diminish the impact of using the Python interface. Thus,
I worked on passing the raw data directly from Python to C++ to avoid unecessary conversions and
opened a pull request at https://github.com/nmslib/nmslib/pull/484. Despite being minimalist
as it only includes the changes to the C++ interfaces and leaves the changes to the metric classes
separate, this pull request already adds 130 lines of code, and deletes 109 others.

Figure 7 shows the performance improvement obtained with this change on movielens10M, with
the Jaccard similarity metric. We observe an impressive gain in the performances: up to a factor 10.
This improvement makes the performance gap between NMSLIB and other libraries even greater for
the Jaccard similarity.

B Side project on small-world networks and peer-to-peer ap-
plication

While not directly related to the initial subject of my internship, as I had to wait for experiments
to terminate at the end of my internship, I worked part time with Erick Lavoie, Research Scientist
at SaCS, and with Paulette Vazquez, summer Intern at SaCS, on integrating new applications into a
small-world connectivity project using Raspberry Pis.

The observation at the root of this project is that it is difficult to create applications such as
social networks or file sharing for local communities, and decentralized networks due to the multitude
of device technologies involved, with the need to define a communication protocol for every pair of
devices (Android-Windows, Android-iOS, iOS-Linux, and so on...). And it should be simpler to use an
intermediary device, in our case a Raspberry Pi, to limit the number of possible interaction to those
of the form ∀device_type, device_type - Raspberry Pi. Each individual could then have their own
Raspberry Pi and use it as an intermediary to communicate with other people, with the additional
advantage that the Raspberry Pi can be used as a replicating node when the user is offline and cannot
directly share their data.
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(a) (b) (c)

Figure 8: Pictures of the assembled Raspberry Pi

This project was separated into two main tasks. First, replicating and clarifying the report11
of the semester project of a bachelor student at EPFL, Romain Kuenzi, who designed the physical
interface of the Raspberry Pis and implemented a first decentralized application using them. Then, I
integrated another application onto the Raspberry Pi called Hypercore12. It is a peer-to-peer (P2P)
protocol allowing to share data on a decentralized network, it provides high-level interfaces to simplify
the development of P2P applications, and among them, Hyperdrive, a P2P file-sharing application,
which we will cover more precisely.

B.1 Using Raspberry Pis to simplify small-world network connectivity and
application to Scuttlebutt, a decentralized social network

The semester project of Romain Kuenzi aimed at designing a physical interface to connect one’s device
to a Raspberry Pi, and showcasing the usage of Raspberry Pis to simplify the usage of Scuttlebutt [31]
on local networks. Scuttlebutt is a decentralized gossip platform, providing social networking features.
Data spread as users copy the data of friends and of friends of friends they encounter in the network
(when they meet another user), hence the term gossip.

Paulette and I were able to successfully replicate the assembled device Romain designed (see Fig-
ure 8), and its usage to communicate with the decentralized social network Scuttlebutt.

We then extended Romain’s report at https://gitlab.epfl.ch/sacs/ssb/smallworld/report-romain
to clarify the setup procedure, and we documented additional procedures to connect the Raspberry
Pi with Android phones, and Windows computers.

On top of that, Romain noted in his report that the user was lacking feedback to determine when
the synchronization between their device and the Raspberry Pi was finished. In order to improve this
point, I created a script13 listening to Scuttlebutt events and alerting the user when new content is
received.

B.2 Integrating the Hypercore protocol with small-world Raspberry Pis
For this second part of the project, I wanted to show that Hyperdrive could be used in a small-world
setup to easily share files that could be often updated among peers, similarly to a Dropbox instance.

11The report of Romain Kuenzi on SmallWorld is available at https://gitlab.epfl.ch/sacs/ssb/smallworld/report-
romain/-/tree/1c3c37bea3949826313e34cdaeec5f9a4d85ba55

12https://hypercore-protocol.org/
13The script I created to listen to Scuttlebutt publish events is available at https://github.com/GuilhemN/

ssb-copy-follows/blob/POSTS.
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To do so, I designed a demonstration where the goal is to synchronize files between two peers, with
no simultaneous connexion. To achieve this, the Raspberry Pi acts both as a replicating node of the
users’ file and needs to be remotely controllable to determine what data is synced.

My report is available at https://gitlab.epfl.ch/niot/smallworld-dat-report and explains
in detail how to integrate Hypercore on the Raspberry Pi, and how to remotely control it to achieve
the desired goal.
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